用户名: 密码: 验证码:
煤矿工业场地土壤污染评价及再利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿是我国重要的能源资源,在我国一次能源结构中占68.0%,然而煤矿开采会造成大量的土地损毁,1987-2009年损毁土地100万hm2,约占矿产资源损毁土地的59.5%。这说明煤矿损毁土地已成为我国土地复垦最重要的对象之一,而煤矿工业场地作为煤矿的核心组成部分主要通过占用和污染损毁土地。矿产资源整合、资源枯竭(闭坑)和历史遗留等产生的大量废弃煤矿工业场地,而土地用途转换和二次开发利用必须首先进行环境质量评价,这对煤矿工业场地土壤环境评价提出了迫切需求。目前我国场地污染评价方面的研究主要集中在焦化厂、农药厂、钢铁厂等遗留场地,而对煤矿工业场地的研究则非常缺乏。
     在界定工业场地内涵和分类的基础上总结煤矿工业场地6个共性特征,为本研究结果的推广和应用提供依据。在前期调研和土壤污染环节分析的基础上,初步筛选煤矿工业场地特征污染物。依据土壤采样规范,在工业场地内外共采集剖面土壤25个样点(81个混合点位)69个土壤样品。
     首先,研究煤矿工业场地及周边土壤污染总体分布特征。将煤矿工业场地及周边划分为区位空间和水流空间,区位空间分为核心区、辅助区、排土场地、原地貌1和原地貌2,水流空间分为上游、中游、下游1和下游2。结果表明无机物在不同分区的水平和垂向空间分布差异不明显,PHs和PAHs有机物的差异性大于无机物。
     其次,研究工业场地内不同功能区土壤污染分布特征。工业场地划分为污水处理厂、洗煤厂、维修厂、油库、炸药厂和办公区7个不同功能区,采用时空替代法将工业场地生产时间划分为1987年和2001年。研究结果表明土壤有机物PHs和PAHs在不同功能区之间的差异性显著大于无机物,有机物在1987年显著高于2001年,而无机物在两个时间段之间差别明显,这说明有机物的污染累积和叠加效应大于无机物。
     再次,利用地累积、单因子和内梅罗污染指数评价土壤污染。地累积和单因子评价土壤重金属污染存在偏差,工业场地内外总金属污染指数差异不明显,Hg和Zn相对污染较大。场地内土壤PHs和PAHs单因子指数显著高于场地外,场地内土壤存在重度有机污染。内梅罗污染指数也表明场地内PHs和PAHs显著高于场地外,场地内各功能区的污染指数排序为炸药厂>洗煤厂>维修厂>油库>污水处理厂>矸石电厂>办公区。在基础上,典型污染物Hg、PHs和PAHs中的BaP、CHR绘制了污染超标、污染等级和污染空间插值分布图。
     最后,初步设计工业场地再利用功能布局。根据煤矿工业用地特征提出了煤矿工业场地利用3个演变阶段、4个演变类与3个演变过程,以此为基础进行利益诉求和功能效益分析。通过解译1986-2013年6期遥感影像,结合平朔煤矿生产历史,分析煤矿工业场地的时空演变特征。对工业场地再利用进行SWOT分析,最后提出基于功能分区的再利用布局。
Coal is an important energy resource in China, which accounts for68.0%in theprimary energy structure. However, coal mining can cause a large amount of landdestruction. It damaged land about1million hm2from1987to2009, accounting forabout59.5%of damaged land of the mineral resource. This shows that coal miningdamaged land has become one of the most important object of reclamation in China,while the coal mine industrial site as the core part of the mine mainly damages landin the form of occupation and pollution. The integration of mineral resources,resource depletion and historical legacy produce a large number of abandoned coalmine industrial site which makes land utilization become an unavoidable problem.The land use conversion and the second development and utilization must evaluatethe environmental quality first. It puts forward the urgent demand for soil evaluationof coal mine industrial site. At present, research on evaluation of site contaminationin our country mainly concentrates on the coking plant, pesticide plant and steelplant and so on, while lack of research on coal mine industrial site.
