用户名: 密码: 验证码:
形态、材料耦元对低碳钢拉伸性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国铁路系统的不断提速,列车天线支架在剧烈变速时承受的应力应变相应提高,服役环境较提速前更为严苛,这对天线支架的强韧性能提出了更高的要求。目前,天线支架的使用材料和零件结构一般沿用2007年第6次提速前的设计标准。其材料一般为铁素体/珠光体型低碳钢,这类材料因良好的低温塑性、焊接性能等优点而在工程领域广泛使用,但其较低的强韧性能已无法满足列车提速后的运行需求。另一方面,如果对天线支架进行材料更换或重新进行结构设计,不仅涉及到一系列生产工艺、零件尺寸和安装位置的变动,而且对现有天线支架进行报废处理也必然造成巨大的资源浪费和经济损失。因此如何在不替换现用材料、不改变零部件结构的同时,以低能耗、低成本提高低碳钢的强韧性能已成为制约我国轨道交通事业发展的一个难题,也是工业工程领域目前普遍面临的关键性问题。
     科学发展的历史表明,科学技术的突破性进展往往从天然有机体对自然界的适应性规律中寻求答案。同样,低碳钢强韧化技术的研究在天然生物材料优异的强度、韧性的组合中得到了启示。本文依据仿生耦合理论,从工程仿生学实用角度出发,将树叶、昆虫翅鞘等具有良好强韧性能的生物体作为原型,设计了仿生耦合强韧化模型,并以高速动车天线支架用钢S355钢为试验材料,采用激光处理技术实现了仿生耦合试样的制备,为强韧化技术的研究开拓了新思路,并通过拉伸性能的变化系统研究了形态、材料耦元对仿生耦合强韧化效果的影响规律和作用机理。
     研究发现,采用激光熔凝技术对S355钢进行仿生耦合处理能够同时提高材料的强度与塑性。仿生耦合处理后,具有一定形态规律的激光处理区形成了仿生单元体,其显微组织较母材得到明显细化、位错密度提高了一个数量级。单元体熔凝区的显微组织为细化的板条马氏体,板条宽度介于300nm~600nm之间,平均显微硬度较母材提高了125%;热影响区由马氏体和未熔铁素体组成,平均硬度提高46%。仿生耦合处理的强化作用主要来源于单元体中的上述显微组织变化和拉伸过程中拉应力由基体向单元体的传递。由于单元体和基体之间的应力传递,在相同载荷下仿生试样基体中承受的拉应力要低于未处理试样,只有进一步提高外加载荷才能使其达到相应的临界应力,因而使仿生试样获得了更高的强度。仿生耦合处理的韧化作用在于单元体对切应力集中的阻碍,在拉伸过程中能够抑制颈缩处的形变收缩,使切应力分布更均匀,延长试样的均匀形变过程,从而提高了仿生试样的塑性形变能力,使其获得了更高的延伸率。
     形态耦元对仿生试样拉伸性能具有重要影响。同比之下,网格状仿生试样强韧化效果最好,屈服强度和抗拉强度较未处理试样分别提高14.4%和13.1%,且延伸率同时提高11.1%。降低单元体间距能够使网格状仿生试样的强韧化效果进一步提高,在本文考察范围内横向间距3mm、纵向间距5mm时仿生试样拉伸性能最佳:其对应仿生试样屈服强度、抗拉强度、延伸率分别较未处理试样提高了16.3%、15.4%和19.8%。在此基础上进一步降低单元体间距尽管能够提高试样的强度,但会导致仿生试样的塑性急剧下降。此外,条纹状单元体由于具有较强的方向性,当它沿不同方向排列分布时,仿生试样的拉伸性能差异显著:单元体沿拉伸方向排列,试样强化效果最好;随着单元体角度的提高,仿生试样的强度提高幅度降低,但延伸率提高幅度逐渐增加;当单元体完全垂直于拉伸方向时,仿生试样韧化效果最好,获得了最大的延伸率提高百分比。
     母体材料的马氏体含量、合金元素含量以及试样厚度均严重影响仿生耦合处理的强韧化效果,进而决定仿生试样拉伸性能提高百分比。随着马氏体含量的提高,单元体和基体之间应力传递作用减弱,造成仿生试样强度提高百分比的逐渐降低。然而母材马氏体含量越高,仿生耦合处理后韧化效果越明显,延伸率提高百分比持续增加,直至马氏体含量达到90%时,才略有下降。S355钢、45#钢、H13钢三种母材仿生耦合处理后强度和塑性均同时提高,且母材中碳元素和合金元素含量越高,单元体的硬度和强度也就越高,仿生试样的强化效果越好;然而45#钢和H13钢受热影响区未熔珠光体和粗大碳化物颗粒的影响,韧化效果较S355钢则有所下降,延伸率提高百分比相应降低。而对不同厚度的仿生试样拉伸性能的研究表明,对S355钢而言,母材厚度在3.0mm内时,利用单元体轮廓数学模型和双相结构体积分数法则计算的仿生试样屈服强度与实际测量平均值相差在10MPa以内。当母材厚度改变但其他参数不变时,可近似使用17.6%作为单元体体积百分比的临界值,在此范围内进行仿生耦合处理可获得较好的强韧化效果。
     通过激光熔丝技术制备组织和材料均不同于低碳钢母材的合金化单元体,有利于突破激光熔凝仿生试样的强度极限,进一步提高仿生耦合处理的强化效果;但激光熔丝仿生试样的延伸率相对于未处理试样均有所降低,这是因为合金化单元体的界面尽管具有较高的硬度和强度,但形变能力却难以满足要求,甚至出现了塑性较差的柱状晶组织,拉伸过程中界面易发生局部脱粘,影响了仿生耦合处理的韧化效果。为提高激光熔丝仿生试样的塑性,尝试了激光熔丝技术结合脉冲电流处理,不仅使试样获得了高于激光熔凝处理的强化效果,而且脉冲电流能够改善合金化单元体的界面组织和硬度分布,具有较好的韧化效果。在脉冲电流作用时间220ms时,激光熔丝仿生试样屈服强度和抗拉强度相对于未处理试样分别提高28.2%和25.9%,且延伸率同时提高6.9%。
     本文依据仿生耦合原理,利用激光技术制备的仿生耦合强韧化模型能够同时提高低碳钢材料的强度与塑性,为强韧化技术研究开拓了新思路,具有重要的科学意义和实用价值。同时,仿生耦合强韧化技术只是针对零部件表面进行局部处理而保持心部不变,不需改变零部件的使用材料和结构设计,因此具有广阔的应用前景,显著的经济价值和社会效益。
With the acceleration of China's railway system, antenna mounting brackets of thetrains suffer from the increased powerful stress and strain due to the rapid starting orsudden braking, and their service environment tends to be more intricate and harsh. Inthis condition, higher strength and toughness of the mounting bracket is needed to meetthe requirements of the accelerated trains. Currently, materials and component structureused in the mounting brackets follow the design standards in2007before the6thspeedup. Ferrite/pearlite low carbon steel is widely used in mechanical engineering andhas always been employed to produce the mounting brackets for its superior plasticityand good weldability. However, a major shortcoming of low carbon steel is its poorstrength and toughness performance, which places a limit on its service life in theaccelerated trains. On the other hand, replacing the materials or redesigning thecomponent structure not only leads to a series of changes in the production process butalso to the scrap of the present mounting bracket, which would cause huge waste ofresources and economic losses. Therefore, how to improve the strength and toughnessof low carbon steels but without changing the present materials and componentstructure has imposed restrictions on China's railway transportation and has also been akey issue in the engineering field.
