用户名: 密码: 验证码:
带钢边部缺陷在轧制过程中的开裂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属板材被广泛应用于汽车、建筑、家电、石油石化、食品包装以及航空航天等行业,是一种重要的工业基础产品。轧制是生产金属板材的重要方法之一。在轧制过程中,金属材料内部各类缺陷(如夹渣、孔洞、裂纹等)经过扩展、聚合造成板材边部开裂或表面质量下降,严重情况还会导致轧制断带事故,制约了轧制生产的连续性,降低了板材的成材率。目前对于金属材料在轧制条件下断裂行为研究的理论基础还非常薄弱,缺乏完整的理论体系。因此研究轧制过程中缺陷的扩展机理不仅可以为金属材料大塑性流动情况下的断裂失效问题研究提供理论基础,同时对抑制边裂缺陷的产生,减少断带事故有着重要实际意义。
     本文在研究轧制过程中带钢边部缺口前缘应力应变场分布的基础上,研究了GTN模型对轧制过程中断裂行为的适用性,利用f参量对轧制过程中边部裂纹的萌生和扩展进行了研究,分析了轧制过程中边部缺陷的开裂行为,并通过试验设计方法中的析因分析和正交试验设计方法分析了轧制工艺参数对边部缺陷开裂行为的影响趋势和耦合影响规律,在此基础上建立一种轧制过程中边部缺陷开裂判定准则,并通过自主设计的边部缺陷在线检测装置进行验证。
     论文主要研究内容和结论如下:
     (1)带钢边部缺口进入轧制区后,缺口尖端区域等效应力和等效塑性变形峰值均出现在缺口尖端偏向轧制方向一侧,并且随着轧制的进行最大等效应力点随之移动;随着累积压下率的增加,轧制方向分力的最大值始终出现在缺口前缘并且逐渐增加;对于不同尺寸的边部缺口,随着长度的增加,尖端应力集中严重,最大等效塑性应变值随之增加。
     (2)通过将GTN损伤模型引入到轧制过程的失效模拟中,对边部缺陷开裂行为进行有限元仿真,仿真结果表明:压下率到达一定程度时,边部缺口前缘开始出现微小裂纹;当缺口被咬入到轧制区后,缺口前侧边由于受到摩擦力的作用运行速度比后侧边快,缺口尖端的轧制方向应力分量迅速增大,导致缺口尖端附近材料内部的微小孔洞开始萌生和聚合,当孔洞的体积百分比达到临界值时便产生微小的裂纹;裂纹首先出现在缺口尖端并沿着与轧制方向呈约45°方向扩展;当压下率进一步增加时,另一条裂纹也在缺口前缘出现并且沿着与轧制方向约成135°的方向扩展。
     (3)利用析因分析法和正交试验设计法研究了压下率、张力水平、摩擦系数和轧辊半径等因素对边部缺陷开裂行为的影响规律及影响程度。结果表明压下率和张力是边部裂纹扩展的主要影响因子,摩擦系数和轧辊直径为次要因子,按照影响的显著程度排序依次为:压下率,单位张力,摩擦系数和轧辊直径;其中裂纹长度随着压下率,单位张力和摩擦系数的增大而增加,随着轧辊直径的增加而降低。
     (4)建立一种轧制过程边部缺陷开裂判据,该判据考虑了轧制工艺参数以及不同材料性能对临界边部缺陷尺寸的影响,建立了压下率、张力、临界初始边部缺陷尺寸以及平均等效塑性应变的关系。结合自主设计研发的带钢边部缺陷在线检测装置对带钢边部缺陷进行实时在线检测。结果表明:检测装置阈值设置为计算值时,检测装置获得的报警数与实测边裂数吻合较好,累计报警数的增长率与累计实测边裂数增长率一致;阈值设置过大会导致大量超过临界尺寸的缺陷通过检测而没有触发报警;阈值设置过小将导致检测条件过于“苛刻”而产生较多误报警。通过在线边部缺陷检测证明了所提出的轧制断裂判据可以准确地对边部缺陷的开裂行为,有效降低了轧制断带和边裂缺陷的发生。
The steel strip, which is one of the important industrial necessities, has been widely used in automotive industry, construction, household appliances, petrochemical, food packaging and aerospace industries. Rolling is the most important procedure in the manufacture of steel strips. During the rolling process, edge cracks and flaws occur due to the growth and coalescence of the inner micro defects, such as inclusions, voids, cracks et.al. These edge cracks and flaws may lead to the fracture of the strip steel or even more serious accidents, which severely reduce the productivity and the yield. At present, the theoretical basis for the fracture behavior of steels under rolling condition is still very weak. Therefore, research of the fracture mechanism of strip steel during rolling process can not only provide a theoretical basis for the study of fracture failures of metallic materials under large plastic flow condition, but also has important practical significance of inhibiting the edge defects and reducing the accidents of strip fracture.
