用户名: 密码: 验证码:
仿生几何结构表面土壤镇压辊
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镇压辊是农业机械中典型的滚动触土部件,用于压实土壤。适当的压实可以减少土壤中的大孔隙,使种子与土壤紧密接触,加强毛细管作用,提高作物产量。传统镇压辊材料多为石材、铸铁或钢材,触土表面在宏观上是普通光滑的,其作业过程中容易粘附土壤,不但增加能耗,降低作业效率,而且使土壤失墒严重,影响种子发芽。此外,传统镇压辊作业过程中会将一部分土壤推到镇压辊前方,形成波浪状凸起,即“拖堆壅土”现象,不但使镇压辊达不到镇压的目的,还要多消耗功,而且会导致种子间距分布不均,造成作物减产。
     镇压力的合理选择与土壤墒情有关。本研究通过压板下陷试验获得含水量分别为20%d.b.和28%d.b.的土壤在不同镇压力下的土壤容重和下陷量。采用Bailey三参数模型描述应力-容重关系,通过Matlab最小二乘法对试验数据进行拟合,得到2种土壤含水量对应的应力-容重方程。将适宜玉米生长的容重带入方程,并经过换算,得到土壤含水量分别为20%d.b.和28%d.b.时,适宜的镇压力范围为25.25kg~88.48kg和13.95kg~70.26kg,为后续土槽试验和田间试验提供了依据,并且不同镇压力对应的下陷量可以用来验证有限元的模拟结果。
     土壤洞穴动物臭蜣螂和穿山甲在粘湿土壤环境中行动自如,且身体表面不粘土。研究表明其体表的几何结构是其防粘减阻的原因之一。本研究根据臭蜣螂(Coprisochus Motschulsky)腹侧面的几何结构,设计了9种仿生肋条型几何结构镇压辊,其中仿生肋条结构采用超高分子量聚乙烯(UHMWPE)材料,通过螺纹紧固方式固定在镇压辊基体上,镇压辊基体采用Q235钢。用正交试验方案在室内土槽进行试验研究,以粘附土壤量、牵引阻力、种子粒距变化率和土壤容重为试验指标,考察土壤含水量分别为20%d.b.和28%d.b.时,仿生肋条结构的底面宽度、高宽比(仿生肋条结构的断面高度/底面宽度)、载荷和面积比(仿生肋条结构在柱面上投影面积之和与镇压辊表面积之比)对仿生肋条型几何结构镇压辊作业性能的影响;根据穿山甲(Manis Pentadactyla)体表的鳞片结构,设计出3种仿生多面体型几何结构镇压辊,其材料与传统镇压辊一样,均是Q235钢,对比传统镇压辊与3种仿生多面体型几何结构镇压辊在3种载荷和2种土壤含水量下的作业效果。通过优化得出效果最佳的仿生肋条型几何结构镇压辊和仿生多面体型几何结构镇压辊,将Q235钢、UHMWPE材料和搪瓷涂层材料应用到优化后的仿生肋条型几何结构和仿生多面体型几何结构上,考察材料对两种类型仿生几何结构镇压辊防粘减阻的影响。
     采用有限元软件ABAQUS建立传统镇压辊及土槽试验优化得到的采用UHMWPE材料的仿生肋条型几何结构镇压辊和采用Q235钢的仿生多面体型几何结构镇压辊与土壤相互作用的模型。模拟结果中伪应变能约占内能的0.1%,证明沙漏模式对计算结果的影响可以忽略,传统镇压辊以及两种类型仿生几何结构镇压辊的牵引阻力和下陷量的模拟值与试验值吻合很好,从而验证了所创建有限元模型的可靠性。从Mises应力云图、镇压辊与土壤的接触面积和X、Y、Z方向的位移云图三方面对比3种镇压辊的模拟结果,分析了仿生几何结构镇压辊防粘减阻、防壅土的机理。
     本研究进行了田间试验,以牵引阻力、土壤容重、种床土壤含水量的变化趋势、株距变化率和出苗率为试验指标,考察了使用3种材料的仿生肋条型几何结构镇压辊和仿生多面体型几何结构镇压辊在3种载荷和2种作业速度下的田间作业效果,并与传统镇压辊对比,同时考察了仿生几何结构材料、仿生几何结构镇压辊类型、作业速度和载荷对仿生几何结构镇压辊作业性能的影响。
Press roller, as a typical rolling soil-engaging component, was used to compactagricultural soil. Appropriate compaction of soil could decrease soil porosity, provide bettersoil-seed contact, strengthen the capillary action and increase crop yield. Conventional pressrollers were mainly made of stone, cast iron or low carbon steel. The surface of conventionalpress rollers was smooth with macroscopic scale. Soil has a tendency to adhere to the surfaceof conventional rollers during the process of tillage. Not only resulted in high energyconsumption and low work efficiency, but also consuming soil moisture and affecting thegermination. Besides, soil was pushed to the front of conventional press rollers in thecompaction process, hence an upheaval was formed, i.e., the hilling phenomenon. Not onlyresulted in uncompacted, but also consumed more energy, made the distance between seedsbecame non-uniform and, as a result, crop yield decreased.
