用户名: 密码: 验证码:
棕壤横垄土壤侵蚀特征及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面是侵蚀产沙的重要来源,农业耕作措施是影响坡面侵蚀产沙的主要人为因素。其中,等高垄作是世界范围内广泛采用的提高作物产量、控制水土流失的农业措施。在现有坡面土壤侵蚀模型中,RUSLE2模型对等高垄作措施考虑较为充分。模型中利用垄高、垄向坡度等因子对等高耕作的水土保持措施因子进行了估算。等高垄作系统中,垄沟内的雨水汇集可导致横垄垮塌和渗流发生,从而加剧土壤侵蚀。但由于观测资料的局限性,包括RUSLE2模型在内的相关研究成果较少涉及到垄面侵蚀、横垄垮塌及渗流条件下的横垄侵蚀过程,且在评价微地貌及垄沟几何结构等因素及其交互作用对横垄侵蚀的影响等方面尚有不足之处。
     通过调查鲁中南山地丘陵区棕壤坡耕地等高垄作系统中的微地貌和垄沟几何结构参数,设计了新型实验土槽。该土槽可同时调节垄向坡度和坡面坡度,并可设定自由下渗和渗流2种不同的实验条件。在自由下渗条件下,利用正交设计对垄向坡度(RG)、坡面坡度(FS)、垄高(H)、垄宽(W)和雨强(RI)等5个因素2个水平进行了组合,共包括16个组合处理,研究了垄面侵蚀过程和横垄垮塌条件下侵蚀产沙特征及其影响因素;在渗流条件下,利用正交旋转回归组合设计对垄向坡度、坡面坡度、垄高等3个因素5个水平进行了组合,共23个处理,分析了各因素及其之间的交互作用对横垄渗流及侵蚀产沙的影响。取得的主要成果和结论如下:
     (1)在横垄垮塌前,垄面土壤侵蚀过程可分为沟间侵蚀和细沟侵蚀两个阶段。该两个阶段的产流量分别占总产流量的44.2%和55.8%,细沟侵蚀阶段的产沙量占总产沙量的87.2%。沟间侵蚀阶段持续时间较细沟侵蚀阶段长,占总侵蚀阶段持续时间的72.3%。在沟间侵蚀阶段,垄宽和雨强对每分钟产流量具有显著正向作用(p<0.01),其贡献率分别为33.1%和28.7%。每分钟产沙量受到垄宽和雨强的正向显著作用,贡献率分别为14.8%和17.0%。垄高对每分钟产流量具有正向显著作用(16.6%),但是对产沙量的影响不显著。坡面坡度对每分钟产沙量具有正向显著作用(8.3%),但是对产流量影响不显著。每分钟产流量主要受到垄沟几何结构的影响,而产沙量则主要受微地貌因素的影响。在细沟侵蚀阶段,垄高对产流具有负向显著作用,其原因在于垄高的增大可蓄积更多的雨水、延长入渗时间,并可提高水头,从而增大雨水入渗。垄向坡度对产沙具有正向显著作用,其原因是垄向坡度的增大,可减小土壤颗粒间粘结力,降低坡稳性。因子之间的交互作用对垄面的产流产沙具有重要作用,如坡面坡度与雨强对两个阶段产流量的负向交互作用、降雨强度与垄宽对细沟侵蚀阶段产沙量的正向交互作用、垄向坡度与垄宽对沟间侵蚀阶段持续时间的正向交互作用。
     (2)当有横垄垮塌发生时,除垄向坡度因子之外的其它因素对横垄产流产沙均具有显著影响(p<0.01)。降雨强度是影响产流量的最重要因素,其贡献率为68.1%,其次依次为垄高、坡面坡度和垄宽。坡面坡度与雨强的交互作用对产流量具有负向显著影响(贡献率为5.4%)。在低雨强下,径流量随着坡度的增大而增大,但是在高雨强下,径流量随坡度增大呈减小趋势。垄高与垄宽的负交互作用、坡面坡度与垄高的正交互作用对产流量的影响均达到显著水平。垄高对产沙量具有显著负向作用,其贡献率达到21.4%,超过了雨强的影响(贡献率为19.4%)。由此表明,相对于产流,通过调整微地貌因子和垄沟几何结构可对产沙起到更有效的控制作用。垄向坡度与垄宽、坡面坡度与垄高、雨强与垄高的交互作用对产沙量的正向作用均达到了显著水平,而坡面坡度与雨强的交互作用则为负向影响。根据影因子及其之间交互作用对产流产沙量影响的贡献率和正负性,确定了控制产流产沙的最佳因子组合。控制产流的因子组合分为两种情况:在较低雨强下,因子组合为RG1, FS1, H2和W2;在较高雨强下,因子组合为RG1, FS2, H2和W2。控制产沙的因子组合不受雨强大小的影响,均为RG1, FS1, H1和W2(下标1和2为实验采用因子的低水平与高水平)。
     (3)渗流条件下,横垄土壤侵蚀过程可分为四个阶段:沟间侵蚀,溯源侵蚀,横垄崩塌和细沟侵蚀。人工模拟降雨过程中的渗流率相比供水渗流阶段的有所减少,其原因可能是降雨对土体的压实作用和分散的土壤颗粒对土壤空隙的堵塞作用。以垄向坡度、坡向坡度和垄高三个因子作为自变量,分别建立了产流量和产沙量的二次多项式回归模型,模型的决定系数分别为0.743和0.545。垄向坡度和坡向坡度对产沙量的影响相对径流较大,而垄高对产流量的影响较大,且随着垄高的增大,其影响的程度越大。随着因子水平的提高,3个因子对产流量的影响具有不同的趋势:垄高的影响趋于持续增大,垄向坡度的影响呈先降低后升高趋势,坡面坡度则为先升高后降低趋势。垄高、垄向坡度和坡向坡度对产沙量的影响随着因子水平的增大,呈先增大后减小的单峰趋势。依据产沙量变化曲线可以得到最大产沙量及其对应的因子水平。在达到最大产沙量之前,坡向坡度与其它两个因素相比,对产沙量的影响具较大的增加率;当达到最大产沙量后,坡向坡度则具有较快的减小率。垄向坡度、坡向坡度和垄高之间的交互作用对产流和产沙量的影响在p<0.1水平上均不显著。在实际中,避免采用最大产沙量所在的因子水平,可更好地发挥等高垄作措施控制土壤侵蚀的作用。
     (4)渗流条件下的产沙量相对于自由入渗条件下,增加幅度可达到15倍。以垄向坡度、坡向坡度和垄高作为自变量,渗流率可用其二次多项式回归模型予以模拟,模型的决定系数为0.759,且达到显著水平(p<0.01)。渗流率主要受到垄向坡度及其二次项和垄高的二次项的影响,受这三个因素间交互作用的影响不显著。利用实测或预测渗流率作为输入因子,可提高侵蚀产沙的二次多项式回归模型的模拟精度:与未纳入渗流率的回归模型相比,决定系数(R2)分别从0.743提高至0.915和0.893,均方根误差(RMSE)从0.67分别减少至0.38和0.43。引入实测渗流率后的修正侵蚀产沙模型比引入预测渗流率的修正模型,具有更高的显著水平,其p值分别为0.007和0.016。引入实测渗流率后的修正产沙模型,更多的识别出了具有显著影响的因素和因子间的交互作用,如垄向坡度及其与坡面坡度、垄高和渗流率的交互作用;坡向坡度的二次项及其与垄高、渗流率的交互作用。引入预测渗流率的修正产沙模型中,只有渗流率的二次项、垄向坡度与渗流率的交互作用具有显著影响,因此通过删除不显著影响因素,其形式可被简化。简化的产沙量预测模型所需参数少、易于应用,特别是在渗流率无法获取时,可对产沙量进行较为准确的预测。
Field slope is one of the most important areas for sediment generation effected by tillage cultivation. Contour ridging, generally shaped as ridge and furrow, is an effective soil conservation practice for increasing crop yield used throughout the world. Among the existing soil erosion models, the soil conservation benefit for contour ridging has been considered to the greatest extent in the Revised Universal Soil Loss Equation, Version2(RUSLE2). In RUSLE2, the factors of rigde height and row grade is used for assess the benefit of contour ridging (Pc) as subfactors. The accumulation of rainwater in the ridge and furrow system may couse ridge collapse and seepage generation, which could increase soil erosion. Laking of sufficient observation data, the soil erosion process on row siderslopes, erosion induced by ridge failure and erosion characteristic under seepage conditions in contour ridging systems has not been carefully considered in RUSLE2model, and the effect of factors (e.g. microtopography, ridge geometry) and their interactions on soil erosion is not quantitatively interpreted and need further studies.