     Based on defining industrial sites and classification, it further summarizes thecommon characteristics of coal mine industrial site and provides evidence for thepromotion and application of the results of this study. Based on the early survey andanalysis of soil pollution links, featured pollutants of coal mine industrial siteinclude inorganic matter by preliminary screening. According to the soil sample andard, using sampling method combined zoning, judging with mixing, the authorcollected25samples (81mixed point) of69soil samples on the surface (0-20cm),middle (20-50cm) and bottom (50-100cm) of soil of the industrial site, which followin strict accordance with the standard of quality control in the process of storing,transferring and testing.
     Studying the feature of the pollution distribution is the first thing of research forindustrial sites and surrounding soil. These sites would be divided into location andcurrent spaces. Location space includes core region, auxiliary cortex, dump andoriginal landform I and original landform II. Current space is split into upstream, midstream and downstream I and downstream II. The result illustrates that there is nodifference of the location of inorganic matter between different spaces in horizontaland vertical direction. The otherness of PHs and PAHs which are organics is morethan inorganic matter has.
     Studying the feature of the pollution distribution in different domains is thesecond thing of research for industries sites and srrounding soil. Industries sites aredistributed into sewage plant, coal-washing factory, repair work, oil depot, explosiveplant and administrative area (seven domains). These areas are distributed two parts inchronological order (1987year and2001year), which use time-space substitutionmethod. The result demonstrates the otherness of PHs and PAHs which are more thaninorganic matter has in different domains. There is more organics in1987than that in2001, and the difference between different period shows obviously on organic matter.T h i s p h en o m en o n d ep i ct s t h at cu m u lat i v e an d ad d i t i v e effe ct s o forganic matter are more obvious than that of inorganic matter.
     Thirdly, the cumulative single factor and Nemero pollution index were used toevaluate soil pollution. The cumulative and single factor assessment of soil heavymetal pollution exists deviation, and inside and outside the industrial site metalpollution index was not significantly different, Hg and Zn were relatively seriouspollution elements. In site single factor indexes of PHs and PAHs were significantlyhigher than that ouside of the site, which had severe organic pollution in soil of thefield. Nemero pollution index also suggests that PHs and PAHs were significantlyhigher than that within the site, the ranking for pollution index of each functionalarea is Explosive Plant> Coal Washery> Repair Factory> Oil Depot> SewageDisposal Work> Gangue Power Plant> Office area. On this basis, according to theindex of BaP and CHR, Hg, PHs and PAH sin typical pollutants interpolationdistribution figure of pollution exceed the standard, the class of pollution andpollution space were drawn.
     Finally, the functional layout of industrial site reuse was preliminarily designed.According to the characteristics of the land use of the coal industry,3stages ofevolution,4types of evolution and3process of evolution were raised. Based on this, the interest demands, functions and benefits are analyzed. Through the interpretationof6periods remote sensing images from1987-2013, combined with the historicalproductionof Pingshuo coal mine, this article analyses characteristics of temporaland spatial of the coal mine industrial site. Trough ananisis of SWOT, the reuselayout based on functional zone was raised.
引文
[1] Abhilash P C, Dubey R K, Tripathi V, et al. Remediation and management ofPOPs-contaminated soils in a warming climate: challenges and perspectives[J].Environmental Science and Pollution Research,2013,20(8):5879-5885.
    [2] Ahmadpour P, Soleimani M, Ahmadpour F, et al. Evaluation of Copper Bioaccumulation andTranslocation in Jatropha curcas Grown in a Contaminated Soil[J]. International Journal ofPhytoremediation,2014,16(5):454-468.
    [3] Austria. The Clean-Up of Contaminated Sites Act(ALSAG). Canberra: Department ofSustainability, Environment, Water, Population and Communities,1989.
    [4] Barnier C, Ouvrard S, Robin C, et al. Desorption kinetics of PAHs from aged industrial soilsfor availability assessment[J]. Science of The Total Environment,2014,470:639-645.
    [5] Bernardo M, Gon Alves M, Lapa N,et al. Determination of alkylphenols in eluates frompyrolysis solid residues using dispersive liquid-liquid microextraction[J]. Chemosphere,2010,79(11):1026-1032.