     Reasonable compacting pressure was dependent upon soil moisture content. In thiswork, pressure-sinkage tests were carried out to get soil bulk density and sinkagecorresponding to different pressures for soil moisture content of20%d.b. and28%d.b.. Athree-parameter multiplicative model of soil compaction proposed by Bailey was used todescribe the relationship between stress and bulk density. Using Matlab nonlinear leastsquares method to fit experimental data, the equations of stress and bulk densitycorresponding to the two kinds of soil moisture content were obtained. The requiredoptimum bulk density for corn was introduced into the equation. The results showed that theappropriate pressure was25.25kg~88.48kg and13.95kg~70.26kg by conversion,corresponding with soil moisture content that were20%d.b. and28%d.b. respectively. Andthe sinkage could be used to validate the finite element simulation results.
     It was found that soil-burrowing animals, such as dung beetle and pangolin, could gothrough soil easily and had very little soil sticking to their bodies. The geometric structure ofthe cuticle surface of these soil-burrowing animals was one of the main reasons why theseanimals exhibited very low adhesion and friction against soil. Nine bionic press rollers with bionically ridged structures were designed learning from the geometric structure of theventral cuticle surface of dung beetle (Copris ochus Motschulsky). Bionically ridgedstructures made of ultra high molecular weight polyethylene (UHMWPE) were modeled byscrew on the substrate of press rollers, and the substrate was made of steel Q235. Orthogonaltests were performed in an indoor soil bin with soil moisture content of20%d.b. and28%d.b.respectively, and soil adhesion, tractive resistance, percent change of seed spacing and soilbulk density were taken as test indexes. The effects of the bottom width of bionically ridgedgeometrically structure, the ratio of section height to bottom width, loads and the area ratioof the projection of bionically ridged structures to the cylindrical roller surface on theoperating performance of bionically ridged geometrically structured press rollers weredetermined. According to the scale structure of the cuticle surface of pangolin (ManisPentadactyla), three bionically polyhedral geometrically structured press rollers weredesigned using steel Q235, which was the same with the conventional press roller. Theoperating performance of the conventional press roller and three bionically polyhedralgeometrically structured press rollers were compared under three kinds of normal loads andtwo kinds of soil moisture content. Bionically ridged geometrically structured press rollerand bionically polyhedral geometrically structured press roller with the best performancewere obtained by optimizing. Steel Q235, UHMWPE and enamel coating were applied to theoptimized bionically ridged geometrically structure and bionically polyhedral geometricallystructure. The effects of material on reducing adhesion and resistance for two kinds ofbionically geometrically structured press rollers were explored.
     The finite element software ABAQUS was used to model a three-dimensional soilcompaction process. The behavior of the soil-bionically ridged geometrically structuredpress roller and soil-bionically polyhedral geometrically structured press roller interfacewere investigated and compared with a conventional press roller. Simulation results showedthat the artificial strain energy was approximately0.1%of the internal energy, indicating thathourglassing had negligible influence on simulation results. For conventional press roller andtwo kinds of bionically geometrically structured press rollers, simulation results of resistanceand sinkage agreed well with the experimental results. It proved that the finite elementmodel was reliable. The Mises stress nephogram, contact area between soil and press rollerand displacement nephogram in X, Y and Z direction were adopted to compare the simulation results of the three press rollers. The mechanism of reducing adhesion and resistance forbionically geometrically structured press rollers was analyzed.
     Field tests were run under three kinds of weights and two kinds of velocities. Tractiveresistance, soil bulk density, the trend of bed soil moisture content, percent change of plantspacing and emergence rate were taken as test indexes, and the working quality of fieldoperations of the bionically ridged geometrically structured press roller and the bionicallypolyhedral geometrically structured press roller made of three kinds of materials wasexamined, and compared with the conventional press roller. Meanwhile, the effects ofmaterials of bionically geometrically structure, types of bionically geometrically structuredpress roller, velocities and loads on the operating performance of the bionicallygeometrically structured press rollers were examined.
引文
[1] Gill W R, Vanden Berg G E. Soil dynamics in tillage and traction[M]. Washington:Agricultural Research Service, US Department of Agriculture,1967.