     In this study, the stress and strain distribution at the edge notch tip during rolling process were discussed and the GTN damage model was introduced to predict the fracture behaviors of strip steels. The onset of edge cracks has been simulated by using FE method based on the GTN damage model. Factorial design and Taguchi experimental design methods have been proposed to analyze the effects of processing parameters on the formation of edge cracks. Rolling experiments were carried out to validate the simulation results. A simplified fracture criterion under rolling condition has been proposed in terms of the simulation results.
     The main study contents and conclusions are listed as follows:
     (1) When the edge notch enters into the rolling zone, the maximum equivalent stress and strain appear at the notch tip on the side of deflection in rolling direction. The peak points move during the rolling process but the maximum values maintain constant. With the increasing of the total reduction ratio, the maximum of the crack growth driving force (SI1) increases while the value keeps constant. With the increasing of edge notch length, the stress concentration becomes more severer and the maximum equivalent strain increases.
     (2) The finite element simulation was carried out to investigate the initiation of edge cracks by utilizing the GTN damage model. The simulation results show that edge cracks initiate when the total reduction ratio reaches to certain level. When the notch is dragged into the roll gap, the front side of the notch moves faster than the rear one due to the friction force and the stress component along the rolling direction increases rapidly at the notch tip. which is leading to initiation and propagation of the micro voids. Edge cracks format when the void volume fraction reaches to the critical value. The crack firstly appears at the notch tip near the front side and grows along the direction with an angle about45to the rolling direction. As the increasing of reduction ratio, another crack occurs at the rear side of notch tip with135°to the rolling direction.
     (3) Factorial design and Taguchi experimental design methods have been proposed to analyze the effects of reduction ratio, tension, work roll diameter and friction coefficient on the formation of edge cracks. Factorial design results show that the rank according to the impact degrees on the crack initiation from high to low is reduction ratio, tension, work roll diameter and friction coefficient. Parametric studies indicated that with the increasing of reduction ratio, friction coefficient and tension, the crack length increases. A bigger work roll is beneficial to restrict the edge crack growth as well.
     (4) A simplified fracture criterion under rolling condition has been proposed, which has been verified via rolling tests on the production line by using the device which can detect both the surface and inner edge defects on line. The testing data reveals that it is reasonable for the tandem cold rolling line to set the critical value of defect size as the calculated value. Because under this circumstance the number of defects detecting by device has a good agreement with the number counting at the edge of rolled steel coils. If the critical value is set to be lower, the more wrong alerting signals will generate. Conversely, If the critical value is set to be higher, more defects which can cause edge cracks will pass the detecting device without inducing any alerting signals. The fracture criterion can predict the formation of edge crack during rolling process which is helpful for reducing edge cracks in the real manufacturing process.
引文
[1]付作宝.冷轧薄钢板生产[M].北京:冶金工业出版社,2009.1-7
    [2]严开龙,李宏洲.马钢冷轧轧机断带原因的分析与对策[J].安徽冶金,2006,4:36-37.
    [3]Zhang, S.H., Qin, H.X., Liu, H.F. Analysis of the cause of crack in cold rolling of QSn6.5-0.1 strip [J]. Journal of Central South University of Technology,2001,8(2):94-98.
    [4]Mastsumiya, T. Recent topics of research and development in continuous casting [J]. ISIJ International,2006,46(12):1800-1804.
    [5]Atkinson, H. V., Shi, G. Characterization ofinclusions in clean steels:a review including the statistics of extremes methods [J]. Progress in Materials Science,2003,48:457-520.
    [6]喻海良.轧制过程中轧件裂纹和夹杂物演变行为研究[D].东北大学,2008.
    [7]Fleck, N. A., Johnson, K. L., Mear, M. E. Cold rolling of foil [J]. Proceedings of the Institution of Mechanical Engineers, Part B,1992,206:119-131.
    [8]Li, G.J., Kobayashi, S. Analysis in rolling by the rigid-plastic finite element method [J]. Numerical Methods in Industrial Forming Processes,1982:777-783.