     Through field investigation of slope land microtopography and ridge geometry in the hilly and mountainous areas of central and southern Shandong province, a new type of experimental plot was designing to imitate microtopographic relief of ridge and furrow system. In such plot, the row grade and field slope can be changed simultaneously and seepage conditions can be created. In this study,32rainfall simulation experiments were performed in drainage conditions to analyze the effects and interaction of two ridge geometry indices (ridge width and ridge height), two microtopography indices (field slope and row grade), and rainfall intensity on soil erosion with two replications. To address the importance of seepage in soil erosion, a total of23treatments with3factors (e.g., ridge height, row grade and field slope) in5levels were arranged in an orthogonal rotatable central composite design. To predict the sediment yield and evaluate the significance of the effects and interactions of these factors, second-order polynomial regression models were built and the regression coefficients were tested. The main results and conditions were listed as bellows:
     (1) Before contour failure, soil erosion process on the row sideslope could be classified as interrill erosion period and rill erosion period.The runoff generated during the two periods accounted for about44.2%and55.8%of the total runoff, respectively. Sediment yield in the rill erosion period was the main source for the entire sediment with the contribution of87.2%. The duration for the interrill erosion period was longer than that of rill erosion period and occupied72.3%of the entire duration. In the interrill period, the runoff and sediment yield per min were positively affected by ridge width and rainfall intensity, with the contributions of33.1%and28.7%for runoff and14.8%and17.0%for sediment yield, respectively. Ridge height had significant and positive effect on runoff per min but not on sediment yield per min. runoff per min was mainly influenced by ridge geometry factors, while the sediment yield per min mainly by the microtopography relief. During the rill erosion period, runoff per min was significantly and negatively affected by ridge height with the reason that higher ridge height could retain more rain water for a longer time under a higher water head to lead more water infiltration. Through reducing the soil cohesiveness and slope stability, a greater row grade could significantly increase the sediment yield per min. The interactions between some factors played an important role in the soil erosion on row sideslopes, e.g., the negative interaction between field slope and rainfall intensity on runoff during both periods, the positive interaction between rainfall intensity and ridge width on sediment yield in the rill erosion period, the positive interaction between row grade and ridge width on the duration of the rill erosion periods.
     (2) When the contour failure occurred during the erosion process in ridge system, except for row grade, all of the factors in this study had significant effect on runoff and sediment yield at p<0.01. The runoff mainly affected by rainfall intensity with the highest contribution of68.1%, and then followed by the factor of ridge height, field slope, and ridge width. The interaction between field slope and rainfall intensity significantly and negatively affected runoff with a contribution of5.4%. under a lower rainfall intensity, the runoff showed a increasing trend with the field slope increasing, while under a higher rainfall intensity, the the runoff showed a decreasing trend. Some interactions also exerted significant effect on runoff, e.g., the negative interaction between ridge height and width and the positive interaction between field slope and ridge height. Ridge height, with a negative effect, had a greater influence on sediment yield than rainfall intensity with the contribution of21.4%and19.4, indicating that adjusting microtopography relief and ridge geometry may have a better controlling benefit on sediment yield than on runoff. Additionally, the effect of row grade and its interaction with ridge width on sediment yield were positive and significant. According to the contribution of the effect and interactions, the optimal combinations of factors for runoff and sediment controlling were determined. To control runoff, the optimal combinations were FS1, H2, and W2under lower rainfall intensity, and RG1, FS2, H2, and W2under higher rainfall intensity. The optimal combinations for sediment controlling were RG1, FS1, H1, and W2. Here, the subscripts1and2represented the lower and higher factor level, respectively.