    [6] Botsou F,Karageorgis A P,Dassenakis E, et al. Assessment of heavy metal contamination andmineral magnetic characterization of the Asopos River sediments (Central Greece)[J]. MarinePollution Bulletin,2011,62(3):547-563.
    [7] Canadian Council of Ministers of the Environment.Federal Contaminated Sites Inventory. http://www.tbs-sct.gc.ca/fcsi-rscf/classification-eng.aspx?clear=1,2014-4-22.
    [8] Christaller, W.(1993).常正文,王兴中等译.德国南部的中心地[M].北京:商务印书馆,1998.
    [9] De Sousa C A. Brownfield redevelopment in Toronto: an examinationof past trends andfuture prospects [J]. Land Use Policy,2002,19:297-309.
    [10] Demirbilek D, nal A, Demir V, et al. Characterization and pollution potentialassessment of Tunceli, Turkey municipal solid waste open dumping site leachates[J].Environmental monitoring and assessment,2013:1-15.
    [11] Dixon T, Otsuka N, Abe H. Critical success factors in urban brownfieldregeneration: ananalysis of hardcore· sites in Manchester and Osakaduring the economic recession[J].Environmental andPlanning A,2011,43(4):961-980.
    [12] Du, Liu J, Zhang Y, et al. Relationship between soil biotoxicity and levels of heavy metals(Pb, Cd, Cu, Zn, Ni, Cr, Co, Sb, Fe, and Mn) in an oilfield from China[J]. FreseniusEnvironmental Bulletin,2011,20(1):121-126.
    [13] Eze P N,Udeigwe T K, Stietiya M H. Distribution and potential source evaluation of heavymetals in prominent soils of Accra Plains, Ghana[J]. Geoderma,2010,156(3-4):357-362.
    [14] Ferrarese E, Andreottola G, Oprea I A. Remediation of PAH-contaminated sediments bychemical oxidation[J]. Journal of Hazardous Materials,2008,152(1):128-139.
    [15] French Environment and Energy Management Agency.French approach tocontaminated-land management-revision1[EB/OL].(2003-04).
    [16] Gan S, Lau E V, Ng H K. Remediation of soils contaminated with polycyclic aromatichydrocarbons (PAHs)[J]. Journal of Hazardous Materials,2009,172(2):532-549.
    [17] Gan S, Yap C L, Ng H K. Investigation of the impacts of ethyl lactate based Fentontreatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils[J].Journal of hazardous materials,2013,262:691-700.
    [18] Kemmei T, Kodama S, Muramoto T, et al. Study of solid-phase extraction for thedetermination of sequestering agents in river water by high-performanceliquidchroniatography[J]. Journal of Chromatography A,2009,1216(7):1109-1114
    [19] K l G A. Histopathological and biochemical alterations of the earthworm (LumbricusTerrestris) as biomarker of soil pollution along Porsuk River Basin (Turkey)[J]. Chemosphere,2011,83(8):1175-1180.
    [20] Lau E V, Gan S, Ng H K, et al. Extraction agents for the removal of polycyclic aromatichydrocarbons (PAHs) from soil in soil washing technologies[J]. Environmental Pollution,2014,184:640-649.
    [21] Levrel H, Pioch S, Spieler R. Compensatory mitigation in marineecosystems:whichindicators for assessing the no net lossμ goal ofecosystem services and ecologicalfunctions[J]. Marine Policy,2012,36(6):1202-1210.
    [22] Li A, Jang J K,Scheff P A, Application of EPA CMB8.2model for source apportionment ofsediment PAHs in Lake Calumet, Chicago[J]. Environmental science&technology,2003,37(13):2958-2965.
    [23] Liu J, Wang J, Jiao B. Migration Law of Cd, Zn, As from the Pyrite Slag Yard inSurrounding Soils[J]. D is aster Advances,2013,6:372-379.
    [24] Losch, A.著.王守礼译.经济空间秩序[M].北京:商务印书馆,1995.