    [2]孙一源,高行方,余登苑.农业土壤力学[M].北京:中国农业出版社,1985.
    [3] Ren L Q, Wang Y P, Li J Q, Tong Jin. Flexible unsmoothed cuticles of soil animals andtheir characteristics of reducing adhesion and resistance[J]. Chinese Science Bulletin,1998,43(2):166-169.
    [4] Cong Q, Ren L Q, Chen B C, Yan B Z. Using characteristics of burrowing animals toreduce soil-tool adhesion[J]. Transactions of the ASABE,1999,42(6):1549-1556.
    [5] Hendrick J G, Bailey A C. Determining components of soil–metal sliding resistance[J].Transactions of the ASABE,1982,25(4):845-849.
    [6] Robbins Jr D H, Johnson C E, Schafer R L. Modeling soil-metal sliding resistance[C].American Society of Agricultural Engineers. St. Joseph:1987,87:1580.
    [7]任露泉,佟金,李建桥,陈秉聪.松软地面机械仿生理论与技术[J].农业机械学报,2000,31(1):5-9.
    [8]任露泉,陈德兴,陈秉聪.土壤粘附研究概述[J].农业工程学报,1990,6(1):1-7.
    [9] Ren L Q, Yan B Z, Cong Q. Experimental study on reducing adhesion in coal hopper bysurface electro-osmosis[J]. Chinese Journal of Mechanical Engineering (EnglishEdition),1999,12(2):152-159.
    [10] Sun S Y, Ren L Q, Tong J, Chen P. A shovel bucket with steel-cloth pocket bybionics[C]. Proceedings of the Third Asia-Pacific Conference of ISTVS. Changchun:Jilin Science and Technology Press,1992,10(13):231-235.
    [11]中国农业机械化科学研究院.农业机械设计手册上[M].北京:中国农业科学技术出版社,2007.
    [12]王景立,马旭,叶玉桃.覆土器结构运动参数对种子触土后位置影响分析[C].北京:中国农业工程学会2011年学术年会论文集,2011.
    [13]孙肇端,李宝筏.精密播种的粒距和植株分布的计算机模拟方法[J].农业工程学报,1988,(2):1-8.
    [14]李社潮,童玉霞.播种后重镇压技术及应用[J].粮油加工与食品机械,1992,(2):47-50.
    [15]张西林.环V镇压器简介[J].现代化农业,1993,(1):29-30.
    [16]黑龙江省勃农机械有限责任公司.仿形镇压器:中国,99204461.8[P].2000-01-26.
    [17]李景安.1YM-6型苗眼镇压器[J].粮油加工与食品机械,1988,(2):39-40.
    [18]张玉华,王玉华.玉米苗带重镇压试验与推广[J].农机质量与监督,1996,(5):34
    [19]孙毅,马骞.半干旱区机播保苗综合增产技术研究[J].水土保持研究,1996,(3):58-62.
    [20]王景立,马旭.基于精密播种的可变力苗带镇压器试验研究[OL].[2007-12-14].中国科技论文在线,http://www.paper.edu.cn/releasepaper/content/200712-256.
    [21]罗红旗,高焕文.免耕播种机组合镇压器设计研究[J].北京工商大学学报(自然科学版),2008,26(3):21-24.
    [22]马爱平,靖华,亢秀丽,王裕智,崔欢虎,王娟玲.农田轻便土壤悬虚镇压器的研制与应用[J].农机化研究,2011,33(7):97-99.
    [23]张智泓,佟金,陈东辉,孙霁宇,马云海.不同材质仿生凸齿镇压器滚动件的模态分析[J].农业工程学报,2012,28(13):8-15.
    [24] SIMBA Components. The aqueel and water management:U.S.,5628372EU,EU0622985[P].1997-05-13.
    [25] http://www.greatplainsmfg.co.uk/en-gb/product/search/seedbed-preparation/united-kingdom/presses-%26-consolidation-roller-systems/388.
    [26]贾铭钰.免耕播种机镇压装置的试验研究及计算机辅助设计[D].北京:中国农业大学,2000.
    [27]张晋国,姜海勇.具有碎土功能的波浪形镇压轮:中国,200320129627.4[P].2005-02-09.
    [28] Morrison Jr J. E. Compatibility among three tillage systems and types of plant presswheels and furrow openers for vertisol clay soils[J]. Applied Engineering inAgriculture,2002,18(3):293-295.
    [29] Johnston A M, Lafond G P, May W E, Hnatowich G L, Hultgreen G E. Opener, packerwheel and packing force effects on crop emergence and yield of direct seeded wheat,canola and field peas[J]. Canadian Journal of Plant Science,2003,83(1):129-139.