    [9]Mori, K., Osakada, K.. Finite element simulation of three-dimensional shape rolling [J]. International Journal for Numerical Methods in Engineering,1990,30:1431-1440.
    [10]Mori, K., Osakada, K. Simulation of three-dimensional deformation in rolling by the finite element method [J]. International Journal of Mechanics Science,1984,26:515-525.
    [11]Kiuchi, M., Yanagimoto, J. Computer aided simulation of universal rolling processes [J]. ISUInernational,1990,30:142-149.
    [12]Jiang, Z.Y., Tieu, A.K. A simulation of three-dimentional metal rolling process by rigid-plastic finite element method [J]. Journal of Materials Processing Technology,2001,112: 144-151.
    [13]Yanagimoto, J., Kiuchi, M., Inoue, Y. Characterization of wire and rolling with front and back tensions by three-dimentional rigid-plastic finite element method [C]. Proceedings of 4th ICTP,1993.
    [14]戚克鹏,王智祥.采用显式动态弹塑性有限元法模拟板材轧制[J].有色金属加工.2004,33(4):21-24.
    [15]帅美荣,秦建平.平三角孔型轧制钛合金棒材温度场的有限元模拟[J].特殊钢.2009,30(4):42-44.
    [16]Nagase, N., Yarita, I. Analysis of surface imprinting in sheet coining by elastic-plastic finite element method [J]. Journal of the Iron and Steel Institute of Japan,2009,95:131-136.
    [17]刘宏民,王英睿.模拟板带轧制三维变形的流面条元法[J].机械工程学报.2003,23(7):94-100.
    [18]Gudur, P. P., Dixit, U. S. A combined finite element and finite difference analysis of cold flat rolling [J]. Journal of Manufacturing Science and Engineering,2008,130(011007):1-6.
    [19]崔青玲,李长生,刘相华,等.三维稳态板轧制过程的再生核质点法模拟[J].工程力学.2006,23(10):188-192.
    [20]赵培林,陈学涛,王金秀,等.窜辊对热轧轧辊变形及轧件凸度影响的有限元分析[J].莱钢科技.2008,(133):48-50.
    [21]龚殿尧,徐建忠,张凤琴,等.轧辊凸度及直径对热轧带钢凸度的影响[J].钢铁研究学报.2003,15(3):4.
    [22]Yu, H. L., Liu, X. H., Li, C. S., et al. Influences of edging roll shape on the plastic strain distribution of slab during multi-pass V-H rolling process [J]. Acta Metallurgica Sinica (English Letters),2006,19(1):51-56.
    [23]Shen, Y. F., Xue, W. Y., Wang, Y. D., et al. Tensile behaviors of IF steel with different cold-rolling reductions [J]. Materials Science and Engineering:A,2008,496(1-2):383-388.
    [24]Kenmochi, Kazuhito, Yarita, Ikuo, Abe, Hideo, et al. Effect of micro-defects on the surface brightness of cold-rolled stainless-steel strip [J]. Journal of Materials Processing Technology,1997,69(1-3):106-111.
    [25]Dick, Kevin, Lenard, John G. The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips [J]. Journal of Materials Processing Technology,2005,168(1):16-24.
    [26]贺毓辛.冷轧板带生产[M].北京:冶金工业出版社,1992.483-496
    [27]Deng, Wei, Zhao, De-wen, Qin, Xiao-mei, et al. Simulation of central crack closing behavior during ultra-heavy plate rolling [J]. Computational Materials Science,2009,47(2): 439-447.
    [28]Na, D.H., Lee, Y. FE simulation of edge crack initiation and propagation of conventional grain orientation electrical steel [J]. International Journal of Modern Physics,2008,22(31): 5465-5470.
    [29]Byon, S-M, Lee, Y Experimental study on the prohibition of edge cracking of high-silicon steel strips during cold rolling [J]. Proc Inst Mech Eng Part B-J Eng Manuf,2011.
    [30]Bradley, D., Philip, Boddington. The causes of edge cracking in cold rolling [J]. Journal of Mechanical Working Technology,1980,3(3-4):239-252.
    [31]Xie, H. B., Jiang, Z. Y, Yuen, W. Y. D. Analysis of friction and surface roughness effects on edge crack evolution of thin strip during cold rolling [J]. Tribology International,2011, 44(9):971-979.
