用户名: 密码: 验证码:
镁合金微弧氧化膜电化学腐蚀行为及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化技术是在普通阳极氧化基础上开发的一种表面处理新技术,它通过等离子体化学、电化学和热化学的共同作用,在Al、Mg、Ti等阀金属表面原位形成陶瓷膜层,利用该技术制成的氧化膜结构致密,结合力强,具有优良的综合力学性能。本论文中,采用微弧氧化(MAO)技术在镁合金AZ91D表面制备了厚度为30±2μm的微弧氧化陶瓷膜,该膜层由内部致密层和外部疏松层构成,其主要组成相为Mg2SiO4和MgO。利用电化学方法结合扫描电子显微镜、X射线衍射等表面形貌结构分析方法,对该微弧氧化膜在不同环境中的腐蚀行为进行了研究,提出了相应的电化学阻抗谱的等效电路,并建立了腐蚀模型,为进一步推广微弧氧化镁合金的应用提供实验和理论依据。
     通过对镁合金微弧氧化膜在中性NaCl溶液中的腐蚀行为的研究,发现该系统Stern-Geary公式中的B值约为0.04V。在3.5%NaCl溶液中的腐蚀失效过程可以分成三个阶段:腐蚀初期,NaCl溶液通过扩散渗入MAO膜外部多孔层并很快到达外/内层边界,侵蚀性离子(Cl-、H2O)向膜层内部渗透,氯离子优先渗入MAO膜内部缺陷,置换了部分氧位,形成可溶性物质,对MAO膜层造成破坏并出现许多亚稳态蚀孔;腐蚀中期,游离的Mg2+与H2O电解出的OH-结合生成Mg(OH)2,又由于部分MgO的水化作用,作为主要腐蚀产物的Mg(OH)2吸附至膜层表面,形成了“自封闭”效应,从而提高了对镁合金基体的保护;腐蚀后期,H2O逐步渗透至基体表面,腐蚀产物累积逐渐增多,亚稳态蚀孔横向纵向逐步扩展,且相互合并,微弧氧化膜表面出现稳定的蚀孔。同时发现,镁合金MAO膜在碱性NaCl溶液中具有较强的耐腐蚀性能;在酸性NaCl溶液中对镁合金基体几乎没有任何保护作用。在浓度小于1.0%的中性NaCl溶液中浸泡时,镁合金MAO膜腐蚀形式以全面腐蚀为主;在浓度大于1.0%的中性NaCl溶液中浸泡时,则以局部腐蚀为主。腐蚀速率随氯离子浓度的增大而增大。并建立了如下数学模型:
     系数G、H与侵蚀性离子(Cl-)的浓度有关;f(k)与MAO膜制备工艺有关。
     镁合金微弧氧化膜在0.1mol/L Na2SO4溶液中具有较好的耐蚀性,随着加入的Cl-浓度增加,腐蚀性增强。浸泡初期为全面腐蚀,120h后0.1mol/LNa2SO4+3.5%NaCl混合液中出现明显的点蚀孔。镁合金微弧氧化膜在0.1mo1/LNaNO3存在的水溶液中,具有良好的耐蚀性;在碱性溶液中具有优异的耐腐蚀性能。在乙二醇-水溶液中的耐腐蚀性能随乙二醇浓度增大而提高;当有腐蚀性离子(Cl-与S042-)存在时,对MAO膜有腐蚀作用;添加了0.2mol/L NaF后,由于生成了难溶于水的含氟晶体,填充了MAO膜的多孔层空隙,对镁合金MAO膜起到了有效的缓蚀作用。随温度的升高,微弧氧化膜上的乙二醇分子逐步解析,氯离子代替乙二醇分子吸附至MAO膜层表面而导致腐蚀产生。Hank's仿生溶液对微弧氧化镁合金的腐蚀主要是在氯离子点蚀作用下的局部腐蚀。
     通过对WO42-、MoO42-、F-、SiO42-、PO43以及H2PO4-等6种阴离子对镁合金微弧氧化膜在3.5%NaCl溶液中的腐蚀行为影响的研究,发现F-、SiO42-、PO43-和M0042-具有缓蚀性,可抑制蚀孔的扩展,其缓蚀顺序为PO43->F->SiO42-MoO42-;MoO42-和H2P04-有加速腐蚀的作用,加速顺序为MoO42-     选择恒压模式,以正电压为主要参数,研究了25μm和40μm两种厚度、六种镁合金微弧氧化膜在3.5%NaCl溶液中的腐蚀行为,结果发现,以电压为主要电参数制备的镁合金微弧氧化膜,其耐腐蚀性能随制备电压的升高而降低;膜层厚度的影响较小。同时验证了Icorr~t数学模型是正确的,具有普适性。
Micro-arc oxidation (MAO) is a new surface treatment technology developed on the basis of the conventional anodizing. The surface of valve metals, such as Al, Mg, Ti and their alloys, can convert to the ceramic coatings in situ under the conditions of plasma chemical, electrochemical, thermal-chemical effects. The oxide coatings prepared by this technique have a dense structure, high adhesion and excellent integrated mechanical properties. In this work, A ceramic coating with thickness of30±2μm was obtained on AZ91D magnesium alloy in alkaline silicate electrolyte by a micro-arc oxidation (MAO) technique. The coating consisted mainly of MgO and Mg2SiO4, which distributed into two layers, a porous outer layer and a dense inner layer. The corrosion behavior of the MAO coating on magnesium alloys was studied in different environments by electrochemical and surface analysis method,. Appropriate equivalent circuits were proposed. And the corrosion models were also established, which provide an experimental and theoretical basis for the further application of MAO coated on magnesium alloys.