     (3) Under seepage conditions, soil erosion on row sideslope could be classified as four period:interrill erosion, headward erosion, contour failure, and rill erosion. Compared with the water supplying conditions, seepage dischare became smaller during the simulated rainfall conditions probably caused by rainfall pressure on soil matix and splashed soil partical clogging soil porosity. Taking row grade, field slope and ridge height as input variable, the second-order polynomial regression models for runoff and sediment yield were built, with the determination coefficient R2-0.743and0.545, respectively. Compared to runoff, the effect of row grade and field slope was greater on sediment yield. Ridge height had a greater influence on runoff than sediment yield with an increasing positive effect. The impact of row grade, ridge height, and field slope on sediment yield showed as a convex curve with factor level increasing. From the convex curve for each factor, the maximum sediment yield could be calculated out and the monofactor level where the maximum sediment yield occurred could be determined accordingly. Compared to the other two factors, field slope presented a greater increasing impact on sediment yield before the maximum sediment yield occurred, and after that field slope exerted a greater decreasing effect. Even at p<0.1, the interactions between the field slope, ridge height, and row grade had no significantly effect on both runoff and sediment yield. The results indicated that avoiding the factor level where the maximum sediment yield occurred, could better use contour tillage to control soil erosion.
     (4) Sediment yield under seepage conditions was as higher as about15times than under drainage conditions. Seepage disarge could be estimated using the second-order polynomial regression models with row grade, field slope and ridge height as input parameters. The dermination coefficient of the seepage discharge estimation model is0.759with significance at p<0.01.The seepage discharge were mainly affected by row grade, quadratic terms of row grade and ridge height. The interaction between these factors had no significant effect on seepage discharge. Using the measured or predicted seepage discharge as an input variable, the coefficient of determination (R2) increased from0.743to0.915or0.893and the root-mean square error (RMSE) decreased from0.67to0.38or0.43, respectively. The impoved sediment yield regression model combined with measured seepage discharge showed a greater significance than that combined with predicted seepage discharge, and the p value was0.007and0.016, respectively. With measured seepage discharge combined, the regression model presented more significanct effect and interactions, e.g., the row grade and the interaction between row grade and ridge height, field slope, and seepage discharge. The quadratic terms of field slope and the interaction between field slope and row grade and seepage discharge were also detected as significant items. With predicted seepage discharge combined, the regression model only included two significant items, i.e., quadratic terms of seepage discharge and the interaction between row grade and seepage discharge. Therefore, through removing the non-significant items, the predicted seepage discharge combined regression model could be simplified to a concierge form that could be easily used, especially when the seepage discharge could not be measured.
引文
1. 卜崇峰,蔡强国,袁再健.湿润区坡地香根草植物篱农作措施对土壤侵蚀和养分的影响.农业工程学报,2006,22(05):55-60
    2. 蔡强国,陈浩.影响降雨击溅侵蚀过程的多元回归正交试验研究.地理研究,1989,8(04):28-36
    3. 蔡强国,和继军,王学强.怀柔区水土流失综合治理及环境效应分析.水土保持通报,2008,28(02):161-166
    4. 蔡强国,黎四龙,1998.植物篱笆减少侵蚀的原因分析.土壤侵蚀与水土保持学报,2008,22(02):55-61