    [32]Xie, H. B., Jiang, Z. Y., Yuen, W. Y. D. Analysis of Microstructure Effects on Edge Crack of Thin Strip During Cold Rolling [J]. Metall Mater Trans B-Proc Metall Mater Proc Sci, 2011,42(6):1244-1252.
    [33]Mashayekhi, M., Torabian, N., Poursina, M. Continuum damage mechanics analysis of strip tearing in a tandem cold rolling process [J]. Simulation Modelling Practice and Theory, 2011,19(2):612-625.
    [34]Silva, M. L. N., Pires, G. H., Button, S. T. Damage evolution during cross wedge rolling of steel DIN 38MnSiVS5 [J]. Procedia Engineering,2011,10(0):752-757.
    [35]Hubert, C., Dubar, L., Dubar, M., et al. Experimental simulation of strip edge cracking in steel rolling sequences [J]. Journal of Materials Processing Technology,2010,210(12): 1587-1597.
    [36]Hubert, C, Dubar, L., Dubar, M., et al. Finite Element simulation of the edge-trimming/cold rolling sequence:Analysis of edge cracking [J]. Journal of Materials Processing Technology,2012,212(5):1049-1060.
    [37]Yu, Hai-Liang, Liu, Xiang-Hua, Ren, Xiao-Jia. Behaviour of longitudinal cracks on slab surfaces in V-H rolling processes [J]. Steel Research International.2008,79:536-542.
    [38]Yu, Hai-liang, Liu, Xiang-hua, Li, Chang-sheng, et al. Research on the behavior of transversal crack in slab V-H rolling process by FEM [J]. Journal of Materials Processing Technology,2009,209(6):2876-2886.
    [39]Yu, Hai-liang, Liu, Xiang-hua, Li, Chang-sheng, et al. Behavior of Transversal Crack on Slab Corner During V-H Rolling Process [J]. Journal of Iron and Steel Research, International, 2006,13(6):31-37.
    [40]Yu, Hailiang, Liu, Xianghua, Wang, Guodong. Analysis of Crack Tip Stress of Transversal Crack on Slab Corner During Vertical-Horizontal Rolling Process by FEM [J]. Journal of Iron and Steel Research, International,2008,15(3):19-26.
    [41]Kainz, A., llie, S., Parteder, E., et al. From Slab Corner Cracks to Edge-Defects in Hot Rolled Strip-Experimental and Numerical Investigations [J]. Steel Research International. 2008,79(11):861-867.
    [42]Ervasti, Esa, Stahlberg, Ulf. Transversal cracks and their behaviour in the hot rolling of steel slabs [J]. Journal of Materials Processing Technology,2000,101(1-3):312-321.
    [43]Ervasti, Esa, Stahlberg, Ulf. Behaviour of longitudinal surface cracks in the hot rolling of steel slabs [J]. Journal of Materials Processing Technology,1999,94:141-150.
    [44]Thomson, P. F., Burman, N. M.. Edge Cracking in Hot-rolled AI-Mg Alloys [J]. Materials Science and Engineering,1980,45:95-107.
    [45]Han, Myung Hwan, Lee, Sunghak, Kim, Nack J., et al. Analysis and prevention of edge cracking phenomenon during hot rolling of non-oriented electrical steel sheets [J]. Materials Science and Engineering:A,1999,264(1-2):47-59.
    [46]Saxena, A., Kumar, V., Sengupta, P.P., et al. Edge Cracking in Hot-Rolled Coils of Semi-killed Steels [J]. Journal of Materials Engineering and Performance,1997,6:605-610.
    [47]Ghosh, S., Li, M., Gardiner, D. A computational and experimental study of cold rolling of aluminum alloys with edge cracking [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2004,126(1):74-82.
    [48]Rajak, S. Abdul, Reddy, N. Venkata. Prediction of internal defects in plane strain rolling [J]. Journal of Materials Processing Technology,2005,159(3):409-417.
    [49]Zhang, Dingfei, Dai, Qingwei, Fang, Lin, et al. Prediction of edge cracks and plastic-damage analysis of Mg alloy sheet in rolling [J]. Transactions of Nonferrous Metals Society of China,2011,21(5):1112-1117.
    [50]McVeigh, C., Liu, W. K. Prediction of central bursting during axisymmetric cold extrusion of a metal alloy containing particles [J]. International Journal of Solids and Structures,2006,43:3087-3105.
    [51]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [52]Kachanov, L. M.. Time of the rupture process under creep conditions [J]. Izv Akad Nauk USSR, Otd Tekh Nauk.,1957,20:26-31.