    [25] Opfer S E, Farver J R,Miner J G, et al. Heavy metals in sediments and uptake by burrowingmayflies in western Lake Erie basin[J]. Journal of Great Lakes Research,2011,37(1):1-8.
    [26] Péron O, Rinnert E, Lehaitre M, et al. Detection of polycyclic aromatic hydrocarbon (PAH)compounds in artificial sea-water using surface-enhanced Raman scattering (SERS)[J].Talanta,2009,79(2):199-204.
    [27] Sch dler S, Morio M, Bartke S, et al. Designing sustainable andeconomically attractivebrownfield revitalization options using anintegrated assessment model[J]. Journal ofEnvironmentalManagement,2011,92:827-837.
    [28] Schulz-Zunkel C, Krueger F, Rupp H, et al. Spatial and seasonal distribution of trace metalsin floodplain soils. A case study with the Middle Elbe River, Germany[J]. Geoderma,2013,211:128-137.
    [29] Shi J, Wang H. Spatial distribution of heavy metal in soils a case Study ofChangxing,China[J]. EnvironGeol,2007(52):1-10
    [30] The Dominion of Canada. Federal Contaminated Sites and Solid Waste Landfills InventoryPolicy (2000)[Z]. Ottawa: Treasury Board of Canada Secretariat.
    [31] The Dutch. Soil Protection Act (SPA).1987.
    [32] Thunen J H著(1826).吴衡康译.孤立国同农业和国民经济的关系[M].北京:商务印书馆,1997.
    [33] Tibor Benedek, Balázs Vajna, András Táncsics, e tal. Remarkable impact of PAHs and TPHson the richness and diversity of bacterial species in surface soils exposed to long-termhydrocarbon pollution[J].World Journal of Microbiology and Biotechnology,2013,231(29):1989-2002.
    [34] Tripathi R, Kumar R, Mudiam M K R, et al. Distribution, sources and characterization ofpolycyclic aromatic hydrocarbons in the sediment of the River Gomti, Lucknow, India[J].Bulletin of environmental contamination and toxicology,2009,83(3):449-454.
    [35] U.S.EPA. Nationaloiland hazardous substance pollution contingency plan[EB/OL].Http://www.epa.gov,1985.
    [36] U.S.EPA.the National Priorities List (NPL). http://www.epa.gov/superfund/sites/npl/,2014-4-21.
    [37] Ud Din S, Al Dousari A,Literathy P. Evidence of hydrocarbon contamination from theBurgan oil field, Kuwait Interpretations from thermal remote sensing data[J]. Journal ofEnvironmental Management,2008,86(4):605-615.
    [38] United Kingdom.Environmental Protection Act1990(partA)[Z]. London: EnvironmentAgency,1990.
    [39] Weber, A.(1990)李刚剑等译.工业区位论[M].北京:商务印书馆,1997.
    [40] Wohrnschimmel H, Tay P, von Waldow H, et al. Comparative assessment of the global fateof α-and β-hexachlorocyclohexane before and after phase-out[J]. Environmental science&technology,2012,46(4):2047-2054.
    [41] Zhang C, Wu L, Luo Y, et al. Identifying sources of soil inorganic pollutants on a regionalscale using a multivariate statistical approach: role of pollutant migration and soilphysicochemical properties[J]. Environmental pollution,2008,151(3):470-476.
    [42]白中科,郭青霞,王改玲,等.矿区土地复垦与生态重建效益演变与配置研究[J].自然资源学报,2001,16(6):525-530.
    [43]白中科,郧文聚.矿区土地复垦与复垦土地的再利用——以平朔矿区为例[J].资源与产业,2008,10(5):32-37.
    [44]白中科,赵景逵.工矿区土地复垦、生态重建与可持续发展[J].科技导报,2001(9):49-52.
    [45]白中科,赵景逵.关于露天矿土地复垦与生态重建的几个问题[J].冶金矿山设计与建设,2000,32(1):33-37.
    [46]白中科.认知复垦从事复垦传承复垦——与导师赵景逵先生对话[J].中国土地,2008(12):41-44.