    5. 蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展.地理科学进展,2003,23(03):142-150
    6. 蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社,1998.
    7. 蔡强国,朱远达,王石英.几种土壤的细沟侵蚀过程及其影响因素.水科学进展,2004,15(01):12-18
    8. 蔡强国.坡面侵蚀产沙模型的研究.地理研究,1988,7(04):94-102
    9. 蔡强国.坡面细沟发生临界条件研究.泥沙研究,1998,(01):52-59
    10.蔡强国.坡长在坡面侵蚀产沙过程中的作用.泥沙研究,1989,(04):84-91
    11.曹颖,张光辉,唐科明,罗榕婷.地表模拟覆盖率对坡面流阻力的影响.水土保持学报,2010,24(04):86-89
    12.陈俊杰,孙莉英,蔡崇法,刘俊体,蔡强国.不同土壤坡面细沟侵蚀差异与其影响因素.土壤学报,2013a,50(02):281-288
    13.陈俊杰,孙莉英,刘俊体,蔡崇法,蔡强国.不同坡长与雨强条件下坡度对细沟侵蚀的影响.水土保持通报,2013b,33(02):1-5
    14.陈奇伯,解明曙,张洪江.森林枯落物影响地表径流和土壤侵蚀研究动态.北京林业大学学报,1994,(S3):106-110
    15.陈晓安,蔡强国,张利超,綦俊谕,郑明国,聂斌斌.黄土丘陵沟壑区坡面土壤侵蚀的临界坡度.山地学报,2010,28(04):415-421
    16.陈晓安,蔡强国,张利超,郑明国,綦俊谕,李君兰.黄土丘陵沟壑区不同雨强下坡长对坡面土壤侵蚀的影响.土壤通报,2011,31(03):721-725
    17.崔明,蔡强国,张永光,范昊明.漫岗黑土区坡耕地中雨季浅沟发育机制.农业工程学报,2007,23(8):59-65
    18.范昊明,周丽丽,武敏,刘艳华.沟灌侵蚀研究进展.水科学进展,2009,20(02):298-303
    19.符素华,吴敬东,段淑怀,李永贵,刘宝元.北京密云石匣小流域水土保持措施对土壤侵蚀的影响研究.水土保持学报,2001,15(02):21-24
    20.付智勇,李朝霞,蔡崇法,郭忠录.三峡库区不同厚度紫色土坡耕地产流机制分析.水科学进展,2011,22(05):680-688
    21.傅伯杰,赵文武,陈利顶,吕一河,王德.多尺度土壤侵蚀评价指数.科学通报,2006,51(16):1936-1943
    22.高光耀,傅伯杰,吕一河,刘宇,王帅,周继.干旱半干旱区坡面覆被格局的水土流失效应研究进展.生态学报,2013,33(01):12-22
    23.高海东,李占斌,李鹏,贾莲莲,张翔.梯田建设和淤地坝淤积对土壤侵蚀影响的定量分析.地理学报,2012,67(05):599-608
    24.耿晓东,郑粉莉,刘力.降雨强度和坡度双因子对紫色土坡面侵蚀产沙的影响.泥沙研究,2010,(06):48-53
    25.郭乾坤,刘宝元,朱少波,王国燕,刘瑛娜,王爱娟.中国主要水土保持耕作措施因子.中国水土保持,2013,10:22-26
    26.郭忠录,钟诚,蔡崇法,丁树文,王中敏.等高植物篱/大豆间作根系相互作用对生长和氮素吸收利用的影响.植物营养与肥料学报,2008,14(01):59-64
    27.韩同超.汉代华北的耕作与环境:关于三杨庄遗址内农田垄作的探讨.中国历史地理论丛,2010,25(01):40-49
    28.和继军,蔡强国,刘松波.次降雨条件下坡度对坡面产流产沙的影响.应用生态学报,2012,23(05):1263-1268
    29.和继军,蔡强国,路炳军,王学强.密云水库上游石匣小流域水土流失综合治理措施研究.自然资源学报,2008,23(03):375-382
    30.和继军,宫辉力,李小娟,蔡强国.细沟形成对坡面产流产沙过程的影响.水科学进展,2014,25(01):90-97
    31.胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究.地理学报,1999,66(04):61-70
    32.胡霞,严平,李顺江,蔡强国,刘连友,蔡崇法,朱远达,张光远.人工降雨条件下土壤结皮的形成以及与土壤溅蚀的关系.水土保持学报,2005,19(02):13-16
    33.贾志军.晋西黄土丘陵沟壑区侵蚀性降雨分析.山西水土保持科技,1987,(01):8-12+15
    34.江忠善,郑粉莉,武敏.中国坡面水蚀预报模型研究.泥沙研究,2005,(04):1-6
    35.焦菊英,王万忠,李靖.黄土丘陵区不同降雨条件下水平梯田的减水减沙效益分析.土壤侵蚀与水土保持学报,1999,13(03):59-63
    36.金建君,谢云,张科利.不同样本序列下侵蚀性雨量标准的研究.水土保持通报,2001,21(02):31-33
    37.靳长兴.论坡面侵蚀的临界坡度.地理学报,1995,62(03):234-239
    38.孔亚平,张科利,唐克丽.坡长对侵蚀产沙过程影响的模拟研究.水土保持学报,2001,15(02):17-20
    39.雷廷武,唐泽军,于剑,潘英华.坡面土壤侵蚀动力过程与化学调控技术.北京:科学出版社,2009a:1-275
    40.雷廷武,张晴雯,闫丽娟.细沟侵蚀物理模型.北京:科学出版社,2009b:19-23
    41.李朝霞,蔡崇法,史志华,王天巍,张琪,孙站成.鄂南第四纪粘土红壤团聚体的稳定性及其稳定机制初探.水土保持学报,2004,18(04):69-72
    42.李君兰,蔡强国,孙莉英,陈晓安.细沟侵蚀影响因素和临界条件研究进展.地理科学进展,2010,30(11):1319-1325
    43.李秋艳,蔡强国,方海燕,王成超.长江上游紫色土地区不同坡度坡耕地水保措施的适宜性分析.资源科学,2009,31(12):2157-2163
    44.李锐,上官周平,刘宝元,郑粉莉,杨勤科.近60年我国土壤侵蚀科学研究进展.中国水土保持科学,2009,7(05):1-6
    45.李忠武,蔡强国,唐政洪,吴淑安,朱远达.黄土丘陵沟壑区作物生产潜力影响因素分析——以王家沟流域为例.地理研究,2001,20(05):601-608
    46.林超文,陈一兵,黄晶晶,涂仕华,庞良玉.不同耕作方式和雨强对紫色土养分流失的影响.中国农业科学,2007,40(10):601-608
    47.林超文,罗春燕,庞良玉,付登伟,黄晶晶,涂仕华,张新全.不同覆盖和耕作方式对紫色土坡耕地降雨土壤蓄积量的影响.水土保持学报,2010,24(03):213-216
    48.刘宝元,刘瑛娜,张科利,谢云.中国水土保持措施分类.水土保持学报,2013,27(02):80-84
    49.刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用.自然资源学报,1999,14(04):345-350
    50.刘斌涛,陶和平,宋春风,郭兵,史展,张超,孔博,何兵.1960-2009年中国降雨侵蚀力的时空变化趋势.地理研究,2013,32(02):245-256
    51.刘刚才,罗治平,张先婉.川中丘陵区土壤侵蚀及其P值的确定.水土保持学报,1993,7(02):40-44
    52.刘和平,符素华,王秀颖,徐丽,方岚,刘宝元,路炳军.坡度对降雨溅蚀影响的研究.土壤学报,2011a,48(03):479-486
    53.刘和平,王秀颖,刘宝元.短坡条件下侵蚀产沙与坡长的关系.水土保持学报,2011b,25(02):1-5
    54.刘纪根,雷廷武,蔡强国.施加聚丙烯酰胺后坡长对侵蚀产沙过程的影响.水利学报,2004,(01):57-61
    55.刘纪根,雷廷武,潘英华,夏卫生,张晴雯.陡坡耕地施加PAM侵蚀产沙规律及临界坡长的试验研究.土壤学报,2003,40(04):504-510
    56.刘俊体,孙莉英,张学培,蔡强国.黄土坡面细沟侵蚀发育阶段的影响因素及其效应分析.水土保持学报,2013,27(04):53-57
    57.马良,姜广辉,左长清,邱国玉,霍荟阁.江西省50余年来降雨侵蚀力变化的时空分布特征.农业工程学报,2009,25(10):61-68
    58.孟令钦.东北黑土区沟蚀机理及防治模式的研究.北京:中国农业科学院,2009:1-64
    59.闵宗殿.垄作探源.中国农史,1983,(01):40-45.