    [30]吉林大学.仿生柔性镇压辊:中国,03110943.8[P].2003-07-23.
    [31]吉林大学.不粘土壤镇压辊:中国,200510106955.7[P].2006-02-08.
    [32]杨华亮,于明安,周运锋,马艳红.免耕施肥播种机的镇压辊:中国,200820147647.7[P].2009-04-15.
    [33] Glinski J, Lipiec J. Soil physical conditions and plant roots[M]. Boca Raton: CRCPress,1990.
    [34] Hamza M A, Anderson W K. Soil compaction in cropping systems: a review of thenature, causes and possible solutions[J]. Soil and Tillage Research,2005,82(2):121-145.
    [35] Nawaz M F, Bourrie G, Trolard F. Soil compaction impact and modelling. a review[J].Agronomy for Sustainable Development,2013,33(2):291-309.
    [36]杨晓娟,李春俭.机械压实对土壤质量,作物生长,土壤生物及环境的影响[J].中国农业科学,2008,41(7):2008-2015.
    [37]迟仁立,夏平.不同程度压实对土壤理化性状及作物生育产量的影响[J].农业工程学报,2001,17(6):39-43.
    [38]孙忠英,李宝筏.农业机器行走装置对土壤压实作用的研究[J].农业机械学报,1998,29(3):172-174.
    [39] Raper R L. Agricultural traffic impacts on soil[J]. Journal of Terramechanics,2005,42(3-4):259-280.
    [40]张兴义,隋跃宇.土壤压实对农作物影响概述[J].农业机械学报,2005,36(10):161-164.
    [41]张兴义,隋跃宇.农田土壤机械压实研究进展[J].农业机械学报,2005,36(6):122-125.
    [42] Lipiec J, Stepniewski W. Effects of soil compaction and tillage systems on uptake andlosses of nutrients[J]. Soil and Tillage Research,1995,35(1):37-52.
    [43]李汝莘,林成厚,高焕文,陈常礼,袁燕利.小四轮拖拉机土壤压实的研究[J].农业机械学报,2002,33(1):126-129.
    [44] Young I M, Montagu K, Conboy J, Bengough A G. Mechanical impedance of rootgrowth directly reduces leaf elongation rates of cereals[J]. New Phytologist,1997,135(4):613-619.
    [45] Horn R, Vossbrink J, Peth S, Becker S. Impact of modern forest vehicles on soilphysical properties[J]. Forest Ecology and Management,2007,248(1):56-63.
    [46] Canbolat M Y, Bilen S, akmak R, ahin F, Ayd n A. Effect of plantgrowth-promoting bacteria and soil compaction on barley seedling growth, nutrientuptake, soil properties and rhizosphere microflora[J]. Biology and Fertility of Soils,2006,42(4):350-357.
    [47] Dick R P, Myrold D D, Kerle E A. Microbial biomass and soil enzyme activities incompacted and rehabilitated skid trail soils[J]. Soil Science Society of America Journal,1988,52(2):512-516.
    [48] Li Q C, Lee Allen H L, Wollum A G. Microbial biomass and bacterial functionaldiversity in forest soils: effects of organic matter removal, compaction, and vegetationcontrol[J]. Soil Biology and Biochemistry,2004,36(4):571-579.
    [49] Busse M D, Beattie S E, Powers R F, Sanchez F G. Microbial community responses inforest mineral soil to compaction, organic matter removal, and vegetation control[J].Canadian Journal of Forest Research,2006,36(3):577-588.
    [50] Ruser R, Flessa H, Russow R, Schmidtc G, Bueggera F, Muncha J C. Emission of N2O,N2and CO2from soil fertilized with nitrate: effect of compaction, soil moisture andrewetting[J]. Soil Biology and Biochemistry,2006,38(2):263-274.
    [51] Beare M H, Gregorich E G, St-Georges P. Compaction effects on CO2and N2Oproduction during drying and rewetting of soil[J]. Soil Biology and Biochemistry,2009,41(3):611-621.
    [52] Taylor J H. Benefits of permanent traffic lanes in a controlled traffic crop productionsystem[J]. Soil and Tillage Research,1983,3(4):385-395.
    [53] Mu oz A, López-Pi eiro A, Ramírez M. Soil quality attributes of conservationmanagement regimes in a semi-arid region of south western Spain[J]. Soil and TillageResearch,2007,95(1):255-265.
    [54] Bennie A T P, Botha F J P. Effect of deep tillage and controlled traffic on root growth,water-use efficiency and yield of irrigated maize and wheat[J]. Soil and Tillageresearch,1986,7(1):85-95.
