用户名: 密码: 验证码:
脉冲电流对高强度钢组织与力学性能的影响及数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在脉冲电流的作用下,电能、热能和应变能被瞬时输入到金属材料中。在电-热-力多场耦合作用下,材料中将引发一系列瞬时非平衡动态过程及其伴生现象。深入研究这些非平衡过程、伴生现象、演变规律和作用机理,将进一步揭示金属材料的电致强化本质,探索与发展新的材料强韧化方法,对于大幅度提高金属材料的综合力学性能具有重大的理论意义和实用价值。高强度钢是现代工业中用量大、使用范围广的重要基础材料,深入挖掘其性能潜力是长久以来材料研究热点和永恒主题。本文采用瞬时高能脉冲电流对高强度钢的组织与力学性能进行了研究。同时,利用数值模拟方法模拟了在脉冲电流处理过程中,试样中各个部位的电流密度分布、温度场以及应力场状态,研究脉冲电流与其所形成的物理场对新相在母相中形成时影响。
     在脉冲电流处理下,硬化后的冷轧硼钢具有优异的综合力学性能。在最优参数处理下,其抗拉强度超过了2GPa,同时具有良好的延展性能。而且,其加工硬化能力也要好于模压硬化处理的硼钢。部件的高强度与韧性,将提高汽车的安全性能。由于脉冲电流处理的热的以及非热的效应,其极大地提高了相变奥氏体的形核率。而且,由于脉冲电流处理的时间非常短,以及通水铜电极的急速冷却作用,所以新形成奥氏体晶粒的长大并不容易。从而,硼钢在随后的淬火冷却过程中,形成了细小的板条马氏体组织。这种组织状态,极大地提高了硬化硼钢的综合力学性能。同时,在本实验条件下,脉冲电流促进冷轧硼钢再结晶而导致的其最终组织细化的效果,要好于脉冲电流循环热处理效应而导致的组织细化效果。
     数值模拟结果表明,在试样的弧形过渡处,电流密度分布较为集中。试样中部的温度最高,而其两个端部的温度最低,且在试样中部与端部的连接区域存在着梯度温度分布。随着脉冲电流处理时间的延长,这种温度梯度越来越大。试样中的应力场数值模拟表明,弧形过渡区域的应力集中最为明显,而试样中部和其两个端部的应力值较低。随着脉冲电流处理时间的延长,在试样中部与端部的连接区域,其应力梯度也越来越大。高电流密度脉冲电流的作用下,在冷轧硼钢样品端部与中部的连接区域,形成了局域的奥氏体纳米晶结构。这种奥氏体纳米晶结构是单相纯净的,并没有其它相与之共存。从数值模拟的结果看,在局域纳米晶结构被发现的地方,其具有高电流密度、较高温度以及高应力的特点。
     快速的温升只是提供了相变的温度条件,而其本身并不能引起材料中纳米晶结构的形成。从脉冲电流的特殊效应、奥氏体相变的特点以及实验结果中的较大尺寸纳米晶结构看,奥氏体晶粒发生再结晶过程而纳米化,形成局域奥氏体纳米晶结构的可能性是存在的。合金元素含量较多的区域以及快速冷却的特点,为局域奥氏体纳米晶结构能够保持到室温提供了热力学和动力学条件。同时,在试样连接区的电-热-力三场耦合作用,对其局域奥氏体纳米晶结构形成是有利的。从数值模拟的非均匀物理场分析结果看,当母相中形成一个高电导率的新相晶核时,体系中的电流密度分布、温度场以及应力场,将有利于其长大而不利于其分解。同时,当母相中形成一个低电导率的新相晶核时,体系中的电流密度分布、温度场以及应力场,将有利于其分解而不利于其长大。脉冲电流的回火处理提高了高碳钢锯条的力学性能,其齿部的硬度较大而锯条背部的硬度较低,在齿槽部位的硬度最低。齿部的高硬度,提高了锯条的切割能力,而锯条背部的较低硬度则提高了锯条的韧性。同时,在齿槽部位的塑性区域阻止了锯条的在此裂纹的萌生和扩展。因此,钢锯条的强度和韧性得到明显的改善。
     锯条的脉冲电流处理数值模拟表明,由于脉冲电流的绕流现象,齿槽部位较大的电流密度造成了较大的温升,以及由此而产生的较大应力。在齿槽部位的高电流密度和温度以及较大应力可引起此部位的电致塑性效应较为明显,裂纹的愈合效应更加有效,从而提高钢锯条的强韧性。调质态12.9级高强度螺栓的低温脉冲电流处理,可以提高其综合的力学性能,即抗拉强度和塑性得到同时改善。利用脉冲电流对螺栓进行回火处理时,螺栓的综合力学性能也得到了较大的提升。螺栓的脉冲电流低温处理数值模拟表明,由于电流的绕流现象,在螺纹根部的电流密度最大,而螺纹部位的电流密度较小,而螺栓中部的电流密度介于其间且分布均匀。在螺纹根部的温度较高,而齿尖位置温度最低,这样的温度分布可在提高螺纹的强度的同时提高螺栓整体的综合力学性能。同时,螺栓的脉冲电流回火处理数值模拟表明,在螺纹部位的应力值较大,而螺栓中部的应力值最低,这样的应力分布可提高螺纹以及整体螺栓抵抗疲劳破坏的能力。
Under the treatment of electropulsing, the energy of electricity, heat and stress can beinputted into the metallic materials instantaneously. With the coupling effect of theelectricity-heat-stress multi-field, a series of instantaneous, non-equilibrium and dynamicprocesses and its associated phenomena can be brought about. In-depth study of thesenon-equilibrium processes, associated phenomena, evolution laws and the mechanism couldfurther reveal the essence of electro-strengthening on the metals, exploring and developingthe new material strengthening methods, and being significant theoretical and practical valueof greatly improving the mechanical properties of the metallic materials. The high-strengthsteels are widely used in the modern industrial in a large amount as the important basicmaterials. To dig their performance potential is the hotspot and eternal theme for the materialresearches for a long time.In this paper, the effects of transient high-energy electropulsing onthe microstructure and mechanical properties of high-strength steels were studied.Meanwhile, the numerical simulation was employed to analyse the current densitydistribution, temperature and stress field in the materials during the electropulsing treatment.The effects of electropulsing and the physical fields caused on the crystallographicorientation selection of the new nucleating phase and the decomposition of the differentphase pre-existing in the matrix were investigated as well.