    60.倪九派,傅涛.坡耕地开发利用和保护模式研究.水土保持科技情报,2001,(05):35-37
    61.史培军,刘宝元,张科利,金争平.土壤侵蚀过程与模型研究.资源科学,1999,21(05):11-20
    62.史志华,闫峰陵,李朝霞,王天巍,蔡崇法.红壤表土团聚体破碎方式对坡面产流过程的影响.自然科学进展,2007,17(02):217-224
    63.唐克丽,郑世清,席道勤,孙清芳,刘炳武.杏子河流域坡耕地的水土流失及其防治.水土保持通报,1983,3(05):43-48
    64.唐启义,冯明光.DPS数据处理系统—实验设计,统计分析及模型优化.北京:科学出版社,2006
    65.汪晓勇,郑粉莉.黄土坡面坡长对侵蚀—搬运过程的影响研究.水土保持通报,2008,28(03):1-4
    66.王费新,王兆印.非线性植被—侵蚀动力学模型初探.北京林业大学学报,2007,(06):123-128
    67.王军光,李朝霞,蔡崇法,杨伟,马仁明,王天巍.坡面水流中不同层次红壤团聚体剥蚀程度研究.农业工程学报,2012,28(19):78-84
    68.王军光,李朝霞,蔡崇法,杨伟,马仁明,张国彪.集中水流内红壤分离速率与团聚体特征及抗剪强度定量关系.土壤学报,2011,48(06):1133-1140
    69.王龙生,蔡强国,蔡崇法,孙莉英.黄土坡面细沟发育过程中含沙量与水动力学参数的关系.水土保持学报,2013,27(05):1-6
    70.王升,王全九,董文财,赵伟.黄土坡面不同植被覆盖度下产流产沙与养分流失规律.水土保持学报,2012,26(04):23-27
    71.王万忠.黄土地区降雨侵蚀力R指标的研究.中国水土保持,1987,12:36-40+67
    72.王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究.水土保持通报,1996,32(05):1-20
    73.王小燕,李朝霞,蔡崇法.砾石覆盖紫色土坡耕地水文过程.水科学进展,2012,23(01):38-45
    74.王星光,符奎.三杨庄遗址所反映的汉代农田耕作法.中国农史,2013,(01):9-19
    75.王兆印,王光谦,高菁.侵蚀地区植被生态动力学模型.生态学报,2003,23(01):98-105
    76.卫伟,陈利顶,傅伯杰,巩杰,黄志霖.黄土丘陵沟壑区极端降雨事件及其对径流泥沙的影响.干旱区地理,2007,30(06):896-901
    77.魏永霞.黑龙江西部坡耕地不同耕作措施水分转化与土壤侵蚀特征.[博士学位论文].哈尔滨:东北林业大学,2009
    78.温磊磊,郑粉莉,杨青森,沈海鸥.雨型对东北黑土区坡耕地土壤侵蚀影响的试验研究.水利学报,2012,(09):1084-1091
    79.吴发启.水土保持学概论.北京:中国农业出版社,2003:46
    80.吴凤至,史志华,方怒放,岳本江.不同降雨条件下侵蚀泥沙黏粒含量的变化规律.环境科学,2012,33(07):2497-2502
    81.吴普特,周佩华.地表坡度与薄层水流侵蚀关系的研究.水土保持通报,1993,13(03):1-5
    82.谢云,林小鹃,刘英娜,郑袁志,刘宝元,张光辉.槽式摆喷头下喷式人工模拟降雨机的雨强及其空间分布率定.水土保持通报,2008,28(4):1-6
    83.谢云,刘宝元,章文波.侵蚀性降雨标准研究.水土保持学报,2000,14(04):6-11
    84.许峰,蔡强国,吴淑安,张光远,蔡崇法,丁树文,史志华,黄丽.等高植物篱控制紫色土坡耕地侵蚀的特点.土壤学报,2002,39(01):65-74
    85.严冬春,文安邦,史忠林,巨莉,贺秀斌.三峡库区紫色土坡耕地细沟发生的临界坡长.长江科学院院报,2010,27(11):58-61
    86.阎鹏,徐世良.山东土壤.北京:中国农业出版社,1994:67-84
    87.杨爱民,沈昌蒲,刘福,尹嘉峰,邓玉江.坡耕地垄作区田水土保持效益的研究.水土保持学报,1994,8(03):52-58
    88.杨子生.滇东北山区坡耕地土壤侵蚀的水土保持措施因子.山地学报,1999,17(S1):23-25
    89.于东升,史学正,王宁.用人工模拟降雨研究亚热带坡耕地土壤的沟蚀和沟间侵蚀.土壤学报,2001,38(02):160-166
    90.余新晓,张学霞,李建牢,张满良,谢媛媛.黄土地区小流域植被覆盖和降水对侵蚀产沙过程的影响.生态学报,2006,26(01):1-8
    91.张光辉,刘宝元,李平康.槽式人工模拟降雨机的工作原理与特性.水土保持通报,2008,27(6):56-60
    92.张光辉,刘宝元,张科利.坡面径流分离土壤的水动力学实验研究.土壤学报,2002,40(06):882-886
    93.张光辉.土壤水蚀预报模型研究进展.地理研究,2001,20(03):274-281
    94.张会茹,郑粉莉.不同降雨强度下地面坡度对红壤坡面土壤侵蚀过程的影响.水土保持学报,2011,25(03):40-43
    95.张科利,蔡永明,刘宝元,彭文英.土壤可蚀性动态变化规律研究.地理学报,2001,56(06):673-681
    96.张少良,张兴义,刘晓冰,刘爽,于同艳.典型黑土侵蚀区不同耕作措施的水土保持功效研究.水土保持学报,2009,23(03):11-15
    97.张晓明,余新晓,武思宏,魏天兴,张学培.黄土区森林植被对坡面径流和侵蚀产沙的影响.应用生态学报,2005,16(09):1613-1617
    98.张兴昌,邵明安,黄占斌,卢宗凡.不同植被对土壤侵蚀和氮素流失的影响.生态学报,2000,20(06):1038-1044
    99.赵文武,朱婧,郭雯雯.基于降雨量和降雨时间的月降雨侵蚀力简易算法一以陕北黄土丘陵沟壑区为例.中国水土保持科学,2007,5(06):8-14
    100.郑粉莉,高学田.坡面土壤侵蚀过程研究进展.地理科学,2003,23(02):230-235
    101.郑粉莉,张勋昌,王建勋.WEPP模型及其在黄土高原的应用评价.北京:科学出版社,2009:1-34
    102.郑子成,林代杰,李廷轩,何淑勤,张锡洲,林超文.不同耕作措施下成熟期玉米对径流及侵蚀产沙的影响.水土保持学报,2012,26(02):24-28
    103.周璟,何丙辉,刘立志,阿丹-坡度与种植方式对紫色土侵蚀与养分流失的影响研究.中国生态农业学报,2009,17(02):239-243
    104.朱冰冰,李占斌,李鹏,游珍.草本植被覆盖对坡面降雨径流侵蚀影响的试验研究.土壤学报,2010,48(03):401-407
    105.朱远达,蔡强国,张光远,吴淑安.GIS支持下对不同水保措施的评估与比较.水土保持学报,2003,17(06):5-8
    106. Assouline S, Ben HM. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, 2006, 66: 211-220
    107. Barthses B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion: validation at several levels. Catena, 2002,47:133-149
    108. Barton AP, Fullen MA, Mitchell DJ, Hocking TJ, Liu LG, Bo ZW, Zheng Y, Xia ZY. Effects of soil conservation measures on erosion rates and crop productivity on subtropical Ultisols in Yunnan Province, China. AgrEcosyst Environ, 2004, 104:343-357
    109. Benjamin JG, Blaylock AD, Brown HJ, Cruse RM. Ridge tillage effects on simulated water and heat transport: Soil Till Res, 1990, 18:167-180
    110. Bjornenergd L, Prestwich C J, Evans G. Evaluating the surface irrigation soil loss (SISL) model. ApplEngAgric, 2007, 23:485-491