    [55] Miransari M, Bahrami H A, Rejali F, Malakouti M J. Using arbuscular mycorrhiza toalleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth[J]. SoilBiology and Biochemistry,2008,40(5):1197-1206.
    [56] Radford B J, Bridge B J, Davis R J, McGarry D, Pillai U P, Rickman J F, Walsh P A,Yule D F. Changes in the properties of a vertisol and responses of wheat aftercompaction with harvester traffic[J]. Soil and Tillage Research,2000,54(3):155-170.
    [57]曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    [58] Berti M T, Johnson B L, Henson R A. Seeding depth and soil packing affect pure liveseed emergence of cuphea[J]. Industrial Crops and Products,2008,27(3):272-278
    [59]于希臣,孙占祥,郑家明,张鹏,杨洪泽.不同镇压方式对玉米生长发育及产量的影响[J].杂粮作物,2002,22(5):271-273.
    [60] Bicki T J, Siemens J C. Crop response to wheel traffic soil compaction[J]. Transactionof the ASAE,1991,34(3):909-913.
    [61] Inano I, Momono H, Suzuki T, Arita T. Study on improving the emergence of directsowing sugar beets (part1)-improving emergence rate by press roller attached toseeder[J]. Journal of the Japanese Society of Agricultural Machinery,2006,68(6):75-82.
    [62] Inano I, Momono H, Suzuki T. Study on improving the emergence of direct sowingsugar beets (part2)-the soil compaction to middle-layer for increasing emergence[J].Journal of the Japanese Society of Agricultural Machinery,2006,68(6):83-90.
    [63] Taser O F, Kara O. Silage maize (Zea mays L.) seedlings emergence as influenced bysoil compaction treatments and contact pressures[J]. Plant, Soil and Environment,2005,51(7):289-295.
    [64]郭颖杰.不同质地农田土壤力学特性及镇压机理的研究[D].长春:吉林农业大学,1999.
    [65] Bailey A C, Johnson C E, Schafer R L. A model for agricultural soil compaction[J].Journal of Agricultural Engineering Research,1986,33(4):257-262.
    [66] Saffih-Hdadi K, Défossez P, Richard G, Cui Y J, Tang A M, Chaplain V. A method forpredicting soil susceptibility to the compaction of surface layers as a function of watercontent and bulk density[J]. Soil and Tillage Research,2009,105(1):96-103.
    [67] Canillas E C, Salokhe V M. Modeling compaction in agricultural soils[J]. Journal ofTerramechanics,2002,39(2):71-84.
    [68]陈秉聪.土壤-车辆系统力学[M].北京:中国农业机械出版社,1981.
    [69]陈秉聪.车辆行走机构形态学及仿生减粘脱土理论[M].北京:机械工业出版社,2001.
    [70]贝克M G,《地面—车辆系统导论》翻译组.地面-车辆系统导论[M].北京:机械工业出版社,1978.
    [71]庄继德.计算汽车地面力学[M].北京:机械工业出版社,2002.
    [72] Perumpral J V, Liljedahl J B, Perloff W H. A numerical method for predicting thestress distribution and soil deformation under a tractor wheel[J]. Journal ofTerramechanics,1971,8(1):9-22.
    [73] Chung T J, Lee J K. Dynamics of viscoelastoplastic soil under a moving wheel[J].Journal of Terramechanics,1975,12(1):15-31.
    [74] Yong R N. Analytical predictive requirements for physical performance of mobility[J].Journal of Terramechanics,1973,10(4):47-60.
    [75] Yong R N, Fattah E A. Prediction of wheel-soil interaction and performance using thefinite element method[J]. Journal of Terramechanics,1976,13(4):227-240.
    [76] Yong R N, Fattah E A, Boonsinsuk P. Analysis and prediction of tyre-soil interactionand performance using finite elements[J]. Journal of Terramechanics,1978,15(1):43-63.
    [77] Hiroma T, Wanjii S, Kataoka T, Ota Y. Stress analysis using FEM on stress distributionunder a wheel considering friction with adhesion between a wheel and soil[J]. Journalof Terramechanics,1997,34(4):225-233.
    [78] Hambleton J P, Drescher A. Modeling test rolling on cohesive subgrades[C].Proceedings of the International Conference on Advanced Characterisation ofPavement and Soil Engineering Materials. Althens, Greece:2007,1:359-368.
    [79] Hambleton J P, Drescher A. Modeling wheel-induced rutting in soils: rolling[J].Journal of Terramechanics,2009,46(2):35-47.