    [53]Yu, Rabotnov. On the equations of state for creep [J]. Progress in Applied Mechanics. 1963:307-315.
    [54]Lemaitre, J. Evaluation of dissipation and damage in metals submitted to dynamic loading [C]. Proceedings ICM-1, Japan,1971.
    [55]Lemaitre, Jean. A Continuous Damage Mechanics Model for Ductile Fracture [J]. Journal of Engineering Materials and Technology.1985,107(1):83-89.
    [56]Broberg, H. Creep Damage and Rupture [D]. Gothenberg Chalmers University of Technology,1975.
    [57]Janson, J., Hult, J. Fracture mechanics and damage mechanics, a combined approach. [J]. MechAppl,1977,1(1):59-64.
    [58]Hult, J. Introduction and general overview. In:Continuum Damage Mechanics:Theory and Applications [M]. New York:Springer-Verlag,1989
    [59]Murakami, S., Ohno, N. Constitutive Equation of Creep Based on the Concept of a Creep-Hardening Surface [J]. Res mechanica letters,1981,1(8):357-362.
    [60]Betten, J., Frosch, H. G., Borrmann, M. Pressure-Dependent Yield Behaviour of Metals and Polymers [J]. Materials science and engineering,1982.56(3):233-246.
    [61]Soyarslan, C., Tekkaya. A. E. Prevention of Internal Cracks in Forward Extrusion by Means of Counter Pressure:A Numerical Treatise [J]. Steel Research International,2009, 80(9):671-679.
    [62]Kudo, H., Aoi, K. Effect of compression test conditions upon featuring of a medium carbon steel-study on cold forgeability test [J]. Journal of the Japan Society for Technology of Plasticity.1967. Part II(8):17-27.
    [63]Lee. P.W.. Kuhn. H.N. Fracture in cold upset forging-a criterion and model [J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1973, 4:969-974.
    [64]Semiatin, S.L., Jonas, J.J. Formability and Workability of Metals, American Society for Metals, [M]. Ohio:Metals Park,1984
    [65]Sowerby, R., O'Reilly, I., Chandrasekharan, N., et al. Materials tested for cold upsetting [J]. Journal of Engineering Materials and TechnologyTrans ASME,1984,106:101-106.
    [66]Sowerby, R., Chandrasekharan, N.. The upsetting and free surface ductility of some commercial steels [J]. Journal of Applied Metalworking,1984,3:257-263.
    [67]Vujovic, V., Shabaik, A.. A new workability criterion for ductile metals [J]. Journal of Engineering Materials and Technology,1986,108:245-249.
    [68]Shabaik, A., Vujovic, V.. On the stress formability index [C]. Proceedings of the International Conference on Mechanical Design and Production, Cairo,1988.
    [69]Frudenthal, A.M..The Inelastic Behavior of Metals [M]. New York:Wiley,1950
    [70]Cockroft, M.G., Latham, D.J. Ductility and the workability of metals [J]. Journal Institute of Metals,1968,96:33-39.
    [71]Oh, S.I., Chen, C.C., Kobayashi, S.. Ductile fracture in axisymmetric extrusion and drawing.Part Ⅱ. Workability in extrusion and drawing [J]. Journal of Engineering for Industry, 1976,101:33.
    [72]Brozzo, P., DeLuca, B., Rendina, R.. A new method for the prediction of formability limits in metal sheets, Sheet metal forming and formability [C]. Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group,1972.
    [73]Norris, D.M., Reaugh, J.E., Moran, B., et al. A plastic mean-stress criterion for ductile fracture [J]. Journal of Engineering Materials and Technology,1978,100:279-286.
    [74]Argon, A.S., Im, J., Safoglu, R.. Cavity formation from inclusions in ductile fracture [J]. Metallurgical and Materials Transactions A.1975,6:825-836.
    [75]Oh, Chang-Sik, Kim, Nak-Hyun, Kim, Yun-Jae, et al. A finite element ductile failure simulation method using stress-modified fracture strain model [J]. Engineering Fracture Mechanics,2011,78(1):124-137.
    [76]Venugopal Rao, A., Ramakrishnan, N., Krishna Kumar, R. A comparative evaluation of the theoretical failure criteria for workability in cold forging [J]. Journal of Materials Processing Technology,2003,142(1):29-42.
    [77]Abdel-Rahman, M.. Determination of workability curves using two mechanical tests [J]. Journal of Materials Processing Technology,1995,51:50-63.