    111. Cerdan O, Le Bissonnais Y, Couturier A, Bourennane H, Souchere V. Rill erosion on cultivated hillslopes during two extreme rainfall events in Normandy, France. Soil Till Res, 2002,67: 99-108
    112. Chu-Agor ML, Fox GA, Cancienne RM, Wilson GV. Seepage caused tension failures and erosion undercutting of hillslopes. J Hydrol,2008,359:247-259
    113. De Vente J, Poesen J, Verstraeten G, Govers G, Rompaey VA, Arabkhedri M. Predicting soil erosion and sediment yield at regional scales:Where do we stand? Earth-Sci Rev, 2013,127:16-29
    114. Descroix L, Viramontes D, Estrada J, Gonzalez Barrios JL, Asseline J. Investigating the spatial and temporal boundaries of Hortonian and Hewlettian runoff in Northern Mexico. J Hydrol, 2007, 346:144-158.
    115. Dlamini P, Orchard C, Jewitt G, Lorentz S, Titshall L, Chaplot V. Controlling factors of sheet erosion under degraded grasslands in the sloping lands of KwaZulu-Natal, South Africa. Agr Water Manage, 2011,98:1711-1718
    116. Dominguez JR, Gonzalez T, Palo P, Sanchez-Martin J. Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes:role of operative parameters. ChemEng J, 2010, 162:1012-1018
    117. Fang NF, Shi ZH, Li L, Guo ZL, Liu QJ, Ai L. The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed. Catena, 2012,99:1-8
    118. Flanagan D, Livingston S. Water erosion prediction project (WEPP) user summary-NSERL. Report, No.11. USDA-ARS National Soil Erosion Research Laboratory, 1995, West Lafayette, IN
    119. Fohrer N, Berkenhagen J, Hecker JM, Rudolph A. Changing soil and surface conditions during rainfall:Single rainstorm/subsequent rainstorms. Catena, 1999, 37:355-375
    120. Fox DM, Bryan RB. The relationship of soil loss by interrill erosion to slope gradient. Catena, 2000, 38:211-222
    121. Fox GA, Chu-Agor ML, Wilson GV. Erosion of Noncohesive Sediment by Ground Water Seepage:Lysimeter Experiments and Stability Modeling. Soil SciSocAmJ,2007a, 71:1822-1830
    122. Fox GA, Wilson GV, Simon A, Langendoen EJ, Akay O, Fuchs JW. Measuring streambank erosion due to ground water seepage:correlation to bank pore water pressure, precipitation and stream stage. Earth Surf Proc Land, 2007b, 32: 1558-1573
    123. Fox GA, Wilson GV. The Role of Subsurface Flow in Hillslope and Stream Bank Erosion:A Review. Soil SciSocAmJ,2010,74:717-733
    124. Fu SH, Liu BY, Liu HP, Xu L. The effect of slope on interrill erosion at short slopes. Catena, 2011,84:29-34
    125. Gabbard DS, Huang C, Norton LD, Steinhardt GC. Landscape position, surface hydraulic gradients and erosion processes. Earth Surf Proc Land, 1998, 23:83-93
    126. Gabriels D. The effect of slope length on the amount and size distribution of eroded silt loam soils:short slope laboratory experiments on interrill erosion. Geomorphology, 1999,28:169-172.
    127. Gammoh IA. Double furrow with raised bed-A new improved mechanized water-harvesting technique for large-scale rehabilitation of arid rain-fed areas. Soil Till Res,2011,113:61-69
    128. Gebreegziabher T, NyssenJ,Govaerts B, Getnet F, Behailu M, Haile M, Deckers J. Contour furrows for in situ soil and water conservation, Tigray, Northern Ethiopia. Soil Till Res,2009,103:257-264
    129. Govers G,Gimenez R, Van Oost K. Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth-Sci Rev, 2007, 84: 87-102.
    130. Griffith DR, Parsons SD, Mannering JV. Mechanics and adaptability of ridge-planting for corn and soya bean. Soil Till Res, 1990, 18: 113-126
    131. Gupta SC, Radke JK, Swan JB, Moncrief JF. Predicting soil temperatures under a ridge-furrow system in the U.S. Corn Belt. Soil Till Res,1990,18:145-165
    132. Hadjmohammadi M, Sharifi V. Simultaneous optimization of the resolution and analysis time of flavonoids in reverse phase liquid chromatography using Derringer's desirability function. J Chromatogr B, 2012, 880:34-41.