     The phylogeny of science indicated that many great progresses of science andtechnology came from inspirations of the adaptability of biology to the naturalenvironment. In the same way, strengthening and toughening technique of low carbonsteels has been enlightened by the unsurpassable advanced performance of biologicalmaterials. In this paper, inspired by some tree leaf and insect elytrum with excellentcombination of strength and toughness, biomimetic coupling model for low carbonsteels has been designed to improve the service life of mechanical components. S355steel, which is wildly used in the antenna bracket of High-speed EMU, was chosen asexperimental material and the biomimetic coupling model was applied in it by lasertechnique. Though systematic study on the tensile properties of the laser processed biomimetic samples, we discussed the influences of morphology and material couplingelements on the strengthening and toughening effects as well as the mechanism behindthem. Based on this work, we expected to provide valuable information for thestrengthening and toughening technique of low carbon steels.
     Results indicate that the laser biomimetic coupling method can improve thestrength and ductility of S355steel simultaneously. After the treatment, laser affectedarea with certain morphology makes up the biomimetic units. Microstructures of theunits are significantly refined than the matrix and the dislocation density increases by anorder of magnitude. Remelted zone is mainly composed of fine martensitic lath with itslath width ranging between300nm and600nm. Compared with that of the matrix, theaverage microhardness of Remelted Zone is increased by125%. Heat affected zoneconsists of martensite and incompletely dissolved ferrite, and its microhardness isincreased by46%in contrast to that of the matrix. Strengthening effect of thebiomimetic coupling treatment is attributed to the microstructure changes in the unitsand the stress transition from the substrate to the units. Because of the stress transfer inbiomimetic specimens, the units would carry higher tensile stress, and thus stressdistributed in the substrate is much lower than that in the untreated specimens with thesame external loading. Therefore, higher external tensile load will be applied when thesubstrate of the biomimetic specimens reaches its yield point and failure point. Thiscontributes significantly to the enhancement of strength, leading to the higher yieldstrength and tensile strength of the biomimetic specimens. Toughening effect of thebiomimetic coupling treatment rests on that the units have a beneficial effect onredistributing the shear stress throughout the specimen and resisting the initiation andgrowth of the necking. Due to this toughening effect, uniform deformation process isprolonged and the regions away from the neck could perform a larger strain, thusenhancing the elongation of biomimetic samples.
     Morphological coupling element has an important impact on the tensile propertiesof biomimetic samples. Compared comprehensively on the strength and ductility of thesamples, biomimetic specimens with gridding-shaped units exhibit the most desirable strengthening and toughening effects, generating a superior increment relative to theuntreated specimen in yield strength, tensile strength and elongation by14.4%,13.1%and11.1%, respectively. Meanwhile, it is found that the strengthening and tougheningeffects increase with the reduction of unit distance. Among all the samples investigatedin the present study, gridding units with lateral distance of3mm and longitudinaldistance of5mm contribute to the most integrated improvement in the tensile propertiesof biomimetic specimens, producing a development relative to the original material inyield strength, tensile strength and elongation by16.3%,15.4%and19.8%, respectively.And further decreasing the unit distance would result in a sharp deterioration of theductility. The tensile properties of striation biomimetic specimens are dependentcritically on the orientation of striation unit. When the units are aligned along the loaddirection (unit angle=0°), the biomimetic sample exhibits the greatest improvement instrength. As the unit angle rises, the strengthening effect is decreased while thetoughening effect increases. The maximum elongation is achieved in the sample with itsunits aligned at a90°angle to the load.