    [78]Kuhn, H.A.. Forming limit criteria-bulk deformation processes, Advances in deformation processing [C]. Proceedings of the 21st Sagamore Army Materials Research Conference, New York,1974. Plenum Press.
    [79]Clift, S.E.. Numerical Modelling of Material Deformation Processes [M]. London: Springer,1992
    [80]Murty, S. V. S. Narayana, Rao, B. Nageswara, Kashyap, B. P. Improved ductile fracture criterion for cold forming of spheroidised steel [J]. Journal of Materials Processing Technology,2004,147(1):94-101.
    [81]Kobayashi, S., Lee, C.H.. Deformation mechanics and workability in upsetting solid circular cylinders [C]. the North American Metalworking Research Conference,1973.
    [82]Clift, S.E., Hartley, P., Sturgess, C.E.N., et al. Fracture prediction in plastic deformation processes [J]. International Journal of Mechanical Sciences,1990,32(1):1-17.
    [83]Bradley, D., Peter, H.. Workability and CAD/CAM [J]. Journal of Materials Processing Technology,1991,26:35-52.
    [84]Ko, D.C.. Kim, B.M., Choi, J.C.. Prediction of surface-fracture initiation in the axisymmetric extrusion and simple upsetting of an aluminum alloy [J]. Journal of Materials Processing Technology,1996,62:166-174.
    [85]Gouveia. B.P.P.A., Rodrigues. J.M.C., Martins, P.A.F.. Ductile fracture in metalworking: experimental and theoretical research [J]. Journal of Materials Processing Technology,2000. 101:52-63.
    [86]Kim, H.S., Im, Y.T., Geiger, M.. Prediction of ductile fracture in cold forging of aluminum alloy [J]. Trans ASME,1999,121:336-344.
    [87]Giardini, C., Ceretti, E., Maccarini. G.. Formability in extrusion forging:the influence of die geometry and friction conditions [J]. Journal of Materials Processing Technology,1995, 54:302-308.
    [88]Wifi, A.S., Abdel-Hamid, A., E1-Abbasi, N.. Computer-aided evaluation of workability in bulk forming processes [J]. Journal of Materials Processing Technology,1998,77:285-293.
    [89]Reiner, K., Gottfried, B.. The determination of formability for cold and hot forming conditions [J]. Steel Research International,1999,70:147-153.
    [90]Liu, Hongsheng, Yang, Yuying, Yu, Zhongqi, et al. The application of a ductile fracture criterion to the prediction of the forming limit of sheet metals [J]. Journal of Materials Processing Technology,2009,209(14):5443-5447.
    [91]Zhang, Xue-min, Zeng, Wei-dong, Shu, Ying, et al. Fracture criterion for predicting surface cracking of Ti40 alloy in hot forming processes [J]. Transactions of Nonferrous Metals Society of China,2009,19(2):267-271.
    [92]Kim, Nak-Hyun, Oh, Chang-Sik, Kim, Yun-Jae, et al. Comparison of fracture strain based ductile failure simulation with experimental results [J]. International Journal of Pressure Vessels and Piping,2011,88(10):434-447.
    [93]Xue, Liang, Wierzbicki, Tomasz. Ductile fracture initiation and propagation modeling using damage plasticity theory [J]. Engineering Fracture Mechanics,2008,75(11): 3276-3293.
    [94]Zhang, Xiao-Xun, Cui, Zhen-Shan, Chen, Wen, et al. A criterion for void closure in large ingots during hot forging [J]. Journal of Materials Processing Technology,2009,209(4): 1950-1959.
    [95]黄晓忠,陈劼实.陈军.板料冲压成形破坏判断准则的研究进展[J].机械工程学报.2011,47(4):23-31.
    [96]Ebnoether, Fabien, Mohr, Dirk. Predicting ductile fracture of low carbon steel sheets: Stress-based versus mixed stress/strain-based Mohr-Coulomb model [J]. International Journal of Solids and Structures,2013,50(7-8):1055-1066.
    [97]Takuda, H., Mori, K., Hatta, N. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals [J]. Journal of Materials Processing Technology. 1999,95(1-3):116-121.
    [98]于忠奇,杨玉英,王永志.基于韧性断裂准则的铝合金板材成形极限预测[J].中国有色金属学报.2003,13(5):1223-1226.
    [99]McClintock, F. A. A Criterion for Ductile Fracture by the Growth of Holes [J]. Journal of Applied Mechanics,1968,35(2):363-371.