    [80] Hambleton J P, Drescher A. Modeling wheel-induced rutting in soils: indentation[J].Journal of Terramechanics,2008,45(6):201-211.
    [81] Hambleton J P, Drescher A. Development of improved test rolling methods forroadway embankment construction[R]. St. Paul: Minnesota Department ofTransportation, Research Services Section,2008.
    [82] Fervers C W. Improved FEM simulation model for tire-soil interaction[J]. Journal ofTerramechanics,2004,41(2):87-100.
    [83] González Cueto O, Iglesias Coronel C E, Recarey Morfa C A, Urriolagoitia Sosa G,Hernández Gómez L H, Urriolagoitia Calderón G, Herrera Suárez M. Threedimensional finite element model of soil compaction caused by agricultural tiretraffic[J]. Computers and Electronics in Agriculture,2013,99:146-152.
    [84] Chiroux R C, Foster Jr W A, Johnson C E, Shoop S A, Raper R L. Three-dimensionalfinite element analysis of soil interaction with a rigid wheel[J]. Applied Mathematicsand Computation,2005,162(2):707-722.
    [85] Xia K. Finite element modeling of tire/terrain interaction: application to predicting soilcompaction and tire mobility[J]. Journal of Terramechanics,2011,48(2):113-123.
    [86]张克健.对于履刺效应有限元分析中力学模型的讨论[J].农业机械学报,1983,(2):40-45.
    [87]张克健,张相麟.履刺效应的有限元分析[J].兵工学报,1982,(4):54-60.
    [88]张克健.修正的邓肯模型及在有限元分析中的应用[J].车辆与动力技术,1982,(3):9-17.
    [89]刘大维,陈吉清,王国林,陈秉聪.轮脚与土壤相互作用的有限元分析[J].农业机械学报,1996,(3):12-17.
    [90]李汝莘,宋洪波.小型拖拉机土壤压实的有限元预测[J].农业工程学报,2001,17(4):66-69.
    [91]杨艳静,向树红.月球车刚性车轮与模拟月壤相互作用有限元仿真和试验验证[J].强度与环境,2010,37(1):47-52.
    [92]高爱民,戴飞,吴劲锋.基于PLAXIS的苜蓿地土壤压实有限元模拟[J].草地学报,2014,22(1):78-84.
    [93]贝弗尔L D,加德纳W H,加德纳W R;周传槐,译.土壤物理学[M].北京:农业出版社,1983.
    [94] Fountaine E R. Investigation into mechanism of soil adhesion[J]. Journal of SoilScience,1954,5(2):251-263.
    [95]钱定华.传统犁壁材料-白口铁对重粘土粘附特性的研究[J].农业机械学报,1965,8(2):145-150.
    [96]张际先,桑正中,高良润.土壤对固体材料粘附和摩擦性能的研究[J].农业机械学报,1986,17(1):32-40.
    [97]秋丰山,横井肇.土壤粘着性的研究(第2报)[J].日本土壤肥料科学杂志,1972,43(8):271-277.
    [98]秋丰山,横井肇.土壤粘着性的研究(第3报)[J].日本土壤肥料科学杂志,1972,43(9):315-320.
    [99]任露泉.土壤粘附力学[M].北京:机械工业出版社,2011.
    [100]丛茜,任露泉,陈秉聪,苏菲.地面机械减粘脱土方法的研究[J].农业工程学报,1990,6(1):8-14.
    [101]陈秉聪,译.使用润滑犁的经验[J].国外农机,1980,(3):37-43.
    [102]华中杰,译.压缩空气在工程机械装置上的应用[J].国外工程机械,1978,(2):44-50.
    [103]杨建国,王鹤文,洪学忠.矿车不粘结技术[J].云南冶金,1984,(4):6-11,5.
    [104]韩国政,张鹰.磁化犁犁耕阻力的试验研究[J].农业机械学报,1991,(3):25-28.
    [105]孙世元,任露泉,佟金.减粘脱附柔性内衬的设计与应用[J].农业工程学报,1996,12(1):65-70.
    [106] Bandalan E P, Salokhe V M, Gupta C P, Niyamapa T. Performance of an oscillatingsubsoiler in breaking a hardpan[J]. Journal of Terramechanics,1999,36(2):117-125.
    [107] Wang X L, Ito N, Kito K, Garcia P P. Study on use of vibration to reduce soiladhesion[J]. Journal of Terramechanics,1998,35(2):87-101.
    [108] Cong Q, Ren L Q, Chen B C. Research on reducing adhesion results of soilelectro-osmosis and its affecting factors[C]. Proceedings of the10th InternationalConference of the ISTVS. Kobe, Japan:1990:45-55.