     Martensite content, chemical compositions and the thickness of the matrix have agreat influence on the strengthening and toughening effects of biomimetic couplingtreatment and thus determine the tensile property increments of biomimetic samples.With the increase of martensite content, stress transition between the substrate and unitsis diminished, resulting in the decrease of strength increment in biomimetic samples.However, toughening effect increases with the martensite content, and the elongationincrement of biomimetic samples enhances continuously until the martensite contentreaches90%volume fraction. Both the strength and ductility of S355steel,45#steeland H13steel are improved after the biomimetic coupling treatment. The hardness andstrength of the units increase with the carbon and alloy content of the matrix, andtherefore the strengthening effect of biomimetic specimen increases as well. But on theother hand, the strengthening effect depends to a great extent on the properties ofinterfacial bond between the unit and substrate. The incompletely dissolved pearlite(45#steel) and especially the coarse particles (H13steel) in the heat affected zone impair the toughening effect, and the elongation of their corresponding biomimeticspecimens is relatively lower than that of S355steel. Study on the tensile properties ofthe biomimetic specimens with different thickness indicates that the mathematicalmodel and volume fraction of the unit could be applied to calculate the yield strength ofbiomimetic coupling processed S355steel, and the calculation errors are less than10Mpa when the thickness of samples is below3mm. It is also found that17.6%could beapproximately considered as the threshold value of the units’ volume fraction when thethickness of samples varies but the other processing parameters are fixed. Under thisthreshold value, desirable strengthening and toughening effect could be obtained afterthe biomimetic coupling treatment.
     Laser wire process was applied to fabricate alloying units which possess differentmicrostructures and materials with the matrix of low carbon steels. The alloying unitsbreak the limit of strength increment in laser remelting processed samples and furtherimprove the strengthening effect of biomimetic coupling treatment. However, theelongation of laser wire processed samples is decreased and lower than their untreatedcounterpart. This is because that though the interface between alloying unit andsubstrate has considerable hardness and strength, its deformability is reduced by thecolumnar grains and could not meet the requirement of biomimetic specimens. It is alsonoticed that localized interfacial debonding occurs during the tensile deformationprocess, which impairs the toughening effect of biomimetic coupling treatment. In thiscondition, electropulsing treatment on the laser wire processed samples was attemptedto improve their ductility. After the electropulsing treatment, interfacial microstructuresand hardness distribution of the alloying units could be improved. And consequently thetoughening effect of laser wire processed samples is considerably enhanced after thetreatment. The electropulsing stimulation with220ms discharing duration generates asuperior increment of laser wire processed samples relative to the untreated specimen inyield strength, tensile strength and elongation by28.2%,25.9%and6.9%, respectively.
     The idea for improving the strength and ductility of low carbon steels bybiomimetic coupling method in this paper has provided an original research thought for solving strengthening and toughening problems of mechanical components which existwidely in the field of mechanical engineering. The studies on the tensile properties oflow carbon steels processed by laser biomimetic coupling treatment have academicsignificance and applicable value in engineering. Meanwhile, the application ofbiomimetic coupling technique can not only improve the strength and ductility of lowcarbon steels simultaneously, but also remain the present materials and originalcomponent structure of mechanical components. And therefore, the development of thebiomimetic coupling technique is of profound societal and remarkable economic value.
引文
[1]李国强,陈凯.高温下Q345钢的材料性能试验研究[J].建筑结构,2001,31(1):53-55.
    [2]李长龙,陈言俊. Q345钢在低温下的力学性能研究[J].山东建筑工程学院学报,2003,18(1):82-84.
    [3]朱伏先,李艳梅,刘彦春, et al.控轧控冷条件下Q345中厚板的生产工艺研究[J].钢铁,2005,40(5):32-37.
    [4]刘胜新,陈永,赵志毅, et al.微合金元素对Q345钢奥氏体晶粒粗化行为的影响[J].铸造技术,2006,27(10):1071-1074.
    [5]屈立军,李焕群,王跃琴, et al.国产钢结构用Q345(16Mn)钢高温力学性能的恒温加载试验研究[J].土木工程学报,2008,41(7):33-40.
    [6]林武,张希旺,赵延阔, et al. Q345钢奥氏体连续冷却转变曲线(CCT图)[J].材料科学与工艺,2009,17(2):247-250.
    [7] FIROUZI A, KUMAR D, BULL L, et al. Cooperative organization ofinorganic-surfactant and biomimetic assemblies [J]. Science,1995,267(5201):1138-1143.
    [8] SHAHINPOOR M, BAR-COHEN Y, SIMPSON J, et al. Ionic polymer-metalcomposites (IPMCs) as biomimetic sensors, actuators and artificial muscles-areview [J]. Smart Materials and Structures,1998,7(6): R15-R30.
    [9] ZHOU B L. Bio-inspired study of structural materials [J]. Materials Science andEngineering: C,2000,11(1):13-18.
    [10] SARIKAYA M, FONG H, SUNDERLAND N, et al. Biomimetic model of asponge-spicular optical fiber-mechanical properties and structure [J]. Journal ofMaterials Research,2001,16(05):1420-1428.
    [11] MAYER G, SARIKAYA M. Rigid biological composite materials: structuralexamples for biomimetic design [J]. Experimental Mechanics,2002,42(4):395-403.
    [12] KUSHNER A M, VOSSLER J D, WILLIAMS G A, et al. A biomimetic modularpolymer with tough and adaptive properties [J]. Journal of the American ChemicalSociety,2009,131(25):8766-8768.
    [13] YANG R C, NIE F R, SHI R X, et al. Analysis of strengthening-tougheningmechanism of WC/steel matrix alloys [J]. Journal of Gansu University,2001,27(1):22-26.
    [14]方鸿生,刘东雨,徐平光, et al.贝氏体钢的强韧化途径[J].机械工程材料,2001,25(6):1-5.
    [15] AWAJI H, CHOI S M, YAGI E. Mechanisms of toughening and strengthening inceramic-based nanocomposites [J]. Mechanics of Materials,2002,34(7):411-422.
    [16] HE Y, YANG K, QU W, et al. Strengthening and toughening of a2800-MPa grademaraging steel [J]. Materials Letters,2002,56(5):763-769.
    [17]张怀仁.提高酒钢Q345B板材屈服强度研究[D].西安;西安建筑科技大学,2003.
    [18]马占福,赵西成.控轧控冷工艺对Q345钢组织和性能的影响[J].热加工工艺,2009,38(8):46-48.