     The corrosion behavior of the MAO coating on magnesium alloys in NaCl solution was studied. The results showed that the value of B in this system was0.04V. And the degradation of the MAO coating immersion in3.5%NaCl solution can be identified with three continuous steps. In the initial stage, NaCl aqueous solutions was penetrated into the MAO coating and infiltrated through the micropores or microcracks in the out porous layer by diffusion and reached the interface of out/inner layer quickly; As corrosive ions, chloride ions were absorbed preferentially and replaced partial oxygen site, which led to formation of some soluble species.Whereafter a lot of metastable pits appeared. In the middle stage, the hydration products Mg(OH)2hardly filled the metastable pits. It was "self-sealing" process and prevented the exposure of magnesium alloys substrate. In the later stage, several metastable pits developed horizontally and vertically in the MAO coating and finally joined together to form a larger pit, which became macroscopic pores at last. The MAO coating on magnesium alloys had a better corrosion protection in alkaline NaCl solution. And in acidic NaCl solution, the MAO coating provided no corrosion protection to the metal substrates. The main form of corrosion failure was localized corrosion for the MAO coated immersed in higher concentration NaCl solutions (1.0%,3.5%and5.0%), while it was general corrosion in dilute NaCl solutions (0.1%and0.5%). The corrosion rates of the MAO coating on magnesium alloys increased with increasing chloride ion concentration in NaCl solutions. A mathematical model was established as follows:
     Coefficients G and H related to the concentration of corrosive ions (Cl) and f(k) is about the process of preparation.
     The MAO coating on magnesium alloys was found having better corrosion resistance in neutral0.1mol/L Na2SO4solution. The corrosion rate of the MAO coating increased with increasing chloride ion concentration. Generalized corrosion was apparent on the MAO coating at immersion initial stage. Localized corrosion occurred when the samples were immersion in0.1mol/L Na2SO4+3.5%NaCl solution for more than120h. The MAO coating was found having a excellent corrosion resistance in neutral0.1mol/L NaNO3solution. The MAO coating was found having a much superior corrosion resistance in alkaline solutions. More ethylene glycol adsorbed in the MAO coating and the charge transfer resistance Rct increased with increasing concentration of ethylene glycol, and the corrosion resistance of MAO coating is improved. Corrosive ions (Cl-and SO42-) coexisting in the solution enhance corrosivity of the MAO coating. The corrosion of MAO coated magnesium alloys is effectively inhibited by addition of0.2mol/L NaF. The inhibition effect of the fluoride could be ascribed to the formation of a protective fluoride-containing crystal which fills the porous layer in the MAO coating. With the temperature increasing, more ethylene glycol molecules desorbed from the MAO coating. Chloride ions replaced ethylene glycol and led to severe corrosion. The main form of corrosion was localized corrosion for the MAO coated magnesium alloys immersed in Hank's solution influenced by chloride ion.