     After the electropulsing treatment with the finest parameters, the cold-rolled22MnB5boron steel exhibites the excellent mechanical properties, reaching the tensile strength of2GPa with good ductility. Moreover, the hardening capacity of the electropulsing hardenedboron steel is also better than that of the steel hardened by the hot-stamping process. Thehigh strength and toughness of the parts could improve the safety performance of the carwhen suffering a collision accident. Due to the thermal and athermal effects of the pulse current, the austenite nucleation rate was improved greatly. For the extremely shortelectropulsing duration with the rapid cooling effect of the water-cooled copper electrodes,the size of the newly formed austenite grains could not be enlarged easily. Therefore,thesmall lath-martensite microstructure was obtained in the boron steel during the subsequentquenching process, which greatly improves the mechanical properties of the hardened boronsteel. The electropulsing cyclic treatment can cause the refinement effect in the boron steel.However, this refinement trend is limited. That is to say that the electropulsing cyclictreatment could not refine the grains infinitely. Moreover, under the same experimentalconditions, for the effect of the grain refinement, the cyclic electropulsing treatment isinferior to the electropulsing induced recrystallization in the cold-rolled boron steel.Numerical simulation results for the specimen of cyclic electropulsing treatment showed that,during the electropulsing treatment, for the cross-sectional area of the current channel at thearc-transition region decreases abruptly, some current will choose the closest distance to passthrough, resulting in the significantly increased current density at this location. Thetemperature field numerical simulation results indicates that in the middle part of thespecimen the average temperature is the highest, while the average temperature at the ends isthe lowest. At the arc-transition area between the middle and ends of the specimen, thetemperature distribution is gradiental, and with the extension of the electropulsing duration,the slope of this gradient is increasing. The results of the stress field numerical simulationshowed that the stress concentration at the arc-transition region is most obvious, while in themiddle and two ends of the specimen the stress value is small. In the same way, theelectropulsing duration is longer, the the stress gradient slope is bigger, which is resultingfrom the temperature gradient obviously.
     The local austenite nanocrystalline structure formed at the transition region between themiddle and ends of the specimen from the cold-rolled boron steel when subjected to thetransent electropulsong in the high current density and the conditios of rapid cooling. Thisaustenite nanocrystalline structure is pure in the single phase, and no other phases orimpurities coexisting. Numerical simulation results showed that in the location where thenanocrystalline structure was found, the current density, temperature and stress values are alllarger relatively. On the formation mechanism of the local austenite nanocrystalline structure,we believe that the rapid temperature rising and the lowered thermodynamic barrier are thetwo major reasons. Meanwhile, a high concentration of alloying elements into thenanocrystalline structure and the rapid cooling provide the thermodynamic and kineticconditions for keeping it to the room temperature. Judging from the numerical simulation results, the instant coupling of electricity, hot and stress exsit in this arc-transition region.Therefore, as to the formation of local austenitic nanocrystalline structure, the mechanism ofhigh temperature recrystallization has the certain rationality. After the analysis of thereported orientational nanocrystalline, we believe that the kinetics process is critical to theformation of nanocrystals. Through the numerical simulation of the current densitydistribution, temperature and stress field in the system of the matrix with the different phasecoexisting, it was provided data for studying the impact of kinetics on the process of thenanocrystals formation. From the numerical simulation results of the physical fields, it canbe concluded that, when there is a different phase with the high conductivity in the matrix,the current density distribution, temperature and stress field could be beneficial to itsgrowing up in the shape of columnar along the current direction and detriment of itsdecomposition. However, when there is a different phase with the low conductivity in thematrix, the physical fields could be beneficial to its decomposition instead of growing up.
     Electropulsing tempering treatment of the quenched high-carbon steel saw bladeresulted in that the mechanical properties of it was increased, the teeth has the highesthardness which is bigger than that at the back saw blade, and the hardness is the lowest at thetooth root. The high hardness in the tooth could improve the cutting performance, while thelow hardness in the back could increase the toughness of the saw blade. Meanwhile, theplastic area at the tooth root could prevent the initiation and propagation of cracks thereeffectively. Thus, the strength and toughness of the saw blade had been significantlyimproved. Simulation results show that due to the detour effect of the pulse current, thevalue of current density at the tooth root is the highest, resulting in the largest temperaturerising and consequently the biggest thermal stress there. The high current density,temperature and the stress at the tooth root could make electroplasticity there carry out moreeffectively, improving the effect of crack healing and thereby increasing the strength andtoughness of the saw blade. When the12.9-grade high-strength bolt in the state of quenchedand tempered subjected to the low-temperature electropulsing, the mechanical propertiescould be improved, having the high tensile strength and ductility simultaneously. Numericalsimulation results of the bolt subjecting to the electropulsing showed that due to the detoureffect of the pulse current, at the thread root the value of the current density is the highest,and that at the thread tip is the lowest, while inside the bolt the current density value issomehow between them uniformly. Thus, the highest temperature occurs at the thread root,and at the thread tip the temperature is the lowest. Such temperature distribution couldimprove the toughness of the bolt as well as the strength at the thread at the same time. Meanwhile, the stress value at the thread tip is larger relatively, and that is lower at thethread root, while inside the bolt the stress value is the lowest, which is in favor of thefatigue damage resistance of the thread and the whole bolt as well.