    [47]包正峰,王建旭,冯新斌,等.贵州万山汞矿区污染土壤中汞的形态分布特征[J].生态学杂志,2011,30(5):907-913.
    [48]毕宝德,柴强,李铃,等.土地经济学(第五版)[M].北京:中国人民大学出版社,2006.
    [49]卞正富,张绍良.高潜水位矿区土地复垦的工程措施及其选择[J].中国矿业大学学报,1991,20(3):71-78.
    [50]卞正富.我国煤矿区土地复垦与生态重建研究[J].资源与产业,2005,7(2):18-24.
    [51]蔡健,兰伟.农村闲置废弃宅基地复垦耕种方式研究[J].中国农学通报,2007,23(1):160-163.
    [52]曹银贵,白中科,张耿杰,等.山西平朔露天矿区复垦农用地表层土壤质量差异对比[J].农业环境科学学报,2013,32(12):2422-2428.
    [53]陈炳超,叶丽莉,陈利芳.基于MAPGIS的公路临时用地复垦适宜性评价分析[J].公路,2011(10):130-134.
    [54]陈德敏,薛婧媛.中国土壤污染现状与法律责任解读[J].重庆大学学报(社会科学版).2008,14(1):93-97.
    [55]陈桂荣,曾向东,黎巍等.金属矿山土壤重金属污染现状及修复技术展望[J].矿产保护与利用,2010(2):41-44.
    [56]陈浩.中国耕地土壤污染问题研究简析[J].黑龙江农业科学,2012(9):49-52.
    [57]陈怀满.环境土壤学[M].北京:科学出版社,2005.
    [58]陈亮明,张毅川,冯磊,等.城郊工业废弃地旅游开发SWOT分析及其景观规划[J].水土保持研究,2008,15(6):215-216.
    [59]陈玲,赵建夫.环境监测[M].北京:化学工业出版社,2008.
    [60]陈桥,胡克,王建国等.矿山土地污染危害及污染源探讨[J].国土资源科技管理,2004(4):50-53.
    [61]程琳琳,李继欣,娄尚,等.矿产资源型城市矿业废弃地优化再利用对策:以北京市门头沟区为例[J].中国矿业,2013,22(1):69-71.
    [62]丛鑫,朱书全,薛南冬,等.有机氯农药企业搬迁遗留场地土壤中污染的垂向分布特征[J].环境科学研究,2009,22(3):351-355.
    [63]邓益群,彭凤仙,周敏.固体废物及土壤监测[M].北京:化学工业出版社,2006.
    [64]董杰,杨达源.三峡库区退化土壤生态系统恢复与重建研究[J].水土保持研究,2008,15(3):234-238.
    [65]董亚明,赵朝成,蔡云,等.新疆石油污染土壤植物修复特性研究[J].干旱区研究,2013,30(1):162-165.
    [66]杜显元.石油开采区土壤污染物源解析、毒性及快速检测方法研究[D].浙江大学,2012.
    [67]樊文华,白中科,李慧峰,等.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报,2011,27(1):348-354.
    [68]付尧,李旭,付慧,等.安太堡露天煤矿生产接续工程环境影响报告书[R].中国环境科学研究院,2008.
    [69]傅钢.煤燃烧过程中多环芳烃类有机污染物排放特性的研究[D].杭州:浙江大学,2002.
    [70]葛元英,崔旭,白中科.露天煤矿复垦土壤重金属污染及生态风险评价——以平朔安太堡矿区为例[J].山西农业大学学报(自然科学版),2008,28(1):85-88.
    [71]国家统计局.中国统计年鉴2011[M].北京:中国统计出版社,2012.
    [72]国家统计局能源统计司.中国能源统计年鉴20111[M].北京:中国统计出版社,2011.
    [73]国土资源部.土地复垦方案编制规程(TD/T1031-2011)(由七个部分组成).2011.
    [74]国土资源部土地整理中心,国土资源部土地整治重点实验室.重点煤炭基地土地复垦工程实施方案纲要研究[M].地质出版社,2008.
    [75]国务院办公厅.近期土壤环境保护和综合治理工作安排(国办发([2013]7号)[Z].2013-01-23.