     The effects of six anions, WO42-、MoO42-、F-、SiO42-、PO43-and H2PO4-on corrosion behavior of MAO coating on magnesium alloys were investigated in3.5%NaCl solution by electrochemistry measurements. The results showed that F-、SiO42-、PO43-and MoO42-could retard the pit propagation. The inhibition decreased in the order PO43-> F-> SiO42-> MoO42-. While MoO42-and H2PO4-stimulated the pit growth, and the order is MoO42-     Six MAO coatings with two kinds of thickness,25μm and40μm, were prepared on magnesium alloys under the constant voltage craftwork regarded positive voltage as key parameter. And their corrosion behavior were studied immersion in3.5%NaCl solution. The results showed that corrosion rate of the MAO coating decreased with increasing voltage and had less affected by the MAO coating thickness. The measured data indicated that the mathematical model of Icorr~t was accurate and had universality.
引文
[1]牛绍蕊.不锈钢的电化学腐蚀性能研究:[兰州理工大学硕士论文].兰州:兰州理工大学,2010,1-5
    [2]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社,2006,12-25.
    [3]张津,张宗和.镁合金及应用.北京:化工出版社,2004,23-50.
    [4]Gray, J.E. and B. Luan, Protective coatings on magnesium and its alloys — a critical review. Journal of Alloys and Compounds,2002,336(1-2):p.88-113.
    [5]王伟,陈体军,马颖,等.新型镁合金ZW21的开发.热加工工艺,2008,37(14):54-57.
    [6]向群,屈伟平.镁合金的发展与应用.有色设备,2004,05:38-43.
    [7]薛文彬,来永春,邓志威,等.镁合金微等离子体氧化膜的特性.材料科学与工艺,1997,5(2):89-92.
    [8]A.L.Yerokhin, X.Nie, A.Leyland, et al. Plasma electrolysis for surface engineering. Surface and Coatings Technology,1999,122(2-3):73-93.
    [9]S.L.Sinebryukhov, A.S.Gnedenkov, D.V.Mashtalyar,et al. Peo-coating/sub-strate interface investigation by localised electrochemical impedance spectroscopy. Surface and Coatings Technology,2010,205(6):1697-1701.
    [10]王德云,东青,陈传忠,等.微弧氧化技术的研究进展.硅酸盐学报,2005,33(09):1133-1138.
    [11]Gunterschulse, Betz H. Neue untersuchungen per dieelect rolytische ventilwirkung. ZPhysik,1932,78:196-210.
    [12]CAO, F.-h., LIN L-y, Zhao Z, et al.. Environmental friendly plasma electrolytic oxidation of AM60 magnesium alloy and its corrosion resistance Transactions of Nonferrous Metals Society of China,2008,18(2):240-247.
    [13]陈显明,罗承萍,刘江文,等.镁合金微弧氧化膜层结构.中南大学学报(自然科学版),2006,37(06):1065-1069.
    [14]张荣发,单大勇,陈荣石,等.微弧氧化在提高镁合金耐蚀性上的应用.材料工程,2007,(06):61-64.
    [15]马颖,詹华,马跃洲,等.电参数对AZ91D镁合金微弧氧化膜层微观结构及耐蚀性的影响.中国有色金属学报,2010,20(08):1467-1473.
    [16]Liang, J., Guo, B.G., Tian, J., et al. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. Applied Surface Science,2005,252(2):345-351.
    [17]Wen, L., Wang,Y.M., Zhou,Y., et al. Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy. Corrosion Science,2010,52(8): 2687-2696.
    [18]Wang, Y., Jiang, B., Lei,T., et al. Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse. Materials Letters,2004,58(12-13):1907-1911.
    [19]马颖,徐卫军,陈体军,李元东,候伟骜,吕维玲,郝远.在镁合金表面生成微弧氧化陶瓷层的方法.中国专利.200610042990,2007-03-14.
    [20]V, B.K.V., D.G.I. P, and N.G. L. Oxide films produced by treatment of aluminium alloys in concent rated sulfuric acid in an anodic-spark system Prot. Met 1986. 22(3):358-361.
    [21]F, G.A., Z.K.G. I, F.K.A. V. Formation and modification of anodic coatings on Al under spark condition. Ukrainskii Khimicheskii Zhurnal,1991,57:304-307.
    [22]Liang, J., Guo,B., Tian,J., et al. Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate-KOH electrolyte. Surface and Coatings. Technology,2005,199(2-3): 121-126.
    [23]Guo, H.F., An,M.Z., Huo,H.B.,et al. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Applied Surface Science,2006,252(22):7911-7916.