引文
[1]董瀚.合金钢的现状与发展趋势[J].特殊钢,2000,21(5):1-10.
    [2]王祖滨.新世纪初期低合金高强度钢的发展[J].中国冶金,2003,63:16-19.
    [3] H.Q. Lin, Y.G. Zhao, Y. Zhao, L.G. Han, J. Ma, Q.C. Jiang. Effect of pulse electriccurrent stimulation on the microstructure, mechanical properties and thermal fatiguebehavior of cast-hot-working die steel [J]. ISIJ International,2008,48(2):212-217.
    [4] K. Lu, L. Lu, S. Suresh. Strengthening materials by engineering coherent internalboundaries at the nanoscale Science,2009,324:349-352.
    [5] L. Lu, X. Chen, X. Huang, K. Lu. Revealing the maximum strength in nanotwinnedcopper [J]. Science,2009,323:607-610.
    [6] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu. Ultrahigh strength and highelectrical conductivity in copper [J]. Science,2004,304:422-426.
    [7]谢祖华.激光表面处理技术在模具上的应用[J].机电技术,2012,6:128-130.
    [8]丁阳喜,周立志.激光表面处理技术的现状及发展[J].热加工工艺,2007,36(6):69-72.
    [9]陈菊芳,张永康,许仁军.镁合金激光表面处理的研究进展[J].激光技术,2008,32(3):293-295.
    [10] H. Zhou, Z.H. Zhang, L.Q. Ren, Q.F. Song, L. Chen. Thermal fatigue behavior ofmedium carbon steel with striated non-smooth surface [J]. Surface&CoatingTechnology,2006,200:6758-6764.
    [11] Z.H. Zhang, H. Zhou, L.Q. Ren, X. Tong, H.Y. Shan, Y. Cao. Tensile property ofH13die steel with convex-shaped biomemetic surface [J]. Applied Surface Science,2007,253:8939-8944.
    [12] Z.H. Zhang, H. Zhou, L.Q. Ren, X. Tong, H.Y. Shan, X.Z. Li. Surface morphologyof laser tracks used fro forming the non-smooth biomimetic unit of3Cr2W8V steelunder different processing parameters [J]. Applied Surface Science,2008,254(8):2548-2555.
    [13] H. Zhou, Y. Cao, Z.H. Zhang, L.Q. Ren, X.Z. Li. Thermal fatigue behavior of3Cr2W8V die steel with biomimetic non-smooth surface [J]. Materials Science&Engineering A,2006,428:141-147.
    [14]周宏,张志辉,任露泉,宋起飞,陈莉.仿生非光滑表面45#钢模具的热疲劳性[J].材料科学与工艺,2004,12:561-564.
    [15]陈克巧,张曙红,张代明,李世芸,李建云.金属复合材料研究进展及新技术述评[J].四川有色金属,2000,2:28-30.
    [16]张金咏,傅正义,王为民.陶瓷-金属复合材料制备与研究[J].武汉工业大学学报,1999,21(2):10-13.
    [17]方园,丁华东,傅苏黎,马南钢.碳化硼-金属复合材料的研究材料导报,2008,22:400-403.
    [18]韩杰才,徐丽,王保林,张幸红.梯度功能材料的研究进展及展望[J].固体火箭技术,2004,27(3):207-215.
    [19]黎文献,张刚,赖延清,田忠良,秦庆伟.梯度功能材料的研究现状与展望[J].材料导报,2003,17:222-225.
    [20]李耀天.梯度功能材料研究与应用[J].金属功能材料,2000,7(4):15-23.
    [21] M.B. Bever, M. Shen. The morphology of polymeric alloys [J]. Materials Science&Engineering,1974,15:145—157.
    [22]新野正之,平井敏雄,渡边龙三.倾斜功能材料[J].日本复合材料学会志,1987,13:257-262.
    [23]陈琦平.越王勾践剑[J].轻兵器,2005,200(6):50-54.
    [24]张晓燕,梁益龙,雷旻,陈朝轶.新型微变形齿轮钢渗碳特性及力学性能[J].材料热处理学报,2004,25(1):52-55.
    [25]曹昌怀,潘晓松.合金钢渗碳层的现场检测[J].测试与分析,2011,26(5):75-78.
    [26]伞晶超,顾园.金相法测定钢渗碳层的有效硬化层深度[J].材料热处理技术,2012,41(16):224-225.
    [27]吴华.17CrNiMo6钢渗碳后淬火工艺的研究[J].热处理技术与装备,2011,32(5):11-14.
    [28]高金柱,顾敏,王爱香,许鸿翔,赵少甫.常用典型齿轮钢渗碳层的组织与性能[J].机械工程材料,2012,36(2):49-51.
    [29]王俊,孙宝德,疏达,周尧和.材料研究中的电脉冲技术[J].材料导报,1999,13(2):19-21.
    [30]杨丽红,黄金亮,殷镖.电脉冲在现代材料制备与研究中的应用[J].热加工工艺,2003,2:51-53.
    [31]沈以赴,郭晓楠,张坤,李顺林,周本濂.脉冲电流对金属材料的作用与其研究进展,材料科学与工程,1998,16(3):4-7.
    [32] M. Nakada, Y. Shiohara, M.C. Flemings. Modification of solidification structuresby pulse electric discharging [J]. ISIJ International,1990,30(1):27-33.
    [33] L.N. Brush, R.N. Grugel. The effect of an electric current on rod-eutecticsolidification in Sn-0.9wt.%Cu alloys [J]. Materials Science&Engineering A,1997,238:176-181.