    [19]郭应国,张洁,张社会, et al.我国齿轮材料及其热处理技术的最新进展[J].热加工工艺,2003,2(1):22-25.
    [20]王萍.低成本高强韧低合金铸钢组织与性能研究[D].武汉;武汉理工大学,2011.
    [21] OUCHI C, SAMPEI T, KOZASU I. The effect of hot rolling condition andchemical composition on the onset temperature of γ-α transformation after hotrolling [J]. Transactions of the Iron and Steel Institute of Japan,1982,22(3):214-222.
    [22] TAMURA I, SEKINE H, TANAKA T, et al. Thermomechanical processing ofhigh-strength low-alloy steels [M]. London: Butterworths,1988.
    [23] BENGOCHEA R, LOPEZ B, GUTIERREZ I. Microstructural evolution during theaustenite-to-ferrite transformation from deformed austenite [J]. Metallurgical andmaterials Transactions A,1998,29(2):417-426.
    [24] CHO S H, KANG K B, JONAS J J. The dynamic, static and metadynamicrecrystallization of a Nb-microalloyed steel [J]. ISIJ International,2001,41(1):63-69.
    [25] PARK K T, KIM Y S, LEE J G, et al. Thermal stability and mechanical propertiesof ultrafine grained low carbon steel [J]. Materials Science and Engineering: A,2000,293(1):165-172.
    [26] INOUE T, TORIZUKA S, NAGAI K, et al. Effect of plastic strain on grain size offerrite transformed from deformed austenite in Si-Mn steel [J]. Materials Scienceand Technology,2001,17(12):1580-1588.
    [27] NAGAI K. State-of-the-art of800MPa steel project in Japan [J]. NG Steel,2001,7(18):8-15.
    [28] UEJI R, TSUJI N, MINAMINO Y, et al. Ultragrain refinement of plain low carbonsteel by cold-rolling and annealing of martensite [J]. Acta Materialia,2002,50(16):4177-4189.
    [29] PRIESTNER R. Strain-induced gamma to alpha transformation in the roll gap incarbon and microalloyed steel [J]. Thermomechanical Processing of MicroalloyedAustenite,1981,4(18):455-466.
    [30] MATSUMURA Y, YADA H. Evolution of ultrafine-grained ferrite in hotsuccessive deformation [J]. Transactions of the Iron and Steel Institute of Japan,1987,27(6):492-498.
    [31] BEYNON J, GLOSS R, HODGSON P. The production of ultrafine equiaxedferrite in a low carbon microalloyed steel by thermomechanical treatment;proceedings of the Materials Forum, F,1992[C]. Institute of Metals and MaterialsAustralasia.
    [32] LEE S, KWON D, LEE Y K, et al. Transformation strengthening bythermomechanical treatments in C-Mn-Ni-Nb steels [J]. Metallurgical andMaterials Transactions A,1995,26(5):1093-1100.
    [33] WENG Y. Development of ultrafine grained steel in China [J]. NG Steel,2001,9(21):1-7.
    [34]杨忠民,齐长发.普通碳素钢超细晶组织的形成[J].新一代钢铁材料研讨会(NG STEEL’2001),2001,286(2):165-178.
    [35]王俊,孙宝德.材料研究中的电脉冲处理技术[J].材料导报,1999,13(2):19-21.
    [36]杨丽红,黄金亮,殷镖.电脉冲在现代材料制备与研究中的应用[J].热加工工艺,2003,19(2):51-53.
    [37]刘晓平,陈强,杨程.电脉冲改善金属材料组织的应用现状[J].铸造设备研究,2005,16(4):51-54.
    [38] TROITSKII O. Pressure shaping by the application of a high energy [J]. MaterialsScience and Engineering,1985,75(1):37-50.
    [39] OKAZAKI K, KAGAWA M, CONRAD H. A study of the electroplastic effect inmetals [J]. Scripta Metallurgica,1978,12(11):1063-1068.
    [40] OKAZAKI K, KAGAWA M, CONRAD H. Additional results on the electroplasticeffect in metals [J]. Scripta Metallurgica,1979,13(4):277-280.
    [41] CONRAD H, KARAM N, MANNAN S. Effect of electric current pulses on therecrystallization of copper [J]. Scripta Metallurgica,1983,17(3):411-416.
    [42] CONRAD H, KARAM N, MANNAN S. Effect of prior cold work on theinfluence of electric current pulses on the recrystallization of copper [J]. ScriptaMetallurgica,1984,18(3):275-280.
    [43] XU Z S, LAI Z H, CHEN Y X. Effect of electric current on the recrystallizationbehavior of cold worked α-Ti [J]. Scripta Metallurgica,1988,22(2):187-190.
    [44]刘志义,许晓嫦,崔建忠. Effect of electric current pulse on grain growth insuperplastic deformation of2091Al-Li alloy [J].中国有色金属学会会刊:英文版,2003,13(4):743-749.
    [45]崔忠圻,覃耀春.金属学与热处理[M].北京:机械工业出版社,1989.
    [46]田淑芳.强烈淬火对钢的影响[J].中国高新技术企业,2007,27(9):83.
    [47]曹登驹, KOBASKO N I, TOTTEN G E, et al.强烈淬火:改善了硬度与残留应力[M].重庆市机械工程学会热处理分会2008年学术年会论文集.重庆.2008:5-11.
    [48]樊东黎.强烈淬火:一种新的强化钢的热处理方法[J].热处理,2005,20(4):1-3.
    [49]傅宇东.强烈淬火对20CrMnTi钢组织及残余应力的影响[M].第七届中国热处理活动周论文集.秦皇岛.2010:345-349.
    [50]傅宇东,何祖娟,张清华, et al.强烈淬火对20CrMnTi钢力学性能的影响[J].热加工工艺,2011,40(4):176-179.