    [24]Guo, H.F., An,M.Z.. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Applied Surface Science,2005,246(1-3):229-238.
    [25]赵晓鑫,马颖,孙钢.镁合金微弧氧化研究进展.铸造技术,2013,34(01):45-47.
    [26]B, V.T., B.S. D, W.G. P, Mechanism of anodic spark deposition. Am Ceram Soc Bull,1977,56(6):563-566.
    [27]冯欣荣,吴汉华,龙北玉.多功能微弧氧化电源的研制.仪表技术与传感器,2004(9):40-43.
    [28]L.,Young. Space charge in formation of anodic oxide films. Acta Metallurgica Sinica (English Letters),1956,4(1):100-101.
    [29]J, Y. and Zahavi. Electrolytic breakdown crystallization of anodic oxide films on Al,Ta and Ti. Electrochim.Acta,1970,15(9):1429-1435.
    [30]C, W.G. and P. C The theory of avalanche breakdown in solid dielectrics. Corrosion Science,1967,7(2):119-125.
    [31]K., V.H.A. Sparking voltages and side reactions during anodization of valve metals in terms of electron tunnelling. Corrosion Science,1971,11:411-417.
    [32]M, A.J., M. I, M.-D.J. M, Electron injection and avalanche during the anodic oxidation of tantalum. J Elect rochem Soc,1984,131:1101-1104.
    [33]W, K., K. P, and D.H. G., Process characteristics and parameters of anodic oxidation by spark discharge(ANOF). Crystal Res Technol,1984,19(7):973-978.
    [34]V, N.A., N,R.N. and B.A. P., Energy balance of a high current hollow tungsten cat hode. Fizikai Khimiya Obrabot ki Materialov,1977,2:32-41.
    [35]蒋永锋,李均明,蒋百灵,等.铝合金微弧氧化陶瓷层形成因素的分析.表面技术,2001,30(2):37-39.
    [36]卢立红,沈德久,王玉林.微弧氧化陶瓷膜层的性能及其应用.材料保护,2001,34(1):17-18.
    [37]李淑华,程金生,尹玉军.微弧氧化过程中电流和电压变化规律的探讨.特种铸造及有色合金,2001,3:4-7.
    [38]陈宏,郝建民,王利捷.镁合金微弧氧化处理电压对陶瓷层的影响.表面技术,2004,33(3):17-18.
    [39]王吉会,杨静.镁合金在硅酸盐体系中微弧氧化膜层的性能研究.材料热处理学报,2006,27(3):95-99.
    [40]赵晴,胡勇,杜楠.氧化时间对MB8镁合金微弧氧化膜的影响.航空材料学报,2007,27(6):55-58.
    [41]邓超峰,冯丽婷,冯绍彬.压铸镁合金AZ91在不同电解液中的微弧氧化.铸造,2007,56(7):679-682.
    [42]王立世.两种电解液中镁合金等离子体电解氧化过程及膜层特性研究:[华中科技大学博士学位论文].武汉:华中科技大学,2005,56-62
    [43]Liu, F., Shan, D., Song,Y. et al. Effect of additives on the properties of plasma electrolytic oxidation coatings formed on AM50 magnesium alloy in electrolytes containing K2ZrF6. Surface and Coatings Technology,2011,206:455-463.
    [44]Sreekanth, D., N. Rameshbabu, and K. Venkateswarlu. Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceramics International,2012, 38(6):4607-4615.
    [45]郭锋,李鹏飞.微弧氧化技术的电解液体系与组成.内蒙古工业大学学报,2011,30(3):263-268.
    [46]马颖,刘楠,王宇顺,等.铬酸盐对镁合金微弧氧化膜耐蚀性的影响.硅酸盐学报,2011,39(09):1493-1497.
    [47]阎峰云,林华,马颖,等.镁合金微弧氧化电解液电导率的研究.合金加工技术, 2007,35(5):28-31.
    [48]梁永政.镁合金表面微弧氧化工艺的研究:[兰州理工大学博士学位论文].州:兰州理工大学材料科学与工程学院,2004,57-65.
    [49]Liang, J.,P. Bala Srinivasan,C. Blawert, et al. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corrosion Science,2009,51(10):2483-2492.
    [50]Altun, H.,S. Sen. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Materials & Design,2004,25(7):637-643.
    [51]徐卫军,马颖,吕维玲,等触变成型镁合金AZ91D在NaCl水溶液中的腐蚀行为.中国腐蚀与防护学报,2007,27(04):206-209.