    [34]鄢春红,何冠虎,周本濂,秦荣山,郭敬东,沈以赴.脉冲电流对Sn-Pb合金凝固组织的影响[J].金属学报,1997,33(4):352-358.
    [35] R.S. Mishra, A.K. Mukherjee. Electric pulse assisted rapid consolidation of ultrafinegrained alumina matrix composites [J]. Materials Science&Engineering A,287:178-182.
    [36] J. Li, J.H. Ma, Y.L. Guo, Q.J. Zhai. Research on solidification structure refinementof pure aluminum by electric current pulse with parallel electrodes [J]. MaterialsScience&Engineering A,2008,490:452-456.
    [37] X.L. Liao, Q.J. Zhai, C.J. Song, W.J. Chen, Y.Y. Gong. Effects of electric currentpulse on stability of solid/liquid interface of Al-4.5wt.%Cu alloy during directionalsolidification [J]. Materials Science&Engineering A,2007,466:56-60.
    [38] W. Liu, J.Z. Cui. Effect of the homogenization treatment in an electric field on T1,precipitation in2091Al-Li alloy [J]. Scripta Metalluregica et Materialia,1995,33(4):623-626.
    [39] X.D. Shi, J.S. Wang, Q.G. Xue, D.Q. Cang, L.P. Wang, S.P Wu. Effect of electricpulse treatment of an Al-15%Si alloy [J]. Rare Metals,2005,24(3):288-292.
    [40] H. Cui, D.Q. Cui, Y.B. Zong, L.Z. Li, P. He, Z.Y. Mo. Study of improvingsolidification structure of rare earth Al-Si alloys with electropulse acting on liquidalloy [J]. Journal of Rare Earths,2004,22, Spec.:49-52.
    [41] S.X. He, J. Wang, B.D. Sun, Y.H. Zhou. Effect of high density pulse electric onsolidification structure of low temperature melt of A356alloy [J]. Transaction ofNonferrous Metals Society of China,2002,12(3):414-418.
    [42] M. Gao, G.H, He, F. Yang, J.D. Guo, Z.X. Yuan, B.L. Zhou. Effect of electriccurrent pulse on tensile strength and elongation of casting ZA27alloy [J]. MaterialsScience&Engineering A,2002,377:110-114.
    [43] G.J. Xu, Z.H. Wang, J.J. Yin, Y.T. Ding, S.Z. Kou. Effect of rectangle wave pulsecurrent on solidification structure of ZA27alloy [J]. Journal of Wuhan University ofTechnology-Materials Science Edition,2006,21(1):80-83.
    [44] J.H. Fan, Y. Chen, R.X. Li, Q.J. Zhai. Effect of pulse current on solidificationstructure austenitic strainless steel [J]. Journal of Iron&Steel Research,International,2004,11(6):37-39.
    [45] Y. Tang, J.Z. Wang, D.Q. Cang. Electro-pulse on improving steel ingotsolidification structure [J]. Journal of University of science and technology Beijing,1999,6(2):94-96.
    [46]范金辉,李仁兴,侯旭,陈宇,翟启杰.不同参数脉冲电流对不锈钢Cr18Ni9Ti凝固组织的影响[J].铸造技术,2003,24(6):534-536.
    [47]李仁兴,范金辉,陈宇,侯旭,翟启杰.不同电压脉冲电流对奥氏体不锈钢凝固组织的影响[J].中国钢铁年会论文集,2003,554-555.
    [48]赵昱祥,苍大强,王建中.脉冲电压对GCr15轴承钢凝固组织的影响[J].北京科技大学学报,2002,24(1):22-24.
    [49]唐勇,王建中,苍大强,王静松,赵昱祥.电脉冲作用下T8钢凝固组织的改变[J].北京科技大学学报,2000,22(4):307-311.
    [50]曹丽云,王建中,杨晓平,刘兴江.非稳态脉冲电流对Q235钢组织均匀化的影响[J].金属热处理,2002,27(6):32-34.
    [51]曹丽云,王建中,杨晓平,刘兴江.非稳态脉冲电流对Q235钢组织细化的影响[J].热加工工艺,2001,5:13-14.
    [52] A.K. Misra. A novel solidification technique of metals and alloys: Under theinfluence of applied potential [J]. Metallurgica Transaction A,1985,16(77):1354-1355.
    [53] J.M. Li, S.L. Li, J. Li, H.T. Lin. Modification of solidification structure by pulseelectric discharging [J]. Scripta Metallurgica et Materialia,1994,31(12):1691-1694.
    [54]李建明,李胜利,李劲,林汉同.脉冲电流对Pb-Sn合金凝固组织影响的研究[J].特种铸造及有色合金,1994,6:1-4.
    [55] J.P. Barnak, A.K. Sprecher, H. Conrad. Colony (grain) size reduction in eutecticPb-Sn castings by electropulsing [J]. Scripta Metalluregica et Materialia,1995,32(6):879-884.
    [56]訾炳涛,崔建忠,巴启先.脉冲电流和脉冲磁场作用下LY12铝合金凝固组织的比较[J].热加工工艺,2000,4:3-5.
    [57]鄢红春,何冠虎,周本濂,秦荣山,郭敬东,沈以赴.脉冲电流对Sn-Pb合金凝固组织的影响[J].金属学报.1997,33(4):352-358.
    [58]秦荣山,鄢红春,何冠虎,周本濂.直接晶化法制备块状纳米材料的探索I脉冲电流作用下无序金属介质的成核理论[J].材料研究学报,1995,9(3):219-222.
    [59]秦荣山,周本濂.直接晶化法制备块状纳米材料的探索II脉冲电流作用下金属熔体结晶晶粒尺寸的理论计算[J].材料研究学报.1997,11(1):69-72.
    [60] O.A. Troitskii. Pressure shaping by the application of a high energy [J]. MaterialsScience&Engineering A,1985,75:37-50.