    [100]Rice, J. R., Tracey, D. M. On the ductile enlargement of voids in triaxial stress fields* [J]. Journal of the Mechanics and Physics of Solids,1969,17(3):201-217.
    [101]Tvergaard, V. Material Failure by Void Growth to Coalescence. [J]. Advances in Applied Mechanics,1990, (27):83-151.
    [102]Gilormini, P, Licht, C, Suquet, P. Growth of voids in a ductile matrix:a review [J]. Archives of Mechanics,1988,40(1):43-80.
    [103]Hancock, J. W. Constraint and stress state effects in ductile fracture [M]. Berlin: Springer-Verlag,1992.99-144
    [104]赵震,谢晓龙,李明辉.空穴长大延性损伤新模型[J].金属学报.2007,43(10):1037-1042.
    [105]Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth:Part I-Yield criteria and flow rules for porous ductile materials [J]. Engineering Material Technology,1977. (99):2-15.
    [106]Tvergaard. V. Influence of voids on shear band instabilities under plane strain conditions [J]. International Journal of Fracture,1981,17(4):389-407.
    [107]Tvergaard, V., Needleman, A.. Analysis of the cup-cone fracture in a round tensile test bar [J].Acta Metal,1984,32:157-169.
    [108]Nahshon, Ken, Xue, Zhenyu. A modified Gurson model and its application to punch-out experiments [J]. Engineering Fracture Mechanics,2009,76(8):997-1009.
    [109]Alegre, J. M., Cuesta, I. I., Bravo, P. M. Implementation of the GTN Damage Model to Simulate the Small Punch Test on Pre-Cracked Specimens [J]. Procedia Engineering,2011, 10(0):1007-1016.
    [110]Le Maout, N., Thuillier, S., Manach, P. Y. Aluminum alloy damage evolution for different strain paths-Application to hemming process [J]. Engineering Fracture Mechanics, 2009,76(9):1202-1214.
    [111]1Chen, Zhiying, Dong, Xianghuai. The GTN damage model based on Hill'48 anisotropic yield criterion and its application in sheet metal forming [J]. Computational Materials Science, 2009,44(3):1013-1021.
    [112]Nahshon, K., Hutchinson, J. W. Modification of the Gurson Model for shear failure [J]. European Journal of Mechanics-A/Solids,2008,27(1):1-17.
    [113]Soyarslan, C., Gharbi, M. M., Tekkaya, A. E. A combined experimental-numerical investigation of ductile fracture in bending of a class of ferritic-martensitic steel [J]. International Journal of Solids and Structures,2012,49(13):1608-1626.
    [114]Dunand, M., Mohr, D. On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode angles [J]. Journal of the Mechanics and Physics of Solids,2011,59(7):1374-1394.
    [115]Springmann, M., Kuna, M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques [J]. Computational Materials Science,2005,32(3-4):544-552.
    [116]Cuesta, Ⅱ, Alegre, J. M., Lacalle, R. Determination of the Gurson-Tvergaard damage model parameters for simulating small punch tests [J]. Fatigue & Fracture of Engineering Materials & Structures,2010,33(11):703-713.
    [117]Abbassi, Fethi, Belhadj, Touhami, Mistou, Sebastien, et al. Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming [J]. Materials & Design,2013,45(0):605-615.
    [118]Yu, Hai-liang, Liu, Xiang-hua, Bi, Hong-yun, et al. Deformation behavior of inclusions in stainless steel strips during multi-pass cold rolling [J]. Journal of Materials Processing Technology,2009,209(Compendex):455-461.
    [119]Yu, Hai-liang, Bi, Hong-yun, Liu, Xiang-hua, et al. Strain distribution of strips with spherical inclusion during cold rolling [J]. Transactions of Nonferrous Metals Society of China (English Edition),2008,18(Compendex):919-924.
    [120]Yu, H. L., Liu, X. H., Li, X. W. FE analysis of inclusion deformation and crack generation during cold rolling with a transition layer [J]. Materials Letters,2008, 62(Compendex):1595-1598.
    [121]Luo, Chunhui, Stahlberg, Ulf. Deformation of inclusions during hot rolling of steels [J]. Journal of Materials Processing Technology,2001,114(Compendex):87-97.
    [122]Hollomon, J.H. Tensile deformation [J]. Transacions of the American Institute of Mining and Metallurgical Engineers,1945.162:268-290.