    [52]Chen, J., Wang J-Q, Hanet E., et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution. Electrochimica Acta,2007,52(9):3299-3309.
    [53]Song, G., Atrens A., Wu X., et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science,1998,40(10):1769-1791.
    [54]张丽君.阳极氧化前后AZ91D镁合金的腐蚀过程研究:[浙江大学博士学位论文].杭州:浙江大学理学院,2008,10-25.
    [55]朱祖芳.有色金属的耐腐蚀性及其应用.北京:化学工业出版社,1994,15-25.
    [56]薛丽莉.水性环氧涂层/碳钢体系腐蚀电化学行为研究:[哈尔滨工程大学博士学位论文].哈尔滨:哈尔滨工程大学,2008,1-3.
    [57]R, A., A.N. N, and Z. W. Evaluation of micro-structural effects on corrosion behavior of AZ91D magnesium alloy. Corrosion Science,2000,42(8):1433-1455.
    [58]Liang, J., L. Hu, and J. Hao, Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Applied Surface Science,2007,253(10):4490-4496.
    [59]Wang, Y.M., Wang, F.H., Xu,M.J., et al. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application. Applied Surface Science,2009,255(22):9124-9131.
    [60]Liu, F., Shan,D., Song,Y. et al. Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation. Corrosion Science,2011,53(11):3845-3852.
    [61]薛文斌,邓志威,来永春,等.ZM5镁合金微弧陶瓷膜的生长规律.金属热处理学报,1998,19(3):42-45.
    [62]吕维玲,马颖,陈体军,等.加压幅度对AZ91D镁合金微弧氧氧化膜的影响.稀有 ,2009,38(08):1480-1483.
    [63]Arrabal, R., Matykina, E., Viejo, F., et al. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corrosion Science, 2008,50(6):1744-1752.
    [64]Arrabal, R., Matykina,E.? Hashimoto,T., et al. Characterization of AC PEO coatings on magnesium alloys. Surface and Coatings Technology.2009,203(16): 2207-2220.
    [65]吕维玲,马颖,陈体军,等.氧化时间对AZ91D镁合金微弧氧化膜微观组织和性能的影响.中国有色金属学报,2009,(08):1385-1391.
    [66]李颂,刘耀辉,刘海峰,等.AZ91压铸镁合金在六偏磷酸盐体系中的微弧氧化工艺.吉林大学学报(工学版),2006,(01):46-51.
    [67]Yao, Z., Z. Jiang, and F. Wang, Study on corrosion resistance and roughness of micro-plasma oxidation ceramic coatings on Ti alloy by EIS technique. Electrochimica Acta,2007,52(13):4539-4546.
    [68]陈显明,罗承萍,刘江文,等.镁合金微弧氧化热力学和动力学分析.兵器材料科学与工程,2006,(03):17-20.
    [69]王燕华,王佳,张际标.AZ91D镁合金微弧氧化过程中的火花放电现象研究.中国腐蚀与防护学报,2006,26(05):267-271.
    [70]陈海涛,马跃洲,张昌青,等.镁合金微弧氧化过程中局部烧蚀现象的研究.表面技术,2008,(01):21-24.
    [71]Barchiche,C.-E., Rocca,E., Juers,C, et al., Corrosion resistance of plasma anodized AZ91D magnesium alloy by electrochemical methods. Electrochimica Acta,2007,53(2):417-425.
    [72]刘君,强颖怀,熊党生.3种溶液体系中镁合金微弧氧化研究第一部分——氧化膜的相组成及其耐蚀性.电镀与涂饰,2006,25(10):38-42.
    [73]郅青,高瑾,董超芳,等.AZ91D镁合金微弧氧化膜的腐蚀行为研究.金属学报,2008,44(08):986-990.
    [74]Guo, H., An,M., Shen,X., et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy. Materials Letters,2006,60(12):1538-1541.
    [75]Cai, Q., Wang,L., Wei,B., et al. Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes. Surface and Coatings Technology,2006,200(12-13):3727-3733.
    [76]Wang, Y.Q., M.Y. Zheng, K. Wu. Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance. Materials Letters,2005,59(14-15):1727-1731.
    [77]王立世,潘春旭,蔡启舟,等.镁合金表面微弧氧化陶瓷膜的腐蚀失效机理.中国腐蚀与防护学报,2008,28(4).