    [76]韩宝平.矿区环境污染与防治[J].徐州:中国矿业大学出版社,2008.
    [77]贺振伟,白中科,张召,等.平朔矿区工业——生态产业链的结构设计与实证[J].资源与产业,2012,5:012.
    [78]贺振伟.矿区复垦土地可持续利用与产业转型机制研究[D].北京:中国地质大学(北京),2012.
    [79]洪坚平.土壤污染与防治[M].北京:中国农业出版社,2008.
    [80]胡存智.全国矿产资源规划研究[M].北京:地质出版社,2009.
    [81]姜福厚.基于随机扩散过程的污染物迁移研究[D].华中科技大学,2012.
    [82]姜林,王岩石.场地环境评价指南[M].北京:中国环境科学出版社,2004.
    [83]李发生,颜增光.污染场地术语手册[M].北京:科学出版社,2009.
    [84]李飞,黄瑾辉,曾光明,等.基于Monte-Carlo模拟的土壤环境重金属污染评价法与实例研究[J].湖南大学学报:自然科学版,2013,40(9):103-108.
    [85]李建华.资源型城市可持续发展研究[M].北京:社会科学文献出版社,2005.
    [86]李细红.遗留遗弃污染场地调查及风险评价[D].湖南农业大学,2011.
    [87]李勋贵,魏霞.区域土壤侵蚀演化风险分析——以泾河流域为例[J].地理研究,2011,30(8):1361-1369.
    [88]梁学庆,杨凤海,刘卫东.土地资源学[M].北京:科学出版社,2006.
    [89]廖晓勇,崇忠义,阎秀兰.城市工业污染场地:中国环境修复领域的新课题[J].环境科学,2011,32(3):784-794.
    [90]林立,陈晓华等.贵广高速公路弃土场复垦生态效益价值评估[J].公路交通技术,2011(5):145-152.
    [91]刘春雷,王金满,白中科等.干旱区草原露天煤矿土地复垦技术分析[J].金属矿山,2011(5):154-157.
    [92]刘刚,裴华,胡绍娟.输电线路建设土地复垦探讨[J].现代农业科技,2010(8):318-319.
    [93]刘庚,毕如田,王世杰,等.某焦化场地土壤多环芳烃污染数据的统计特征[J].应用生态学报,2013,24(6):1722-1728.
    [94]刘敬勇,常向阳,涂湘林,等.广东某硫酸废渣堆渣场周围土壤铊污染的地累积指数评价[J].土壤通报,2010(5):1231-1236.
    [95]刘黎明.土地资源学[M].北京:中国农业大学出版社,2004.
    [96]刘敏,方如康.现代地理科学词典[M].北京:科学出版社,2009.
    [97]龙俐,熊康宁,梅再美.喀斯特地区石材开采迹地生态复垦研究——以贵州花江示范区为例[J].中国岩溶,2005,24(4):289-291.
    [98]罗畅,夏春光,杨庆媛.灾毁土地复垦的经济效益研究——以重庆市北碚区为例[J].西南师范大学学报(自然科学版),2005,30(6):1138-1141.
    [99]罗明,白中科,刘喜韬等.土地复垦潜力调查评价研究[M].北京:中国农业科学技术出版社,2013.
    [100]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.
    [101]骆永明.中国污染场地修复的研究进展、问题与展望[J].环境监测管理与技术,2011,23(3):1-6.
    [102]骆永明.中国主要土壤环境问题与对策[M].南京:河海大学出版社,2008.
    [103]骆云中,许坚,谢德体.我国现行矿业用地制度存在的问题及其对策[J].资源科学,2004,26(3):116-122.
    [104]马清义,焦玉坤,李新宇.葛泉矿煤矸石山周边多环芳烃分布特征[J].煤炭与化工,2013,36(7):50-52.
    [105]倪绍祥.土地类型与土地评价(第二版)[M].北京:高等教育出版社,2005.
    [106]潘云雨,罗飞,徐正国,等.化工厂场地酸化土壤工程化中和修复案例研究[J].环境监测管理与技术,2011,23(3):52-56.