    133. Hatfield JL, Allmaras RR, Rehm GW, Lowery B. Ridge tillage for corn and soybean production: environmental quality impacts. Soil Till Res, 1998,48: 145-154
    134. Hessel R, Messing I, Liding C, Ritsema C, Stolte J. Soil erosion simulations of land use scenarios for a small Loess Plateau catchment. Catena, 2003,54: 289-302
    135. Huang CH, Laflen JM. Seepage and soil erosion for clay loam soil. Soil SciSoc Am J, 1996, 60:408-416
    136. Huang CH, Zheng FL. Soil erosion process research and its potential impact on erosion prediction model development. IntJ Sediment Res, 2005, 20:350-357
    137. Huang CH. Sediment Regimes under Different Slope and Surface Hydrologic Conditions. Soil SciSoc Am J,1998,62:423-430
    138. Jin YH, Zhou DW, Jiang SC. Comparison of soil water content and corn yield in furrow and conventional ridge sown systems in a semiarid region of China. Agr Water Manage,2010,97:326-332
    139. Jones OR, Stewart BA. Basin tillage. Soil Till Res, 1990, 18: 249-265
    140. Karlen DL, Kovar JL, Cambardella CA, Colvin TS. Thirty-year tillage effects on crop yield and soil fertility indicators. Soil Till Res, 2013,130:24-41
    141. Karmaker T, Dutta S. Modeling seepage erosion and bank retreat in a composite river bank. J Hydrol, 2013,476:178-187
    142. Ke L, Takahashi A. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow. SoilsFound, 2012, 52:698-711
    143. Kinnell PIA. Raindrop-impact-induced erosion processes and prediction:A review. Hydro Process, 2005, 19:2815-2844
    144. Kinnell PIA. The Effect of Slope Length on Sediment Concentrations Associated with Side-Slope Erosion. Soil SciSoc Am J, 2000, 64: 1004-1008
    145. Knapen A, Poesen J, Govers G, Gyssels G, NachtergaeleJ. Resistance of soils to concentrated flow erosion: A review. Earth-Sci Rev, 2007,80:75-109
    146. Kouwenhoven JK, Perdok UD, Jonkheer EC, Sikkema PK, Wieringa A. Soil ridge geometry for green control in French fry potato production on loamy clay soils in The Netherlands. Soil Till Res,2003,74:125-141
    147. Lal R. Ridge-tillage. Soil Till Res, 1990, 18: 107-111
    148. Le Bissonnais Y. Aggregate stability and assessment for soil crustability and erodibility I. Theory and methodology. Eur J Soil Sci, 1996,47:425-437
    149. Legates DR, McCabe GJ. Evaluating the use of "goodness - of - fit" measures in hydrologic and hydroclimatic model validation. Water Resour Res, 1999, 1: 233-241
    150. Lei TW, Zhang QW, Yan LJ, Zhao J, Pan YH. A rational method for estimating erodibility and critical shear stress of an eroding rill. Geoderma, 2008,144: 628-633
    151. Lentz RD, Sojka RE, Carter DL. Furrow irrigation water-quality effects on soil loss and infiltration. Soil SciSoc Am J,1996,60:238-245
    152. Li XY, Gong JD. Effects of different ridge-furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agr Water Manage, 2002, 54:243-254
    153. Li XY, Zhao WW, Song YX, Wang W, Zhang XY. Rainfall harvesting on slopes using contour furrows with plastic-covered transverse ridges for growing Caragoakorshinshir in the semi-arid region of China. Agr Water Manage, 2008, 95:539-544
    154. Liu BY, Nearing MA, Risse LM. Slope Gradiment Effects on Soil Loss for Slopes. TAsae, 1994, 6: 1835-1840
    155. Liu BY, Zhang KL, Xie Y. An empirical soil loss equation. Proceedings 12th International Soil Conservation Organization Conference, Vol.Ⅱ: process of soil erosion and its environment effect. Beijing: Tsinghua University Press, 2002, 21-25
    156. Liu H, Lei TW, Zhao J, Yuan CP, Fan YT, Qu LQ. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. J Hydrol, 2011a, 396:24-32
    157. Liu MX, Wang JA, Yan P, Liu LY, Ge YQ, Li XY, Hu X, Song Y, Wang L. Wind tunnel simulation of ridge-tillage effects on soil erosion from cropland. Soil Till Res,2006,90:242-249
    158. Liu QJ, Shi ZH, Yu XX, Zhang HY. Influence of microtopography, ridge geometry and rainfall intensity on soil erosion induced by contouring failure. Soil Till Res,2014,136:1-8
    159. Liu QJ. Zhang HY, An J, Wu YZ. Soil erosion processes on row sideslopes within contour ridging systems. Catena, 2014, 115:11-18
    160. Liu X, Zhang S, Zhang X, Ding G, Cruse RM. Soil erosion control practices in Northeast China: A mini-review. Soil Till Res,2011,117:44-48
    161. Ludwig JA, Wilcox BP, Breshears DD, Imeson AC. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 2005,86:288-297
    162. Ma Q, Yu XX, Lu GA, Liu QJ. Comparative study on dissolved N and P loss and eutrophication risk in runoff water in contour and down-slope. J FoodAgricuEnviron, 2010, 8:1042-1048
    163. Materechera SA, Mloza-Banda HR. Soil penetration resistance, root growth and yield of maize as influenced by tillage system on ridges in Malawi. Soil Till Res, 1997,41:13-24
    164. Mayor AG, Bautista S, Small EE, Dixon M, Bellot J. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: A tool for assessing potential water and soil losses in drylands. Water ResourRes. 2008, 44
    165. Meyer ID. Evaluation of the universal soil loss equation. J Soil Water Conserv, 1984,39:99-104
    166. Meyer LD, Harmon WC. How row-sideslope length and steepness affect sideslope erosion. T Asae, 1987. 32:639-644
    167. Nearing M, Foster G, LaneL, Finkner S. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. TAsae, 1989, 32: 1587-1593
    168. Nouwakpo SK, Huang CH, Bowling L, Owens P. Impact of Vertical Hydraulic Gradient on Rill Erodibility and Critical Shear Stress. Soil SciSocAmJ, 2010, 74: 1914-1921
    169. Nouwakpo SK, Huang CH. The Role of Subsurface Hydrology in Soil Erosion and Channel Network Development on a Laboratory Hillslope. Soil SciSocAmJ, 2012,76:1197-1211
    170. Omer MA, Elamin EM. Effect of tillage and contour diking on sorghum establishment and yield on sandy clay soil in Sudan. Soil Till Res, 1997, 43: 229-240