    [78]吕维玲,马颖,陈体军,等.加压时间间隔对AZ91D镁合金微弧氧化膜的影响.焊接学报,2009,(08):81-84.
    [79]曹楚南.腐蚀电化学原理.北京:化学工业出版社,2004,50-66.
    [80]M.Stern,A.L.Geary. Electrochemical Polarization I.A theoretical analysis of the shape of polarization curves. J. Electrochem.Soc,1957,104(1):56-63.
    [81]曹楚南.电化学阻抗谱导论.北京:科学出版社,2004,1-10.
    [82]贺春林,李凤琴,刘常升,等.SiC_p/2024A1复合材料阳极氧化膜耐蚀性的电化学阻抗研究.金属学报,2001,37(08):869-872.
    [83]Yao, Z., Jiang, Z., Xin,S., et al. Electrochemical impedance spectroscopy of ceramic coatings on Ti-6A1-4V by micro-plasma oxidation. Electrochimica Acta, 2005,50(16-17):3273-3279.
    [84]钱建刚,李荻,王纯,等.镁合金阳极氧化膜腐蚀过程的电化学阻抗谱研究.稀有金属材料与工程,2006,35(08):1280-1284.
    [85]赵卫民,王勇.电化学阻抗谱法研究热处理对低碳钢镍基合金涂层腐蚀行为的影响.金属学报,2008,44(09):1125-1130.
    [86]Ren, J. and Y. Zuo, The growth mechanism of pits in NaC1 solution under anodic films on aluminum. Surface and Coatings Technology,2005,191(2 — 3):311 — 316.
    [87]Wang, L., T. Shinohara,B.-P. Zhang, Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds,2010,496(1-2):500-507.
    [88]Wang, L., B.-P. Zhang, T. Shinohara. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Materials & Design,2010,31(2):857-863.
    [89]李凌杰,姚志明,雷惊雷,等.钨酸盐对镁合金在3.5%NaCl介质中的缓蚀作用.电化学,2008,14(4):427-430.
    [90]艾俊哲,梅平,郭兴蓬.NaCl水溶液中缓蚀剂控制电偶腐蚀的研究.中国腐蚀与防护学报,2008,(02):90-94.
    [91]Liu, N., Wang, J., Wu, Y., et al. Electrochemical corrosion behavior of cast Mg-Al-RE-Mn Alloys in NaCl solution. Journal of Materials Science,2008,43: 2550-2554.
    [92]陈东初,李文芳,揭军,等.AZ91D镁合金表面微弧氧化陶瓷膜微观结构与组成的研究.稀有金属材料与工程,2009,(S2):731-734.
    [93]Lv, G.-H., Chen, H., Li, L., et al., Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy. Current Applied Physics, 2009,9(1):126-130
    [94]吕维玲,马颖,陈体军,等.AZ91D镁合金恒定小电流密度微弧氧化工艺.中国有色金属学报,2008,(09):1590-1595.
    [95]Duan, H., Du,K., Yan, C., et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D Electrochimica Acta,2006,51(14):2898-2908.
    [96]吕维玲.AZ91D镁合金微弧氧化膜制备的调控及膜层表征方法的研究:[兰州理工大学博士学位论文].兰州:兰州理工大学材料科学与工程学院,2010,30-35
    [97]郝建民,陈宏,张荣军.电参数对镁合金微弧氧化陶瓷层致密性和电化学阻抗的影响.腐蚀与防护,2003,24(6):249-251.
    [98]左禹,王海涛.金属亚稳态孔蚀行为的电化学研究.腐蚀科学与防护技术,1999,11(1):44-52.
    [99]张丽君,张昭,张鉴清.阳极氧化AZ91D镁合金在氯化钠稀溶液中的腐蚀行为.物理化学学报,2008,24(10):1831-1838.
    [100]I.Sekine, Recent evaluation of corrosion Protective Paint films by electrochemical method. Progressin Organic Coating,1997,31:70-75.
    [101]王燕华,王佳,张际标.微弧氧化处理对AZ91D镁合金腐蚀行为的影响.中国腐蚀与防护学报,2006,26(4):216-220.
    [102]Xue, R., Qian,Y., Liu,K., et al. Nano-pit corrosion of the tabs in aluminum electrolytic capacitor:Polarization characteristics of the tabs in ethyleneglycol-borate solution with chloride ions. Corrosion Science,2008,50(10): 2779-2784.