    [107]庞绍虎,马建光,彭新德.南水北调中线天津干线工程复垦措施分析[J].海河水利,2009(6):89-90.
    [108]曲向荣.土壤环境学[M].北京:清华大学出版社,2010.
    [109]山西省改革创新研究会.勇立潮头善为人先——从实践中来到实践中去“平朔精神”课题研究报告[M].北京:中国文联出版社,2013.
    [110]申春峰,陈向青,邢于仓.冀中南地区承接京津产业转移的SWOT分析——以邢台市威县为例[J].全国商情:经济理论研究,2013(28):6-7.
    [111]申林.我国受污染土地面积达上千公顷[J].人民日报,2004-11-12.
    [112]史崇文.山西省土壤环境背景值[M].北京:农业出版社,1992.
    [113]宋晓威,徐建,张孝飞,等.废弃农药厂污染场地浅层地下水生态毒性诊断研究[J].农业环境科学学报,2011,30(1):42-48.
    [114]谭向平,胡一,罗磊.培肥复垦宅基地土壤酶和微生物特征研究[J].西北农林科技大学学报(自然科学版),2012,40(1):107-114.
    [115]陶黎新.永城市砖瓦窑复垦调查[J].河南国土资源,2004(12):12-13.
    [116]涂常青,温欣荣,张镜,等.硫化铜矿区周边农田土壤重金属污染及其生态危害评价[J].土壤通报,2013,44(4):987-992.
    [117]汪光,吕永龙,史雅娟,等.某化工区土壤有机氯农药来源和垂直分布特征[J].环境科学与技术,2011,34(6):10-15.
    [118]汪泓,张覃.贵州小型磷矿土地复垦适宜性评价分析[J].化工矿物与加工,2011(6):44-48.
    [119]汪松林,杨祖国.灌西盐场盐田复垦开发实践和探讨[J].苏盐科技,2006(1):21-23.
    [120]王金满,白中科,罗明等.基于专业序列的中国多层次土地复垦标准体系[J].农业工程学报,2010,26(5):312-315.
    [121]王征,郭秀锐,程水源,等.三峡库区支流河口水动力及水污染迁移特性[J].北京工业大学学报,2012,38(11):1731-1737.
    [122]王治国,白中科.黄土高原土地破坏与复垦的流域管理[J].中国土地科学,1994,8(2):37-40.
    [123]吴海洋,刘仁芙,罗明.土地复垦方案编制实务[M].北京:中国大地出版社,2011.
    [124]袭燕燕.关于我国矿业用地取得制度构建的思考[J].中国国土资源经济,2004,17(12):25-28.
    [125]夏汉平,黄娟,孔国辉.油页岩废渣场的生态恢复[J].生态学报,2004,24(12):2887-2893.
    [126]向保林,陈晓燕,李亮.农村废弃宅基地复垦研究——以重庆九龙坡区白市驿镇宅基地复垦为例[J].安徽农业科学,2011,39(14):8449-8451.
    [127]项萌,张国平,李玲,等.广西铅锑矿冶炼区土壤剖面及孔隙水中重金属污染分布规律[J].环境科学,2012,33(1):266-272.
    [128]谢立峰.采矿用地产权关系及其管理方式研究[D].北京:中国农业大学,2005.
    [129]谢玲琳,申志军.放射性元素和毒性重金属污染土壤的治理探讨——以湖南雄磺矿和七一五铀矿为例[J].地质灾害与环境保护,2006,17(2):41-44.
    [130]新京报.北京地铁5号线掘出有毒气体,工期影响尚难定论[EB/OL]. http://news.tom. com/1002/3291/200451-875492.html.
    [131]新京报.兰州市民或已饮8天苯超标水.http://epaper.bjnews.com.cn/html/2014-04/15/content_506245.htm?div=0.
    [132]徐柯健.从工业废弃地到旅游目的地:工业遗产的保护和再利用[J].旅游学刊,2013,28(8):14-16.
    [133]杨本志,卞正富.浅议我国东部矿区的生态重建技术[J].煤炭环境保护,2000,14(3):7-10.