    [61] A.F. Sprecher, S.L. Mannan, H. Conrad. On the mechanisms for the electroplasticeffect in the metals [J]. Acta Metallurgica,1986,34(7):1145-1162.
    [62] O.A. Troitskii, V.I. Likhtman. The anisotropy of the action of electron and radiationon the deformation of Zinc single crystal in the brittle state [J]. Soviet PhysicsDoklady,1963,148:332-334.
    [63] O.A. Troitskii. Electromechanical effect in metals [J]. ZhETF Pis. Red.,1969,10(1):18-22.
    [64] O.A. Troitskii. Characteristics of the plastic deformation of a metal during passageof an electric current [J]. Problemy Prochnosti,1975,7:14-19.
    [65] O.A. Troitskii. Effect of the electron state of a metal on its mechanical propertiesand the phemomemon of electroplasticity [J]. Problemy Prochnosti,1977,1:38-46.
    [66] O.A. Troitskii, L.G. Maistrenko. Electroplastic deformation in metals [J]. Fizko-Khimicheskaya Materialov,1972,8(6):44-48.
    [67] O.A. Troitskii. Electroplastic deformation in metal, Problemy Prochnosti,1976,12:88-93.
    [68] N.E. Kiryanchev, O.A. Troitskii, S.A. Klevtsur. Electroplastic deformation ofmetals (review)[J]. Problemy Prochnosti,1983,5:101-105.
    [69] O.A. Troitskii, E.V. Gusev. Electroplastic effect in Indium (In)[J]. ProblemyProchnosti,1973,12:50-53.
    [70] V.I. Stashenko, O.A. Troitekii. Influence of pulsed current peak on the creep rate ofZinc crystal [J]. Problemy Prochnosti,1982,10:46-49.
    [71] O.A. Troitskii. Plastic deformation of metal induced by the pinch effect [J].Fiziko-Khimicheskaya Mekhanika Materialov,1977,13(6):46-50.
    [72] O.A. Troitskii. Strengthening of metal crystals subjected to cyclic loading under thesimultaneous action of an electric current [J]. Fiziko-Khimicheskaya MekhanikaMaterialov,1979,15(2):85-87.
    [73] O.A. Troitskii. Yield stress of Zinc, Lead and Tin crystals irradiated with electronsat80K [J]. Fiziko-Khimicheskaya Mekhanika Materialov,1974,10(2):57-61.
    [74] O.A. Troitskii. Third all-union seminar on the influence of electric fields (electriccurrent) and magnetic fields on plastic deformation of metals [J]. MetallovedenieiTermicheskaya Obrabotka Metallov,1978,11:77-78.
    [75] K. Okazaki, M. Kagawa, H. Conrad. A study of the electroplastic effect in metals [J].Scripta Metallurgica,1978,12(11):1063-1068.
    [76] K. Okazaki, M. Kagawa, H. Conrad. Additional results on the electroplastic effect inmetals [J]. Scripta Metalluregica,1979,13(4):277-280.
    [77] K. Okazaki, M. Kagawa, H. Conrad. An evaluaton of the contributions of Skin,Pinch and Heating Effects to the Electroplastic Effect in titamium [J]. MaterialsScience&Engineering A,1980,45:109-116.
    [78] H. Conrad, N. Karam, S. Mannan. Effect of electric current pulses on therecrystallization of copper [J]. Scripta Metalluregica,1983,17(3):411-416.
    [79] H. Conrad, N. Karam, S. Mannan. Effect of prior cold work on the influence ofelectric current pulses on the recrystallization of copper [J]. Scripta Metalluregica,1984,18(3):275-280.
    [80] Z.S. Xu, Z.H. Lai, Y.X. Chen. Effect of electric current on the recrystallization of-Ti [J]. Scripta Metalluregica,1988,22(2):187-190.
    [81] X.P. Lu, W.D. Cao, A.F. Sprecher, H. Conrad. Influence of an external electric fieldon the microstructure of superplastically deformed7475Al [J]. Journal of MaterialsScience,1992,27:2243-2250.
    [82] W.D. Cao, X.P. Lu, A.F. Sprecher, H. Conrad. Superplastic deformation behavior of7475aluminum alloy in an electric field [J]. Materials Science&Engineering A,1990,129:157-166.
    [83] H. Conrad, W.D. Cao. Effect of electric field on caviation in superplastic Al alloy7475[J]. Materials Science&Engineering A,1991,138:247-258.
    [84] H. Conrad, W.D. Cao. Effect of an electric field on the superplastic of7475Al [J].Scripta Metallurgica,1989,23(5):696-699.
    [85] Z.Y. Liu. Effect of current pulses on fracture morphology in superplasticdeformation of2091Al-Li alloy [J]. Transaction of Nonferrous Metals Society ofChina,1999,9(3):514-518.
    [86] Z.Y. Liu, X.C. Xu, J.Z. Cui. Effect of electric current pulse on grain growth insuperplastic deformation of2091Al-Li alloy [J]. Transaction of Nonferrous MetalsSociety of China,2003,13(4):743-749.
    [87] Z.Y. Liu, Y. Lei, S.D. Li. Electro-dislocation multiplication and strain effect in2091Al-Li alloy [J]. Transaction of Nonferrous Metals Society of China,2000,10(1):39-43.
    [88] Z.Y. Liu. Interior dislocation behavior in superplastic deformation of8090Al-Lialloy [J]. Transaction of Nonferrous Metals Society of China,1999,9(4):687-691.
    [89]刘志义,刘冰,邓小铁,雷毅.脉冲电流对2091铝锂合金再结晶动力学的影响[J].中国有色金属学报,2000,10(6):837-842.