    [103]Lin, C.H., J.G. Duh, Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5wt.% NaCl solution. Surface and Coatings Technology,2009,204(6-7):784-787.
    [104]Touzain, S.. Some comments on the use of the EIS phase angle to evaluate organic coating degradation. Electrochimica Acta,2010,55(21):6190-6194.
    [105]马景灵,文九巴,卢现稳,等.铝合金阳极腐蚀过程的电化学阻抗谱研究.腐蚀与防护,2009,30(06):373-376.
    [106]Shi, Z., G. Song, A. Atrens, The corrosion performance of anodised magnesium alloys. Corrosion Science,2006,48(11):3531-3546.
    [107]Shi, H., E.-h. Han, Corrosion protection of AZ91D magnesium alloy with sol-gel coating containing 2-methyl piperidine Progress in Organic Coatings 2009,66(3): 183-191.
    [108]李玮,曹京,熊金平,等.环氧富锌/氯化橡胶涂层体系腐蚀过程的电化学阻抗谱.化工学报,2007,58(10):2543-2547.
    109]伍远辉,勾华,罗宿星.Q235钢在含硝酸根离子土壤中的腐蚀行为.华侨大学学报(自然科学版),2009,30(3):277-279.
    110] Subramanian, K., J. Mickalonis, Anodic polarization behavior of low-carbon steel in concentrated sodium hydroxide and sodium nitrate solutions. Electrochimica Acta,2005,50(13):2685-2691.
    111]王燕华.镁合金微弧氧化膜的形成过程及腐蚀行为研究:[中国科学院海洋研究所博士学位论文].青岛:中国科学院海洋研究所,2005,76-83.
    112] Song, G., Atrens, A., John, D., et al. The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Science,1997,39(10-11):1981-2004.
    113] Yang, L., Wei, Y., Hou, L., et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corrosion Science,2010,52(2): 345-351.
    114] Yolshina, L.A., Kudyakov,V.Ya., Malkov, V.B., et al. Corrosion and electrochemical behavior of aluminium treated with high-temperature pulsed plasma in CsCl-NaCl-NaNO3 melt, corrosion science,2011,53:2015-2026.
    115]唐丽斌,木冠南,张瑾,等.盐酸中La3+与N03-离子对铝的缓蚀作用.中国稀土学报,2003,21(3):272-277.
    116]李向红,邓书端,木冠南,等.硝酸镧、硝酸铈在HCl介质中对铝的缓蚀作用.清洗世界,2007,23(2):1-4.
    117]邓书端,李向红,付惠,等.铝在NaOH中的腐蚀动力学参数.清洗世界,2010,26(08):24-27.
    118] Yu, B., Woo, U. Erb, Corrosion behaviour of nanocrystalline copper foil in sodium hydroxide solution. Scripta Materialia,2007,56(5):353-356.
    119] Tierce, S., Pebereet N., Blanc, C. et al. Corrosion behaviour of brazed multilayer material AA4343/AA3003/AA4343:Influence of coolant parameters. Corrosion Science,2007,49(12):4581-4593.
    120] Samiento-Bustos, E., Gonzalez-Rodriguez, J.G., Uruchurtu, J., et al. Corrosion behavior of iron-based alloys in the LiBr+ethylene glycol + H2O mixture. Corrosion Science,2009,51(5):1107-1114.
    121] Song, G., D. StJohn. Corrosion behaviour of magnesium in ethylene glycol. Corrosion Science,2004,46(6):1381-1399.
    122] Fekry, A.M., M.Z. Fatayerji. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol. Electrochimica Acta,2009,54(26):6522-6528.
    123] Tierce, S., Pebereet N., Blanc, C., et al. Corrosion behaviour of brazing material AA4343. Electrochimica Acta,2006,52(3):1092-1100.
    124] El-Taib Heakal, F., A.M. Fekry, and M.Z. Fatayerji, Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions. Electrochimica Acta,2009,54(5):1545-1557.
    125]赵卫民,王勇,薛锦,等.镍基合金涂层包覆钢腐蚀失效过程的电化学阻抗谱研究.金属学报,2005,41(02):178-184.
    126] Zhang, H., Y.L. Zhao, Z.D. Jiang, Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl" environment. Materials Letters,2005,59:3370-3374.
    127] Barranco, V., S. Feliu. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3%NaCl solution. Part 1:directly exposed coatings. Corrosion Science,2004,46(9):2203-2220.