    [109] Radite P A S, Namikawa K, Iida M. Draft reduction on tillage tools byelectro-osmosis lubrication,3: field test on mole plow[J]. Journal of Japanese Societyof Agnicoltural Machinery,1997,59(5):63-72.
    [110]朱恒福,谈黎虹,吴士澌.“彗星式通孔”减阻犁的试验研究[J].农业机械学报,1992,23(4):20-24.
    [111] Tong J, Ren L Q, Chen B C, Qaisrani A R. Characteristics of adhesion between soiland solid surfaces[J]. Journal of Terramechanics,1994,31(2):93-105.
    [112] Salokhe V M, Gee-Clough D. Coating of cage wheel lugs to reduce soil adhesion[J].Journal of Agricultural Engineering Research,1988,41(3):201-210.
    [113] Salokhe V M, Gee-Clough D. Technology showcase applications of enamel coatingin agriculture[J]. Journal of Terramechanics,1989,26(3-4):275-286.
    [114]杜卫刚.开沟器仿生设计及其试验分析[D].长春:吉林大学,2004.
    [115] Soni P, Salokhe V M. Influence of dimensions of UHMWPE protuberances on slidingresistance and normal adhesion of bangkok clay soil to biomimetic plates[J]. Journalof Bionic Engineering,2006,3(2):63-71.
    [116] Soni P, Salokhe V M, Nakashima H. Modification of a mouldboard plough surfaceusing arrays of polyethylene protuberances[J]. Journal of Terramechanics,2007,44(6):411-422.
    [117]左春柽,张守勤,马成林,贺焕平.圆盘开沟器减粘降阻的试验研究[J].农业机械学报,1997,28(增刊):37-40.
    [118] Steele M J E. How do we get there[C]. Bionics Symposium, Dayton Ohio In Gray,C.H.,&Figueroa-Sarriera, H.,&Mentor, S.(eds)(1995) The Cyborg HandbookNew York: Routledge.1960:55-59.
    [119]沈振亚.土壤粘附的机理和应用[C].地面-机器系统学会第一届学术会议论文集,1983.
    [120] Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction ofterrain machines[J]. Science in China Series E: Technological Sciences,2009,52(2):273-284.
    [121] Tong J, Ren L Q, Chen B C. Geometrical morphology chemical constitution andwettability of body surfaces of soil animals[J]. International Agricultural EngineeringJournal,1994,3(1):59-68.
    [122] Ren L Q, Tong J, Li J Q, Chen B C. SW-soil and water: soil adhesion andbiomimetics of soil-engaging components: a review[J]. Journal of AgriculturalEngineering Research,2001,79(3):239-263.
    [123]王兆亮.起垄铲仿生设计及其降阻特性分析[D].长春:吉林大学,2009.
    [124] Ji W F, Chen D H, Jia H L, Tong J. Experimental investigation into soil-cuttingperformance of the claws of mole rat (Scaptochirus moschatus)[J]. Journal of BionicEngineering,2010,7(Suppl): S166-S171.
    [125] Ren L Q, Tong J, Zhang S J, Chen B C. Reducing sliding resistance of soil againstbulldozing plates by unsmoothed bionics surfaces[J]. Journal of Terramechanics,1995,32(6):303-309.
    [126] Li J Q, Sun J R, Ren L Q, Chen B C. Sliding resistance of plates with bionic bumpysurface against soil[J]. Journal of Bionics Engineering,2004,1(4):207-214.
    [127] Ren L Q, Han Z W, Li J Q, Tong J. Effects of non-smooth characteristics on bionicbulldozer blades in resistance reduction against soil[J]. Journal of Terramechanics,2002,39(4):221-230.
    [128] Ren L Q, Deng S Q, Wang J C, Han Z W. Design principles of the non-smoothsurface of bionic plow moldboard[J]. Journal of Bionics Engineering,2004,1(1):9-19.
    [129] Deng S Q, Ren L Q, Liu Y, Han Z W. Tangent resistance of soil on moldboard and themechanism of resistance reduction of bionic moldboard[J]. Journal of BionicsEngineering,2005,2(1):33-46.
    [130] Tong J, Moayad B Z, Ma Y H, Sun J Y, Chen D H, Jia H L, Ren L Q. Effects ofbiomimetic surface designs on furrow opener performance[J]. Journal of BionicEngineering,2009,6(3):280-289.
    [131]丛茜,王连成,任露泉,王志中,李安琪.鳞片形非光滑表面的仿生设计[J].吉林工业大学学报,1998,28(2):12-17.
    [132]吉林大学.鳞片型耐磨几何结构表面:中国,200810050348.6[P].2008-07-23.