    [90]刘志义,邓小铁,王引真.脉冲电流对2091铝锂合金再结晶动力学的影响[J].材料研究学报,2001,15(3):358-366.
    [91]李海,刘志义,雷毅.2091铝锂合金动态再结晶诱发超塑性变形中的空洞行为[J].中国有色金属学报,2001,11(S1):17-22.
    [92] Z.H. Lai, H.Conrad, Y.S. Chao, S.Q. Wang, J. Sun. Effect of electropulsing on themicrostructure and properties of iron-based amorphous alloys [J]. ScriptaMetallurgica,1989,23(3):305-310.
    [93] Z.H. Lai, H. Conrad, G.Q. Teng, Y.S. Chao. Nanocrystallization of amorphousFe-Si-B alloys using high current density electropulsing [J]. Materials Science&Engineering A,2000,287:238-247.
    [94] G.Q. Teng, Y.S. Chao, Z.H. Lai, L. Dong. Microstructural study of thelow-temperature nanocrystallization of amorphous Fe78B13Si9[J]. Physica StatusSolidi A,1996,156:265-276.
    [95]晁月盛,滕功清,耿岩,刘晓武,赖祖涵.非晶合金Fe78Si9B13在脉冲电流作用下的单相晶化[J].物理学报,1997,46(7):1369-1374.
    [96]滕功清,晁月盛,赖祖涵. Fe78B13Si9纳米晶合金的晶体结构[J].东北大学学报(自然科学版),1998,19(3):247-250.
    [97]滕功清,晁月盛,赖祖涵. Fe78B13Si9非晶合金纳米晶化的亚结构[J].东北大学学报(自然科学版),1996,17(5):529-533.
    [98] H. Mizubayashi, S. Okuda. Structural relaxation induced by passing electric currentin amorphous Cu50Ti50at low temperatures [J]. Physics Review B,1989,40(11):8057-8060.
    [99] R. Takemoto, H. Mizubayashi. Effect of passing electric current on structuralrelaxation, crystallization and elastic property in amorphous Cu50Ti50[J]. ActaMetallurgica Materialia,1995,43(4):1495-1504.
    [100] H. Mizubayashi, N. Kameyama, T. Hao, H. Tanimoto. Crystallization underelectropulsing suggesting a resonant collective motion of many atoms andmodification of thermodynamic parameters in amorphous alloys [J]. PhysicalReview B,2001,64:0542011-10.
    [101] H. Mizubayashi, T. Hao, H. Tanimoto. Low temperature crystallization ofamorphous alloys under electropulsing [J]. Journal of Non-Crystalline Solids,2002,312-314:581-584.
    [102]乔桂英,白象忠,栾金雨,肖福红.电磁热效应对T7钢的裂纹止裂[J].热加工工艺,2000,(2):11-13.
    [103]乔桂英,白象忠,肖福仁,栾金雨,胡宇达.单脉冲电流对高速钢裂纹的止裂效果[J].金属学报,2000,36(7):718-722.
    [104]高殿奎,付宇明,王平,白象忠,李慧.3Cr2W8V热疲劳裂纹的止裂与修复[J].中国表面工程,2001,(4):42-45.
    [105]白象忠,付宇明,高殿奎,王丽荣.低合金模具钢脉冲放电止裂的宏微观分析[J].模具工业,2001,(8):43-46.
    [106]付宇明,白象忠,郑丽娟,田振国.铝合金薄板中裂纹的电磁热效应局部跨越止裂[J].航空学报,2002,23(3):282-284.
    [107]付宇明,白象忠,许志强.带有中间裂纹载流板放电瞬间耦合场的数值模拟[J].固体力学学报,2002,23:306-311.
    [108]付宇明,郑丽娟. Cr12模具钢裂纹电磁止裂的研究[J].模具工业,2005,8:53-55.
    [109]郑丽娟,乔利杰,付宇明,王平,白象忠.脉冲电流止裂后裂尖处纳米尺度下的力学性能测试[J].实验力学,2003,18(3):393-397.
    [110]高殿奎,李慧,付宇明,白象忠.脉冲放电截止热疲劳裂纹的亚临界扩展[J].机械工程学报,2001,37(1):28-31.
    [111]高殿奎,付宇明,白象忠.模具钢磨削裂纹止裂与封闭试验研究[J].中国机械工程,2001,12(9):1067-1069.
    [112]高殿奎,李慧,付宇明,白象忠.磨削裂纹的脉冲放电止裂与强化[J].机械工程材料,2002,26(2):23-25.
    [113]高殿奎,付宇明,白象忠,李文清.9Cr2凹模淬火裂纹的搭桥修复[J].材料研究学报,2001,15(5):515-519.
    [114]高殿奎,付宇明,白象忠. GCr15凹模淬火止裂处的显微组织分析[J].金属学报,2001,37(2):135-138.
    [115]高殿奎,付宇明,白象忠.冷作模具钢淬火裂纹的搭桥修复[J].焊接学报,2001,22(2):43-45.
    [116]韦东滨,韩静涛,谢建新,付晨光,王连忠,贺毓新.热塑性变形条件下钢内部裂纹愈合的实验研究[J].金属学报,2000,36(6):622-625.
    [117]韦东滨,韩静涛,谢建新,付晨光,王连忠,贺毓新.真空环境下钢中裂纹的高温愈合[J].金属学报,2000,36(7):713-717.
    [118] D.B. Wei, J.T. Han, A. Kiet Tieu, Z.Y. Jiang. Simulation of crack healing in BCCFe [J]. Scripta Materialia,2004,51:583-587.
    [119]张海龙,孙军.工业纯铁内部疲劳微裂纹扩散愈合过程中的形态演变[J].金属学报,2002,38(3):239-244.
    [120]张海龙,杨君臣,孙军.工业纯铁内部穿晶疲劳微裂纹的扩散愈合过程[J].金属学报,2002,38(10):1015-1020.