    [51] RAO S Y, JIU S, LIAN J H, et al. Strength and toughness of medium-carbon steelcontaining both martensite and ferrite [J]. Journal of Xi'an Jiaotong University,1981,2(4):12-18.
    [52] YAE X, JIN F H. An experimental study on the intercritical hardening of u-shapedsteel for mine roadway support [J]. Journal of China University of Mining&Technology,1992,3(9):6-12.
    [53] XU J, NI H, JI J. Study on intercritical hardening and self-tempering of u-shapesteels for mine roadway support [J]. Heat Treatment of Metals,1996,4(2):256-263.
    [54]王国军,熊柏青,张永安, et al.铝合金材料的新型热处理技术研究[J].轻合金加工技术,2008,36(7):10-13.
    [55]王传雅.高强度薄板钢16Mn亚温处理后的组织与性能的研究[J].大连铁道学院学报,1985,3(1):21-28.
    [56]陈国栋.高强度结构钢复相热处理工艺研究[J].金属热处理,2000,21(5):19-22.
    [57]马学刚,严文庭,耿军.某凸轮轴在横轧后的预热淬火研究[J].中国金属学会2003中国钢铁年会论文集(4),2003,1(1):444-446.
    [58]刘时雨,张磊,徐博.炼钢粉尘回收轧机用热轧辊辊套材料的研制[J].大型铸锻件,2006,21(3):3-10.
    [59]王海瑞.35CrMoA钢亚温淬火强韧性研究[D].焦作;河南理工大学,2010.
    [60] MARTEKA V J. Bionics [M]. Philadelphia: JB Lippincott,1965.
    [61] HALACY D S, STEINBERG D M. Bionics: the science of "Living" machines [M].New York: Holiday House,1965.
    [62] DICKINSON M H. Bionics: Biological insight into mechanical design [J].Proceedings of the National Academy of Sciences,1999,96(25):14208-14209.
    [63]思远.箱鱼情缘[J].世界汽车,2005,5(8):88-91.
    [64]刘超,石磊.软体机器人[J].世界科学,2012,4(17):60-61.
    [65]周长海,任露泉,汪洪宇.不同生境昆虫的翅膀及部分体壁结构及材料的生物耦合特征的研究[M].中国农业机械学会2008年学术年会论文集.济南.2008:346-349.
    [66] REN L, LIANG Y. Biological couplings: Classification and characteristic rules [J].Science in China Series E: Technological Sciences,2009,52(10):2791-2800.
    [67]高峰,任露泉,黄河, et al.沙漠蜥蜴体表抗冲蚀磨损的生物耦合特性[J].农业机械学报,2009,40(1):180-183.
    [68]任露泉,梁云虹.生物耦合及其分类学与特征规律研究[J].中国科学: E辑,2010,40(1):5-13.
    [69]任露泉,梁云虹.生物耦合生成机制[J].吉林大学学报:工学版,2011,41(5):1348-1357.
    [70]郝锵,宁修仁,蔡昱明, et al.南海北部初级生产力的物理-生物海洋学耦合特征及其对固碳量的影响[J].海洋学研究,2011,29(2):46-57.
    [71]冯小晏,冯华军,汪美贞, et al.生物耦合技术在水处理中的应用[J].科技通报,2012,28(3):139-142.
    [72] QIAN Z H, HONG Y, XU C Y, et al. A biological coupling extension model andcoupling element identification [J]. Journal of Bionic Engineering,2009,6(2):186-195.
    [73]任露泉,梁云虹.生物耦元及其耦联方式[J].吉林大学学报(工学版),2009,39(6):1504-1511.
    [74] REN L, LIANG Y. Biological couplings: Function, characteristics andimplementation mode [J]. Science China Technological Sciences,2010,53(2):379-387.
    [75] BARTHOOTT W, NEINHUIS C. Purity of the sacred lotus, or escape fromcontamination in biological surface [J]. Planta,1997,202(1):1-8.
    [76]洪筠,钱志辉,任露泉.多元耦合仿生可拓模型及其耦元分析[J].吉林大学学报:工学版,2009,39(3):22-28.
    [77]高峰,黄河,任露泉.新疆岩蜥三元耦合耐冲蚀磨损特性及其仿生试验[J].吉林大学学报,2008,38(3):86-90
    [78] ARIB R M N, SAPUAN S M, AHMAD M M H M, et al. Mechanical properties ofpineapple leaf fibre reinforced polypropylene composites [J]. Materials&Design,2006,27(5):391-396.
    [79] SREEKUMAR P A, JOSEPH K, UNNIKRISHNAN G, et al. A comparative studyon mechanical properties of sisal-leaf fibre-reinforced polyester compositesprepared by resin transfer and compression moulding techniques [J]. CompositesScience and Technology,2007,67(3-4):453-461.
    [80] FAISAL T R, KHALIL ABAD E M, HRISTOZOV N, et al. The impact of tissuemorphology, cross-section and turgor pressure on the mechanical properties of theleaf petiole in plants [J]. Journal of Bionic Engineering,2010,7(1):11-23.
    [81] MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials:critical mechanics-materials connections [J]. Science,2013,339(6121):773-779.
    [82] WANG X S, LI Y, SHI Y F. Effects of sandwich microstructures on mechanicalbehaviors of dragonfly wing vein [J]. Composites Science and Technology,2008,68(1):186-192.
    [83] SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flappingwing aerodynamics and aeroelasticity [J]. Progress in Aerospace Sciences,2010,46(7):284-327.
    [84] SUDHAKAR Y, VENGADESAN S. Flight force production by flapping insectwings in inclined stroke plane kinematics [J]. Computers&Fluids,2010,39(4):683-695.
    [85] CHENG P, HU J, ZHANG G, et al. Deformation measurements of dragonfly'swings in free flight by using Windowed Fourier Transform [J]. Optics and Lasersin Engineering,2008,46(2):157-161.