    [134]杨尽,杨继伦,杨波.汶川地震损毁土地类型及复垦潜力[J].安徽农业科学,2009,37(28):13754-13755.
    [135]杨亚伦,戴梅.南水北调中线京石段工程临时占用地复垦适宜性评价方法研究[J].水科学与工程技术,2011(1):48-51.
    [136]样锐锋,张建强.铁路工程临时用地土地复垦研究[J].铁道工程学报,2009(4):57-61.
    [137]余勤飞,侯红,吕亮卿等.工业企业搬迁及其对污染场地管理的启示[J].城市发展研究,2010,17(11):95-100.
    [138]张凤荣,王静,陈百明,等.土地持续利用评价指标体系与方法[M].北京:中国农业出版社,2003.
    [139]张耿杰.矿区复垦土地质量监测与评价研究[D].中国地质大学(北京),2013.
    [140]张峻彦,姚绍强,李军.蒲县选煤厂选煤工艺的设计与优选[J].山西煤炭,2014,34(3):37-38.
    [141]张立诚,周连碧,熬宁.有色矿山复垦现状综述[J].资源与产业,1999(9):38-40.
    [142]张明亮,王海霞.煤矿区矸石山周边土壤重金属污染特征与规律[J].水土保持学报,2007,21(4):189-192.
    [143]张亦弛,于玲红,王培俊,等.某焦化厂生产场地典型污染物的垂向分布特征[J].煤炭学报,2012,37(7):1211-1218.
    [144]张召,白中科,贺振伟,等.基于RS与GIS的平朔露天矿区土地利用类型与碳汇量的动态变化[J].农业工程学报,2012,28(3):230-236.
    [145]张召.特大型露天煤矿排土场复垦规划设计案例研究——以平朔矿区为例[D].中国地质大学(北京),2013.
    [146]赵多勇,王成,杨莲,等.环境-植物-人体μ体系中重金属来源及迁移途径[J].农业工程,2013,3(3):55-58.
    [147]赵芳妮,田文杰,汪群慧,等.焦化厂污染场地表层土壤有机质-矿质复合体中多环芳烃的分布[J].环境化学,2012,31(8):1195-1200.
    [148]赵竟英,黄珺嫦,霍晓婷.砖瓦窑取土区复垦土壤的生态修复[J].山西农业科学,2009,37(12):45-46.
    [149]赵娜娜,黄启飞,易爱华等.我国污染场地的管理现状与环境对策[J].环境科学与技术,2006,29(12):39-40.
    [150]赵其国,史学正.土壤资源概论[M].北京:科学出版社,2007.
    [151]赵沁娜,杨凯,张勇.土壤污染治理与开发的环境经济调控对策研究[J].环境科学与技术,2005,28(5):49-50.
    [152]赵淑玲.城市边缘区土地可持续利用理论与实证[M].北京:石油工业出版社,2008.
    [153]赵淑芹,胡振琪.矿区复垦土地利用结构优化研究[M].北京:中国农业出版社,2007.
    [154]郑玉歆.我国土壤污染形势令人堪忧[J].科学,2012(4):56-58.
    [155]中国工业信息网.各类不同性质的全国污染场地应以万计,处理的屈指可数. http://www.587766.com/news2/27158.html,2014-5-4.
    [156]中国矿业年鉴编辑部.中国矿业年鉴2011[M].北京:地震出版社,2012.
    [157]钟顺清.矿区土壤污染与修复[J]资源开发与市场,2007,23(6):532-534.
    [158]周君望.建设用地复垦工作的探索和思考[J].浙江国土资源,2010(12):20-23.
    [159]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [160]朱昌宇,黄道友,朱奇宏,等.模拟降雨条件下污染土壤中重金属元素径流迁移特征[J].水土保持学报,2012,26(4):49-53.
    [161]朱小敏.铁路建设项目土地复垦要点及措施体系初探[J].中国水土保持,2010(9):14-14.
    [162]邹玥,任国业,曾良修等.基于农用地分等的公路建设临时用地复垦适宜性评价[J].中国水土保持,2011(4):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700