    [121]张海龙,孙军.内部疲劳微裂纹退火愈合过程中纯铁的密度变化[J].金属学报,2003,39(4):351-354.
    [122] H.L. Zhang, J. Sun. Diffusive healing of intergranular fatigue microcracks in ironduring annealing [J]. Materials Science&Engineering A,2004,382:171-180.
    [123]周亦胄,罗申,贲昊玺,何冠虎.在脉冲电流作用下钢中裂纹的愈合[J].材料研究学报,2003,17(2):169-172.
    [124]周亦胄,肖素红,甘阳,高明,何冠虎,周本濂.脉冲电流作用下碳钢淬火裂纹的愈合[J].金属学报,2000,36(1):43-45.
    [125] Y.Z. Zhou, J.D. Guo, M. Gao, G.H. He. Crack healing in a steel by usingelectropulsing technique [J]. Materials Letters,2004,58:1732-1736.
    [126] Y.Z. Zhou, D.C. Qiao, G.H. He, J.D. Guo. Improvement of mechanical properties ina saw blade by electropulsing treatment [J]. Materials Letters,2003,57:1566-1570.
    [127] Y.Z. Zhou, Y. Zeng, G.H. He, B.L. Zhou. The healing of quenched crack in1045steel under electropulsing [J]. Journal of Materials Research,2001,16(1):17-19.
    [128] Y.Z. Zhou, R.S. Qin, S.H. Xiao, G.H. He, B.L. Zhou. Reversing effect ofelectropulsing on damage of1045steel [J]. Journal of Materials Research,2000,15(5):1056-1061.
    [129] V.V. Levitin, S.V. Loskutov. The effect of a current pulse on the fatigue of titaniumalloy [J]. Solid State Communications,2004,131:181-183.
    [130] O.V. Sosnin, A.V. Gromova, E.Yu. Suchkova, E.V. Kozlov, Yu.F. Ivanov, V.E.Gromov. The structural-phase state changes under the pulse current influence on thefatigue loaded steel [J]. International Journal of Fatigue,2005,27:1221-1226.
    [131] O.V. Sosnin, A.V. Gromova, Yu.F. Ivanov, S.V. Konovalov, V.E. Gromov, E.V.Kozlov. Control of austensite steel fatigue strength [J]. International Journal ofFatigue,2005,27:1186-1191.
    [132]沈以赴,周本濂,何冠虎,姚戈,鄢红春.材料疲劳恢复新途径Ⅰ-低碳钢疲劳寿命的延长[J].材料研究学报,1996,10(2):165-166.
    [133]沈以赴,郭晓楠,姚戈,何冠虎,李顺林,周本濂.材料疲劳恢复新途径的探索Ⅱ-脉冲电流对Ti-6Al-4V合金裂纹扩展的阻滞[J].材料研究学报,13(4):381-384.
    [134]吕宝臣,周亦胄,王宝全,郭敬东.脉冲电流对疲劳后30CrMnSiA钢组织结构的影响[J].材料研究学报,2003,17(1):15-18.
    [135]肖素红,郭敬东,吴世丁,何冠虎,李守新.电脉冲处理下疲劳铜单晶的再结晶[J].金属学报,2002,38(2):161-165.
    [136]刘平,李振涛,张忠.未来汽车发展趋势[J].客车技术与研究,2006,6:5-7.
    [137]宋真玉,李宪民.新能源汽车发展现状及趋势分析[J].轻型汽车技术,2012,273/274(5/6):3-6.
    [138]冯美斌.汽车轻量化技术中新材料的发展及应用[J].汽车工程,2006,28(3):213-220.
    [139]朱宏敏.汽车轻量化关键技术的应用及发展[J].应用能源技术,2009,134:10-12.
    [140]唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属加工,2009,11:11-15.
    [141]王智文.汽车轻量化技术发展现状初探[J].汽车工艺与材料,2009,2:1-5.
    [142]马鸣图,柏建仁.汽车轻量化材料及相关技术的研究进展[J].新材料产业,2006,6:37-42.
    [143]谷诤巍,单忠德,徐虹,姜超.汽车高强度钢板冲压件热成形技术研究[J].模具工业,2009,35(4):27-29.
    [144]马宁,胡平,闫康康,郭威,孟祥兵,翟述基.高强度硼钢热成形技术研究及其应用[J].机械工程学报,2010,46(14):68-72.
    [145]胡平,马宁.高强度钢板热成形技术及力学问题研究进展[J].力学进展,2011,41(3):310-334.
    [146] Y.Z. Zhou, W. Zhang, M.L. Sui, D.X. Li, G.H. He, J.D. Guo. Formation of ananostructure in a low-carbon steel under high current density electropulsing [J].Journal of Materials Research,2002,17(5):921-924.
    [147]周亦胄.金属材料在脉冲电流作用下的裂纹愈合和超细晶化[D].沈阳:中国科学院金属研究所,2002.
    [148] S. Vaidya, A.K. Sinha. Effect of texture and grain structure on electromigration inAl–0.5%Cu thin films [J]. Thin Solid Films1981,75:253-259.
    [149] I.A. Blech. Electromigration in thin aluminum films on titanium nitride [J]. Journalof Applied Physics,1976,47(4):1203-1208.
    [150] I.A. Blech. Copper electromigration in aluminum [J]. Journal of Applied Physics,1977,48(2):473-477.
    [151] H. Conrad. Effects of electric current on solid state phase transformations in metals[J]. Materials Science&Engineering A,2000,287:227-237.
    [152]宋辉.脉冲电流处理对钛合金板材组织和性能影响的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [153]雷桂林,曲红斌.趋肤效应的理论解释[J].甘肃科学学报,2005,17(1):28-29.