    171.Owoputi LO, Stolte WJ. Soil detachment in the physically based soil erosion process:a review. T Asae, 1995, 38: 1009-1110
    172. ParsonsAJ, StonePM. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. Catena, 2006,67:68-78
    173. Polyakov VO, Nearing MA. Sediment transport in rill flow under deposition and detachment conditions. Catena, 2003,51:33-43
    174. Quansah C. The effect of soil type, slope, rainfall intensity and their interactions on splash detachment and transport. EurJ Soil Sci, 1981,32:215-224
    175. Razafison U, Cordier S, Delestre O, Darboux F, Lucas C, James FA. Shallow Water model for the numerical simulation of overland flow on surfaces with ridges and furrows. Eur J Mech B/Fluid, 2012, 31:44-52
    176. Romkens MJM, Helming K, Prasad SN. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 2002, 46:103-123
    177. Shi XH, Yang XM, Drury CF, Reynolds WD, McLaughlin NB, Zhang XP. Impact of ridge tillage on soil organic carbon and selected physical properties of a clay loam in southwestern Ontario. Soil Till Res, 2012, 120:1-7
    178. Shi ZH, Ai L, Li X, Huang XD, Wu GL, Liao W. Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. J Hydrol, 2013a, 498:165-176
    179. Shi ZH, Chen LD, Fang NF, Qin DF, Cai CF. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena, 2009,77:1-7
    180. Shi ZH, Fang NF, Wu FZ, Wang L, Yue BJ, Wu GL. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. J Hydrol, 2012,454-455:123-130
    181. Shi ZH, Yan FL, Li L, Li ZX, Cai CF. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. Catena, 2010, 81:240-248
    182. Shi ZH,Yue BJ, Wang L, Fang NF, Wang D, Wu FZ. Effects of Mulch Cover Rate on Interrill Erosion Processes and the Size Selectivity of Eroded Sediment on Steep Slopes. Soil SciSocAm J, 2013b, 77: 257-267
    183. Smith DD. Interpretation of soil conservation data for field use. AgrEng, 1941, 22:173-175
    184. Stevens CJ, Quinton JN, Bailey AP, Deasy C, Silgram M, Jackson DR. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil Till Res, 2009, 106:145-151
    185. St-Pierre NR, Weiss WP. Technical note:Designing and analyzing quantitative factorial experiments. J Dairy Sci, 2009, 92:4581-4588
    186. Truman CC, Nuti RC. Furrow diking in conservation tillage. Agr Water Manage, 2010,97:835-840
    187. Truman CC, Nuti RC. Improved water capture and erosion reduction through furrow diking. Agr Water Manage, 2009, 96:1071-1077
    188. USDA-ARS. Draft Science Documentation, Revised Universal Soil Loss Equation Version 2. March 1,2013a. http://www.ars.usda.gov/sp2UserFiles/ Place/64080510/RUSLE/RUSLE2_Science Doc.pdf.
    189. USDA-ARS. User's reference guide, Revised Universal Soil Loss Equation Version2. March 1,2013b. http://www.ars.usda.gov/sp2UserFiles/Place/6408 0510/RUSLE/RUSLE2_User_Ref_Guide.pdf.
    190. Valentin C, PoesenJ, LiY. Gully erosion: Impacts, factors and control. Catena, 2005,63:132-153
    191. Vandamme J, Zou Q. Investigation of slope instability induced by seepage and erosion by a particle method. ComputGeotech, 2013,48:9-20
    192. Vasquez MR, Ventura-Ramos E, Oleschko K, Sandoval LH, Parrot JF, Nearing MA. Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena, 2010,80:162-169
    193. Wan Y, EI-Swaify SA. Flow-induced transport and enrichment of erosional sediment from a well-aggregated and uniformly-textured Oxisol. Geoderma, 1997,75:251-265.
    194. Wang Q, Zhang EH, Li FM, Li FR. Runoff efficiency and the technique of micro-water harvesting with ridges and furrows, for Potato Production in Semi-arid Areas. Water Resour Manage, 2008, 22:1431-1443
    195. Wang X, Gassman PW, Williams JR, Potter S, Kemanian AR. Modeling the impacts of soil management practices on runoff, sediment yield, maize productivity, and soil organic carbon using APEX. Soil Till Res, 2008,101: 78-88
    196. Wirtz S, Seeger M, Ries JB. Field experiments for understanding and quantification of rill erosion processes. Catena, 2012, 91:21-34
    197. Wischmeier WH, Smith DD. Predicting rainfall erosion losses from cropland east of the Rocky Mountains, USDA, 1965
    198. Wischmeier WH. Predicting rainfall-erosion losses-a guide to conservation planing. Washington DC, 1978
    199. Wiyo KA, Kasomekera ZM, Feyen J. Variability in ridge and furrow size and shape and maize population density on small subsistence farms in Malawi. Soil Till Res, 1999,51:113-119
    200. Xu XL, Liu W, Kong YP, Zhang KL, Yu BF, Chen JD. Runoff and water erosion on road side-slopes: Effects of rainfall characteristics and slope length. Transport Res D-Tr E,2009,14: 497-501
    201. Yan B. Fang NF. Zhang PC. Shi ZH. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J Hydrol, 2013,484: 26-37
    202. Yan FL, Shi ZH, Li ZX, Cai CF. Estimating interrill soil erosion from aggregate stability of Ultisols in subtropical China. Soil Till Res, 2008, 100: 34-41
    203. Zhang QW, Lei TW. Zhao J. Estimation of the detachment rate in eroding rills in flume experiments using an REE tracing method. Geoderma, 2008, 147: 8-15
    204. Zheng F, Tang K. Rill erosion process on steep slope land of the Loess Plateau. IntJ Sediment Res,1997,12:52-59
    205. Zheng FL, Huang CH, Norton LD. Vertical Hydraulic Gradient and Run-On Water and Sediment Effects on Erosion Processes and Sediment Regimes. Soil SciSocAmJ,2000,64:4-11
    206. Zheng FL, Xiao PQ, Gao XT. Rill erosion process and rill flow hydraulic parameters. IntJ Sediment Res, 2004,19:130-141
    207. Ziegler AD, Giambelluca TW, Plondke D, Leisz S, Tran LT, Fox J, Nullet MA, Vogler JB, Minh Troung D, Tran Due V. Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: Buffering of Hortonian overland flow. J Hydrol, 2007, 337: 52-67
    208. Zingg AW. Degree and length of land slope as it affects soil loss in runoff. AgrEng, 1940,21:59-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700