    [86] ZHANG Z, ZHOU H, REN L, et al. Surface morphology of laser tracks used forforming the non-smooth biomimetic unit of3Cr2W8V steel under differentprocessing parameters [J]. Applied Surface Science,2008,254(8):2548-2555.
    [87] LEVY D E, SEIFERT A. Parameter study of simplified dragonfly airfoil geometryat Reynolds number of6000[J]. Journal of Theoretical Biology,2010,266(4):691-702.
    [88] REN L, QIU Z, HAN Z, et al. Experimental investigation on color variationmechanisms of structural light in Papilio maackii menetries butterfly wings [J].Science in China Series E: Technological Sciences,2007,50(4):430-436.
    [89] REN L, DENG S, WANG J, et al. Design-1principles of the non-smooth surfaceof bionic plow moldboard [J]. Journal of Bionics Engineering,2004,1(1):9-19.
    [90] BARTHELAT F, LI C M, COMI C, et al. Mechanical properties of nacreconstituents and their impact on mechanical performance [J]. Journal of MaterialsResearch,2006,21(08):1977-1986.
    [91] FRATZL P, WEINKAMER R. Nature’s hierarchical materials [J]. Progress inMaterials Science,2007,52(8):1263-1334.
    [92] ORTIZ C, BOYCE M C. Bioinspired structural materials [J]. Science,2008,319(5866):1053-1054.
    [93] NIKOLOV S, PETROV M, LYMPERAKIS L, et al. Revealing the designprinciples of high-performance biological composites using ab initio andmultiscale simulations: The example of lobster cuticle [J]. Advanced Materials,2010,22(4):519-526.
    [94] ERB R M, LIBANORI R, ROTHFUCHS N, et al. Composites reinforced in threedimensions by using low magnetic fields [J]. Science,2012,335(6065):199-204.
    [95] WISE JR S W. Microarchitecture and deposition of gastropod nacre [J]. Science,1970,167(3924):1486-1488.
    [96] JACKSON A, VINCENT J, BRIGGS D, et al. Application of surface analyticaltechniques to the study of fracture surfaces of mother-of-pearl [J]. Journal ofMaterials Science Letters,1986,5(10):975-978.
    [97] CURREY J. Mechanical properties of mother of pearl in tension [J]. Proceedingsof the Royal society of London Series B Biological sciences,1977,196(1125):443-463.
    [98] JACKSON A, VINCENT J, TURNER R. The mechanical design of nacre [J].Proceedings of the Royal society of London Series B Biological sciences,1988,234(1277):415-440.
    [99] KAMAT S, SU X, BALLARINI R, et al. Structural basis for the fracture toughnessof the shell of the conch Strombus gigas [J]. Nature,2000,405(6790):1036-1040.
    [100]李恒德,冯庆玲.贝索珍珠层及仿生制备研究[J].清华大学学报:自然科学版,2001,41(4):41-47.
    [101]任露泉,梁云虹.生物耦合功能特性及其实现模式[J].中国科学:技术科学,2010,16(3):223-230.
    [102] WANG R, ZHANG W, GUO J. A branched material based on biomimetic design:Synthesis and electrochemical properties [J]. Materials Science and Engineering:C,2005,25(4):486-489.
    [103]左铁钏,施定远.激光加工技术的优势及在工业生产中的应用[J].激光杂志,1999,20(4):8-9.
    [104] COLACO R, PINA C, VILAR R. Influence of the processing conditions on theabrasive wear behaviour of a laser surface melted tool steel [J]. ScriptaMaterialia,1999,41(7):715-721.
    [105] BORREGO L P, PIRES J T B, COSTA J M, et al. Mould steels repaired by laserwelding [J]. Engineering Failure Analysis,2009,16(2):596-607.
    [106] GEMELLI E, GALLERIE A, CAILLET M. Improvement of resistance tooxidation by laser alloying on a tool steel [J]. Scripta Materialia,1998,39(10):1345-1352.
    [107] LU X D, WANG H M. High-temperature phase stability and tribologicalproperties of laser clad Mo2Ni3Si/NiSi metal silicide coatings [J]. ActaMaterialia,2004,52(18):5419-5426.
    [108] CHEN Y, WANG H. Eutectic MC carbide growth morphologies of a laser cladTiC/FeAl composite coating [J]. Materials Letters,2005,59(28):3699-3702.
    [109]贾俊红,钟敏霖,刘文今, et al. Ti对Fe-C合金表面激光熔覆复合材料层组织和性能的影响[J].应用激光,2000,20(4):145-148.
    [110] LAHA K, KYONO J, SASAKI T, et al. Improved creep strength and creepductility of type347austenitic stainless steel through the self-healing effect ofboron for creep cavitation [J]. Metallurgical and materials Transactions A,2005,36(2):399-409.
    [111] SAKTHIVEL T, VASUDEVAN M, LAHA K, et al. Comparison of creep rupturebehaviour of type316L(N) austenitic stainless steel joints welded by TIG andactivated TIG welding processes [J]. Materials Science and Engineering: A,2011,528(22-23):6971-6980.
    [112] YI H L, LEE K Y, BHADESHIA H K D H. Mechanical stabilisation of retainedaustenite in δ-TRIP steel [J]. Materials Science and Engineering: A,2011,528(18):5900-5903.
    [113]姜伟之,赵时熙.工程材料的力学性能[M].北京:北京航空航天大学出版社,1991.
    [114]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [115] SHAN F L, GAO Z M, WANG Y M. Microhardness evaluation of Cu–Nimultilayered films by X-ray diffraction line profile analysis [J]. Thin Solid Films,1998,324(1):162-164.
    [116] NAKASHIMA K, SUZUKI M, FUTAMURA Y, et al. Limit of dislocationdensity and dislocation strengthening in iron; proceedings of the MaterialsScience Forum, F,2006[C]. Trans Tech Publications.
    [117] LI X, WEI Y, LU L, et al. Dislocation nucleation governed softening andmaximum strength in nano-twinned metals [J]. Nature,2010,464(7290):877-880.