    128] Zhao, X., Wang,J., Wang, Y., et al. Analysis of deterioration process of organic protective coating using EIS assisted by SOM network. Electrochemistry Communications,2007,9(6):1394-1399.
    129] Suay, J.J., Gimenez, E., Rodriguez, T., et al. Characterization of anodized and sealed aluminium by EIS. Corrosion Science,2003,45(3):611-624.
    130] S.C. Chung, Cheng, J.R., Chiou, S.D., et al., EIS behavior of anodized zinc in chloride environments. Corrosion Science,2000.42(7):1249-1268.
    131] Liu, W., Cao F., Chang L., et al. Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy. Corrosion Science,2009,51(6): 1334-1343.
    132] Fekry, A.M. The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti-6A1-4V alloy in oxalic acid. Electrochimica Acta,2009,54(12): 3480-3489.
    133] Jorcin, J.-B., Orazem,M.E., Pebere, N., et al. CPE analysis by local electrochemical impedance spectroscopy Electrochimica Acta,2006,51(8-9): 1473.1479.
    134]曾荣昌,孙智富,陈君,等.镁合金AM60表面改性及其在Hank's溶液中的腐蚀.重庆工学院学报,2007,21(10):5-9.
    135] Staiger, M.P, Pietak, A.M, Huadmai, J.et al., Magnesium and its alloys as orthopedic biomaterials:a review. Biomaterials,2006,27:1728-34
    136] Ishida, N., Martin, D., Atrens, A., et al., Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0.2Mn in Hank's solution at room temperature. Corrosion Science, 2011,53(3):862-872.
    137] Alvarez-Lopez, M., Pereda,M.D., delValle J.A., et al., Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomaterialia,2010,6(5):1763-1771.
    138] Shi, P., Ng, W.F., Wong,M.H.,et al. Improvement of corrosion resistance of pure magnesium in Hanks'solution by microarc oxidation with sol-gel TiO2 sealing. Journal of Alloys and Compounds,2009,469(1-2):286-292.
    139] Saris, N.-E.L., Mervaalaa, E., Karppanen, H., et al. Magnesium:An update on physiological, clinical and analytical aspects. Clinica Chimica Acta,2000,294(1-2): 1-26.
    140]邓希光,王伟强,齐民.AZ31镁合金在Hank's模拟体液中的腐蚀行为研究.功能材料,2009,40(11):1884-1886.
    141]张春艳,高家诚,曾荣昌,等.镁合金AZ31表面Ca-P涂层在Hank's溶液中的腐蚀行为.硅酸盐学报,2010,38(5).
    142] Ng, W.F., M.H. Wong, F.T. Cheng, Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks'solution. Surface and Coatings Technology, 2010,204(11):1823-1830.
    143]冷崇燕,周荣,张旭.Ag离子注入Ti6A14V合金抗Hank's溶液腐蚀性能研究.稀有金属材料与工程,2010,39(8):1354-1359.
    144] Silva, J.W.J., Codaro, E.N., Nakazato, R.Z., et al. Influence of chromate, molybdate and tungstate on pit formation in chloride medium. Applied Surface Science,2005,252(4):1117-1122.
    145]李凌杰,雷惊雷,于生海,等.钼酸盐对镁合金在模拟冷却水中腐蚀的抑制作用.化工学报,2008,59(5):1223-1227.
    146]李凌杰,雷惊雷,屈卫娟,等.磷酸介质中钼酸盐对镁合金的缓蚀作用.表面技术,2007,36(1):16-18.
    147] Ding, J., Liang, J., Hu,L., et al.Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte. Transactions of Nonferrous Metals Society of China,2007,17(2):244-249.
    148]P, S., G. V, L.i.R. S. Influence of dichromate ions on corrosion p rocesses on pure magnesium. Journal of the Electrochemical Society,2003,150 (4):B99-B110.
    149]王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用.北京:化学工业出版社,2008,72-79.
    150] Guannan, M., L.i. Xianghong, Q. Qing. Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution, corros Science, 2006,48:445-459.
    151] Li, X., S. Deng, H. Fu. Sodium molybdate as a corrosion inhibitor for aluminium in H3PO4 solution. Corrosion Science, 2011, 53(9):2748-2753.
    [152]赵景茂.碳钢在NaHC03-NaCI体系中的局部腐蚀行为与机理研究:[北京化工大学博士学位论文].北京:北京化工大学,2001,66-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700