    [133]马云海,马圣胜,贾洪雷,刘玉成,彭杰,高知辉.仿生波纹形开沟器减黏降阻性能测试与分析[J].农业工程学报,2014,30(5):36-41.
    [134] Yang X D, Ren L Q, Cong Q. Experimental study on freezing adhesion of coaldusts[C]. Proceedings6th Asia-Pacific ISTVS Conference. Bangkok: Asian Instituteof Technology Press,2001:342-345.
    [135]杨晓东,任露泉. PET柔性内衬减粘脱土模型[J].吉林工业大学自然科学学报,2001,31(1):79-81.
    [136]丛茜,柴雄梁,杨晓东,金敬福.利用柔性仿生技术减少矿车粘附[J].吉林大学学报(工学版),2005,35(4):437-441.
    [137]丛茜,杨晓东,柴雄梁,任露泉.仿生柔性技术减少煤粘附的试验[J].农业机械学报,2007,38(3):209-211.
    [138]任露泉.地面机械脱附减阻仿生创新之路[J].走中国特色农业机械化道路—中国农业机械学会2008年学术年会论文集(上册),2008.
    [139] Ren L Q, Cong Q, Tong J, Chen B C. Reducing adhesion of soil against loadingshovel using bionic electro-osmosis method[J]. Journal of Terramechanics,2001,38(4):211-219.
    [140]陈秉聪,刘大维,宁素俭,丛茜.非光滑表面电渗轮脚减粘脱土的试验研究[J].农业工程学报,1995,11(3):29-33.
    [141]丛茜,王文涛,阎备战,任露泉.用表面电渗法减少煤与外物的切向阻力[J].吉林工业大学自然科学学报,2000,30(4):4-6.
    [142] Ren L Q, Yan B Z, Cong Q. Experimental study on bionic non-smooth surface soilelectro-osmosis[J]. International Agricultural Engineering Journal,1999,8(3):185-196.
    [143] Tong J, Ren L Q, Chen B C. Geometrical morphology, chemical constitution andwettability of body surfaces of soil animals[J]. International Agricultural EngineeringJournal,1994,3(1):59-68.
    [144]陶敏.凹坑形仿生非光滑表面减阻和遗传优化研究[D].长春:吉林大学,2007.
    [145] Tong J, Sun J Y, Chen D H, Zhang S J. Geometrical features and wettability of dungbeetles and potential biomimetic engineering applications in tillage implements[J].Soil and Tillage Research,2005,80(1):1-12.
    [146]巴勒尔赛义德毛亚德.土壤机具系统仿生减摩表面设计与试验研究[D].长春:吉林大学,2005.
    [147]荣宝军.耐磨仿生几何结构表面及其土壤磨料磨损[D].长春:吉林大学,2008.
    [148]北京农业工程大学.农业机械学[M].北京:中国农业出版社,1981。
    [149]田耘,刘庆福,王景立,朱凤武,潘世强,初立冬.2BLZ-2型垄上镇压式精密播种机结构及参数的确定[J].吉林农业大学学报,2004,25(5):583-585.
    [150] James D W, Wells K L, Westerman R L. Soil sample collection and handling:technique based on source and degree of field variability[J]. Soil Testing and PlantAnalysis,1990:25-44.
    [151]奚廷孔,张艳新.土壤样品的采集和处理技术[J].广西农学报,2007,22(3):36-37.
    [152]夏征农.辞海农业分册[M].上海:上海辞书出版社,1988.
    [153]中国农机研究院.农业机械设计手册下[M].北京:中国农业科学技术出版社,2007.
    [154]任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社,2001.
    [155]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [156]费康,张建伟. ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [157]张克健.车辆地面力学[M].北京:国防工业出版社,2002.
    [158]曹金凤,石亦平. ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [159]赵腾伦. ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [160]李杰,庄继德.车辆地面力学弹塑性本构关系[J].吉林工业大学学报,1999,29(2):1-7.
    [161] ABAQUS V.6.10.3Documentation[J]. Dassault Systems,2011.
    [162]罗相杰.土工试验[M].北京:北京理工大学出版社,2012.
    [163]梁东平,柴洪友.着陆冲击仿真月壤本构模型及有限元建模[J].航天器工程,2012,21(1):18-24.
    [164] Celik A, Ozturk I, Way T R. Effects of various planters on emergence and seeddistribution uniformity of sunflower[J]. Applied Engineering in Agriculture,2007,23(1):5761.
    [165]郝黎仁,樊元,郝哲欧,任小康. SPSS实用统计分析[M].北京:中国水利水电出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700