    [118] CALLISTER JR W D. Fundamentals of materials science and engineering [M].New York: John Wiley&Sons,2001.
    [119] EVANS A G, CANNON R. Overview No.48: Toughening of brittle solids bymartensitic transformations [J]. Acta Metallurgica,1986,34(5):761-800.
    [120]刘东雨,徐鸿,杨昆, et al.贝氏体/马氏体复相组织对低碳合金钢强韧性的影响[J].金属学报,2004,40(8):882-886.
    [121]刘军利,林晓娉,李日, et al.碳对马氏体钢显微组织和力学性能的影响[J].热加工工艺,2006,35(24):34-36.
    [122] WANG C, WANG M, SHI J, et al. Effect of microstructural refinement on thetoughness of low carbon martensitic steel [J]. Scripta Materialia,2008,58(6):492-495.
    [123] ZHOU L, LIU G, HAN Z, et al. Grain size effect on wear resistance of ananostructured AISI52100steel [J]. Scripta Materialia,2008,58(6):445-448.
    [124] DAVIES R. Influence of martensite composition and content on the properties ofdual phase steels [J]. Metallurgical Transactions A,1978,9(5):671-679.
    [125] DAVIES R. Early stages of yielding and strain aging of a vanadium-containingdual-phase steel [J]. Metallurgical Transactions A,1979,10(10):1549-1555.
    [126] ERDOGAN M, PRIESTNER R. Effect of epitaxial ferrite on yielding andplastic flow in dual phase steel in tension and compression [J]. Materials Scienceand Technology,1999,15(11):1273-1284.
    [127] ERDOGAN M, TEKELI S. The effect of martensite volume fraction and particlesize on the tensile properties of a surface-carburized AISI8620steel with adual-phase core microstructure [J]. Materials Characterization,2002,49(5):445-454.
    [128] LAWSON R D, MATLOCK D K, KRAUSS G. The effect of microstructure onthe deformation behavior and mechanical properties of a dual-phase steel [J].Fundamentals of Dual-Phase Steels,1981,5(1):347-381.
    [129] KOO J, THOMAS G. Design of duplex Fe/X/0.1C steels for improvedmechanical properties [J]. Metallurgical and materials Transactions A,1977,8(3):525-528.
    [130] THOMAS G, KOO J Y. Developments in strong, ductile duplex ferritic-martensitic steels [J]. Structure and Properties of Dual-Phase Steels,1979,7(1):183-201.
    [131] MILLER W S, HUMPHREYS F J. Strengthening mechanisms in particulatemetal matrix composites [J]. Scripta Metallurgica,1991,25(1):33-38.
    [132] ZHOU B L. Bio-inspired study of structural materials [J]. Materials Science andEngineering C,2000,11(1):13-18.
    [133] SARIKAYA M, FONG H, SUNDERLAND N, et al. Biomimetic model of asponge-spicular optical fiber-mechanical properties and structure [J]. Journal ofMaterials Research,2001,16(5):1420-1428.
    [134] GLASSMAKER N J, JAGOTA A, HUI C Y, et al. Adhesion enhancement in abiomimetic fibrillar interface [J]. Acta Biomaterialia,2005,1(2):367-375.
    [135] LIN H, ZHAO Y, ZHAO B, et al. Formation and thermal fatigue properties offine-grained heat affected zone on cast-hot-working-die steel after electropulsingstimulation with high current density [J]. ISIJ International,2008,48(11):1647-1653.
    [136] GUO J, YANG S, SHANG C, et al. Influence of carbon content andmicrostructure on corrosion behaviour of low alloy steels in a Cl containingenvironment [J]. Corrosion Science,2009,51(1):242–251.
    [137] REN L Q, LIANG Y H. Biological couplings: Function, characteristics andimplementation mode [J]. Science China Technological Sciences,2010,53(2):379-387.
    [138] AHMAD Z, MARK J E. Biomimetic materials: recent developments in organic-inorganic hybrids [J]. Materials Science and Engineering C, I998,6(3):183-196.
    [139]钱志辉,任露泉,田丽梅, et al.仿生耦合功能表面应力-应变本构关系[J].吉林大学学报(工学版),2008,38(2):1105-1109.
    [140]贺银芝,应怀樵.小波包分解及其能量谱在发动机连杆轴承故障诊断中的应用[J].振动工程学报,2001,14(1):72-75.
    [141]李趁意.建设轴承工业强国的基本战略[J].轴承工业,2004,15(6):17-20.
    [142] MA T, LI W, XU Q, et al. Microstructure evolution and mechanical properties oflinear friction welded45steel joint [J]. Advanced Engineering Materials,2007,9(1):703-707.
    [143]孙茂林.基础研究与轴承工业技术发展[J].轴承工业,2013,24(4):32-35.
    [144]杨晓蔚.日本轴承工业发展经验的启示[J].轴承工业,2013,36(4):16-21.
    [145]江山,霍立兴,王建平, et al.球绞轴承断裂失效分析[J].轴承技术,2006,11(4):14-17.
    [146]丁晨,王军艺,刘俊亮.20CrMo汽车轴承断裂失效分析[J].热加工工艺,2011,40(14):197-199.
    [147] SHERMAN A, DAVIES R. The effect of martensite content on the fatigue of adual-phase steel [J]. International Journal of Fatigue,1981,3(1):36-40.
    [148]朱心昆,赵应富.淬火温度对H13钢性能的影响[J].金属热处理,1994,32(8):28-30.
    [149]胡正前,张文华.淬火工艺对H13钢韧性影响的研究[J].武汉工业大学学报,1996,18(4):61-63.
    [150] SURESH S.材料的疲劳[M].北京:国防工业出版社.1999.
    [151]崔昆.中国模具钢现状及发展(I)[J].机械工程材料,2001,25(1):1-5.