    [154]岳小萍,关君.电趋肤效应机理与应用[J].新乡学院学报(自然科学版),2012,29(1):24-26.
    [155]石东平,唐祖义,陈武.趋肤效应的理论研究与解析计算[J].重庆文理学院学报(自然科学版),2009,28(5):18-21.
    [156] X.N. Du, B.Q. Wang, J.D. Guo. Formation of nanocrystalline surface of a Cu–Znalloy under electropulsing surface treatment [J]. journal of materials research,2007,22(7):1947-1953.
    [157]金晓昌.感应加热技术中的趋肤效应[J].武汉化工学院学报,1995,17(4):65-68.
    [158]范铁岁.渗碳齿轮的感应加热淬火[J].热处理,2009,24(6):67-70.
    [159] W. Zhang, M.L. Sui, Y.Z. Zhou, Y. Zhong, D.X. Li. Orientated nanometer-sizedfragmentation of TiC particles by electropulsing[J]. Advanced EngineeringMaterials,2002,4(9):697-700.
    [160]周亦胄,张伟,郭敬东.脉冲电流处理后低碳钢中的局域纳米结构[J].材料研究学报,2002,16(5):469-472.
    [161]姚文华.电触点材料接触电阻分析[J].电工材料,2005,3:22-25.
    [162]张海泉.接触电阻的分析研究[J].商丘师范学院学报,2004,20(5):40-43.
    [163]许军,李坤.电接触的接触电阻研究[J].电工材料,2011,1:10-13.
    [164]高云凯,高大威,余海燕,邓有志.汽车用高强度钢热成型技术[J].汽车技术,2010,8:56-59.
    [165]林建平,王立影,田浩彬,孙国华,王芝斌.超高强度钢板热冲压成形研究与进展[J].金属铸锻焊技术,2008,37(21):140-144.
    [166] H. Karbasian, A.E. Tekkaya. A review on hot stamping [J]. Journal of MaterialsProcessing Technology,2010,210:2013-2118.
    [167] M. Naderi, L. Durrenberger, A. Molinari, W. Bleck. Constitutive relationships for22MnB5boron steel deformed isothermally at high temperatures Materials Science&Engineering A,2008,478:130–139.
    [168] W.D. Callister, Jr. Fundamentals of Materials Science and Engineering [M]. NewYork: Wiley&Sons, Inc.,2001.
    [169] N. Afrina, D.L. Chen, X. Cao, M. Jahazi. Strain hardening behavior of a friction stirwelded magnesium alloy [J]. Scripta Material,2007,57:1004-1007.
    [170] X.H. Chen, L. Lu. Work hardening of ultrafine-grained copper with nanoscale twins[J]. Scripta Material,2007,57:133-136.
    [171] Z.H. Xu, G.Y. Tang, S.Q. Tian, J.C. He. Research on the engineering application ofmultiple pulses treatment for recrystallization of fine copper wire [J]. MaterialsScience&Engineering A,2006,424:300-306.
    [172] ASM International Handbook Committee. Metals Handbook [M]. Ohio: ASMInternational Materials Park,1990.
    [173] Y.Z. Zhou, W. Zhang, B.Q. Wang, G.H. He, J.D. Guo. Grain refinement andformation of ultrafine-grained microstructure in a low-carbon steel underelectropulsing [J]. Journal of Materials Research,2002,17(8):2105-2111.
    [174]赵振业,李志,刘天琦,朱杰远.探索新强韧化机制开拓超高强度钢新领域[J].中国工程科学,2003,(9):39-42.
    [175]付宇明.金属模具电磁热裂纹止裂的研究[D].秦皇岛:燕山大学,2003.
    [176] T.J.C Liu. Thermo-electro-structural coupled analyses of crack arrest by Jouleheating [J]. Theoretical and Applied Fracture Mechanics,2008,49:171-184.
    [177] G.X. Cai, F.G. Yuan. Stresses around the crack tip due to electric current andself-induced magnetic field [J]. Advances in Engineering Software,1998,29:297-306.
    [178]曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [179]胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006.
    [180] W. Zhang, B. Wu, W.S. Zhao, D.X. Li, M.L. Sui. Formation of novel β-Timartensites in Ti–6Al–4V under an electric-current-pulse heat treatment [J].Materials Science&Engineering A,2006,438-440:320-323.
    [181] X.L. Wang, J.D. Guo, Y.M. Wang, X.Y. Wu, B.Q. Wang. Segregation of lead inCu-Zn alloy under electric current pulses [J]. Applied Physics Letters,2006,89:061910.1-061910.3.
    [182] Y. Dolinsky,T. Elperin. Thermodynamics of phase transitions in current-carryingconductors [J]. Physical Review B,1993,47(22):778-785.
    [183]张伟,赵振业,钟炳文,高文.超高强度钢奥氏体相变再结晶的形核机制[J].材料工程,1993,11:19-22.
    [184] X.L. Wang, Y.B. Wang, Y.M. Wang, B.Q. Wang, J.D. Guo. Oriented nanotwinsinduced by electric current pulses in Cu-Zn alloy [J]. Applied Physics Letters,2007,91:163112.1-163112.3.
    [185] W.B. Dai, X.L. Wang. Effect of electric current on the inclusions in a Cu-Zn alloy[J]. Materials Transactions,2010,51(5):892-895.
    [186] E.F. Monlevade, M.E. Feitosa, P.C.L. Júnior, M. Bueno. Fracture of cutting toolsdue to the formation of untempered martensite [J]. Engineering Failure Analysis,2013,27:314-321.
    [187]高伟.发动机12.9级连杆螺栓的材料与工艺[J].汽车技术,2005,11:28-30.
    [188]沈馨娥,何东敏,邢利君.高强螺栓加工工艺研究[J].中国新技术新产品,2012,17:172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700