    [123]Voce, E. The relationship between stress and strain for homogeneous deformation [J]. Journal of the Institute of Metals.1948,74(537-562).
    [124]Swift, H.W.. Plastic instability under plane stress [J]. Journal of the Mechanics and Physics of Solids,1952,1:1-18.
    [125]Cherepanov. G.P. On crack propagation in solids [J]. International Journal of Solids and Structures,1969,5:863.
    [126]Rice, J. R. A path indepandent integral and the approximate analysis of strain concentration by notch and crack [J]. Journal of Applied Mechanics,1968,35:376.
    [127]Tang, J., Tieu, A. K., Jiang, Z.. Modeling of the development of initial crack under hot rolling condition [J]. Materials Science Forum,2006,505-507:1291-1296.
    [128]Filipovic, Mirjana, Eriksson, Conny, Overstam, Henrik. Behaviour of surface defects in wire rod rolling [J]. Steel Research International,2006,77:439-444.
    [129]Kim, H. Y., Kwon. H. C., Lee, H. W. Processing map approach for surface defect prediction in the hot bar rolling. [J]. Journal of Material Process Technology,2008,205(1-3): 70-80.
    [130]Anderson, T. L.. Fracture mechanics:fundamentals and applications. [M]. CRC Press, 2005
    [131]McMeeking, R. M.. Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture [J]. Journal of Mechanics and Physics Solids,1977,25: 357-381.
    [132]Drugan, W. J., Rice, J. R., Sham, T. L.. Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids [J]. Journal of Mechanics and Physics Solids, 1982,30:447-473.
    [133]Bishop, J. F. W., Hill, R. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses [J]. Philosophical Magazine Series 7,1951,42(327):414-427.
    [134]Tvergaard, V. Material failure by void coalescence in localized shear bands. [J]. International Journal of Solids and Structures,1982,18(8):659-672.
    [135]Chu, C. C., Needleman, A. Void Nucleation Effects in Biaxially Stretched Sheets [J]. Journal of Engineering Materials and Technology,1980,102(3):249-256.
    [136]Abaqus User's Manual. Version6.9.
    [137]Abendroth, M., Kuna, M. Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks [J]. Computational Materials Science,2003,28:633-644.
    [138]王国珍,张贺全.蒲吉斌等.GTN损伤模型对C-Mn钢缺口拉伸试样延性断裂的预测[J].机械强度.2008.30(4):647-652.
    [139]车洪艳,朱亮,陈剑虹.有限元反推法评定AA6014铝合金的损伤参数[J].机械工程材料.2007.31(7):57-59.
    [140]Mahnken. R. Aspects on the finite-element implementation of the Gurson model including parameter identification [J]. International Journal of Plasticity,1999,15(11): 1111-1137.
    [141]Burnet, M., Moresten, F., Walter-Leberre, H. Failure analysis of anisotropic sheet-metals using a non-local plastic damage model [J]. Journal of Materials Processing Technology,2005,170(1-2):457-470.
    [142]Croix, P., Lauro. F., Oudin, J. Improvement of damage prediction by anisotropy of microvoids [J]. Journal of Materials Processing Technology,2003,143-144:202-208.
    [143]Borona, N. Identification and measurement of ductile damage parameters [J]. Journal of Strain Analysis for Engineering Design,1999,34(6):463-478.
    [144]Steglich, D., Siegmund, T., Brocks, W. Micromechanical modeling of damage due to particle cracking in reinforced metals [J]. Computational Materials Science,1999.16(1-4): 404-413.
    [145]Faleskog, J., Gao, X.S., Shih, C.F. Cell model for nonlinear fracture analysis-I.Micromechanics calibration [J]. International Journal of Fracture,1998,89: 355-373.
    [146]Zheng. C.Q., Zhou. L.. Zhang. Q.S. Microscopic damage mechanics of ductile fracture and its application [M]. First ed. Beijing:National Defense Industry Press,1995.5-9
    [147]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008.4
    [148]茆诗松,周纪芗,陈颖.试验设计-学习指导与学习[M].北京:中国统计出版社,2005
    [149]闫玉曦,孙权,陈建钧等.基于GTN模型的冷轧硅钢边部裂纹扩展研究[J].机械工程学报.2012,48(10):33-39.
    [150]郑长卿,周利,张克实.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995.5-18
    [151]陈志英,董湘怀.GTN细观损伤模型参数对板料损伤行为的影响[J].锻压技术,2012,37(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700