    [152] CHEN L, ZHOU H, ZHAO Y, et al. Abrasive particle wear behaviors of severaldie steels with non-smooth surfaces [J]. Journal of Materials ProcessingTechnology,2007,190(1-3):211-216.
    [153] TONG X, ZHOU H, REN L, et al. Effects of graphite shape on thermal fatigueresistance of cast iron with biomimetic non-smooth surface [J]. InternationalJournal of Fatigue,2009,31(4):668-677.
    [154] DOWDEN J M. The mathematics of thermal modeling: an introduction to thetheory of laser material processing [M]. Boca Raton: CRC Press,2001.
    [155] KITAHARA H, UEJI R, UEDA M, et al. Crystallographic analysis of platemartensite in Fe-28.5at.%Ni by FE-SEM/EBSD [J]. Materials Characterization,2005,54(4):378-386.
    [156] KITAHARA H, UEJI R, TSUJI N, et al. Crystallographic features of lathmartensite in low-carbon steel [J]. Acta Materialia,2006,54(5):1279-1288.
    [157] MAEKAWA T, KITAHARA H, TSUJI N. Mechanical properties of Ultra-Finegrained Fe-Cr-Ni alloy fabricated by ARB [J]. Advanced Materials Research,2007,26(1):413-416.
    [158] MORITO S, TANAKA H, KONISHI R, et al. The morphology andcrystallography of lath martensite in Fe-C alloys [J]. Acta Materialia,2003,
    51(6):1789-1799.[159] MORITO S, HUANG X, FURUHARA T, et al. The morphology andcrystallography of lath martensite in alloy steels [J]. Acta Materialia,2006,
    54(19):5323-5331.[160] MORITO S, YOSHIDA H, MAKI T, et al. Effect of block size on the strength oflath martensite in low carbon steels [J]. Materials Science and Engineering: A,
    2006,438(8):237-240.[161] TOTTEN G E, HOWES M A. Steel heat treatment handbook [M]. Boca Raton:
    CRC Press,1997.[162] TOTTEN G E. Steel heat treatment: metallurgy and technologies [M]. Boca
    Raton: CRC Press,2006.[163] KANNATEY-ASIBU JR E. Principles of laser materials processing [M]. New
    York: John Wiley&Sons,2009.[164]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,
    1998.[165] LEE T, PARK C H, LEE D L, et al. Enhancing tensile properties ofultrafine-grained medium-carbon steel utilizing fine carbides [J]. Materials
    Science and Engineering: A,2011,528(21):6558-6564.[166] LI H, JIA Y, MAMTIMIN G, et al. Stress transfer and damage evolutionsimulations of fiber-reinforced polymer–matrix composites [J]. Materials
    Science and Engineering: A,2006,425(1-2):178-184.[167] SRETENOVIC A, M LLER U, GINDL W. Mechanism of stress transfer in asingle wood fibre-LDPE composite by means of electronic laser speckleinterferometry [J]. Composites Part A: Applied Science and Manufacturing,
    2006,37(9):1406-1412.[168] CHEN B, WU P D, GAO H. A characteristic length for stress transfer in thenanostructure of biological composites [J]. Composites Science and Technology,2009,69(7-8):1160-1164.
    [169] BROWNRIGG A, SPITZIG W, RICHMOND O, et al. The influence ofhydrostatic pressure on the flow stress and ductility of a spherodized1045steel[J]. Acta Metallurgica,1983,31(8):1141-1150.
    [170] MORITO S, OHBA T, DAS A K, et al. Effect of solution carbon and retainedaustenite films on the development of deformation structures of low-carbon lathmartensite [J]. ISIJ International,2013,53(12):2226-2232.
    [171] CHOI S H, KIM K H, OH K H, et al. Tensile deformation behavior of stainlesssteel clad aluminum bilayer sheet [J]. Materials Science and Engineering: A,1997,222(2):158-165.
    [172]许金泉.材料强度学[M].上海:上海交通大学出版社,2009.
    [173] YILBAS B, SHUJA S, KHAN S. Laser repetitive pulse heating of tool surface[J]. Optics&Laser Technology,2011,43(4):754-761.
    [174] SCHAAF P. Laser processing of materials: fundamentals, applications anddevelopments [M]. New York: Springer,2010.
    [175]关振中.激光加工工艺手册[M].北京:中国计量出版社,2007.
    [176] SAKTHIVEL T, VASUDEVAN M, LAHA K, et al. Effect of joining process onthe accumulation of creep deformation and cavitation across the weld joint of316L (N) stainless steel [J]. Procedia Engineering,2013,55(2):408-413.
    [177] WANG J Z, TANG Y, CANG D Q. Electro-pulse on improving steel ingotsolidification structure [J]. Journal of University of Science and TechnologyBeijing,1999,6(2):94-96.
    [178]曹丽云,王建中.非稳态脉冲电流对Q235钢组织细化的影响[J].热加工工艺,2001,27(5):13-14.
    [179] FAN J H, LI R X, HUO X, et al. Effect of pulse electric current with variousparameters on solidification structure of austenitic stainless steel [J]. ZhuzaoJishu (Foundry Technology)(China),2003,24(1):534-536.
    [180] LIN H, ZHAO Y, GAO Z, et al. Effects of pulse current stimulation on thethermal fatigue crack propagation behavior of CHWD steel [J]. MaterialsScience and Engineering: A,2008,478(1):93-100.
    [181] LIN H, ZHAO Y, ZHAO B, et al. Formation and thermal fatigue properties offine-grained heat affected zone on cast-hot-working-die steel after electropulsingstimulation with high current density [J]. ISIJ International,2008,48(11):1647-1653.
    [182] LIN H, ZHAO Y, ZHAO Y, et al. Effect of pulse electric current stimulation onthe microstructure, mechanical properties and thermal fatigue behavior ofcast-hot-working die steel [J]. ISIJ International,2008,48(2):212-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700