用户名: 密码: 验证码:
深松铲减阻耐磨仿生理论与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用仿生学原理解决工程实际问题已经成为当今世界科学技术发展的一大进步。现代仿生学的研究与应用几乎已经渗透到工农业生产的各个领域,包括农业机械领域。磨损严重和耕作阻力大一直是农机耕作机械多年来未能很好解决的两大技术难题。特别对于典型农机触土工作部件深松铲,其作业特点是工作阻力大,能耗高,铲刃的土壤磨损严重,使用寿命短。本研究以结构仿生、功能仿生为手段,对深松铲进行结构优化设计,降低其耕作阻力,并提高深松铲刃的耐磨性能。
     某些水生软体动物壳体,如贝壳、蛤蜊壳,在其生存环境中长期承受水砂石的磨料磨损,但却表现出了优良的耐磨性能。典型土壤洞穴动物穿山甲的体表鳞片在其活动与捕食过程中承受土壤及砂石的反复磨损,同样展现出非凡的耐磨性能。上述两种生物之所以具有如此优异的耐磨特性,一方面与耐磨组织器官的材料组成有关,而另一方面是器官表面微观或宏观的几何结构起到了不可忽视的作用。土壤对深松铲刃的磨料磨损形式与上述两种生物体表耐磨组织器官的磨损形式非常相近。受到这一启发,本研究将栉孔扇贝的壳体、穿山甲体表鳞片作为仿生原型,并将这种优良特性应用于深松铲刃的耐磨设计。研究发现,贝壳和穿山甲鳞片的外表面均有呈放射状分布的棱纹形几何结构。利用逆向工程技术对两种研究对象外表面的棱纹几何结构信息进行了提取,得到了棱纹结构横截面的轮廓坐标点分布。根据坐标点的分布形态,选用正弦函数曲线对坐标点进行了数学拟合,对拟合的近似程度进行了评估,得到了拟合曲线及方程。拟合方程的一般形式为: f (x)=asin(bx+c),利用这一数学模型,对深松铲刃的触土表面进行耐磨结构仿生设计。根据深松铲刃在实际作业过程中的农艺要求,并充分考虑了加工工艺性等因素,最终确定铲刃表面的棱纹条横截面的轮廓线方程具体形式为: f (x)=1.3sin(0.4x),棱纹条底宽D=5mm,高H=1.3mm。棱纹条在深松铲刃表面的分布间距分别为1D,1.5D和2D三种不同形式,其长度与铲刃的宽度相等。根据上述设计方案,选用65Mn和T10两种耐磨钢设计制备仿生耐磨深松铲刃试样,并在磨料磨损试验机上与同一材料的普通平板型深松铲刃试样进行土壤磨料磨损试验。对试验样件的磨损量分析结果表明,对于所有类型的试样,在相同试验条件下,仿生棱纹形样件的磨损量均明显小于普通平板型,减小幅度为7.1%-44%,说明仿生棱纹形几何结构可以显著提高深松铲刃的耐磨性能。而且随着相对滑动速度的升高,试验样件的磨损量随之增大,证明相对滑动速度对样件的磨损量影响显著。同种材料的仿生棱纹形深松铲刃的磨损量对比分析结果显示,分布间距为1.5D型的铲刃磨损量明显小于1D型和2D型,由此证明,棱纹结构的分布间距对铲刃的耐磨性具有显著影响,且1.5D型的棱纹分布间距最有利于提高深松铲的耐磨性。同种类型(棱纹分布间距或平板型)不同材料的试样在相同试验条件下的磨损量对比分析结果表明,T10钢样件的磨损量均小于65Mn的,说明T10钢的耐磨性明显高于65Mn。这可为以后深松铲刃耐磨性提高之加工制造材料的选择提供理论依据。
     经过亿万年的进化,自然界中某些生物的身体器官具备了某种特殊功能。如典型土壤洞穴动物小家鼠,其爪趾即进化出了极其高效的土壤挖掘功能。这可以为深松铲的减阻结构设计提供仿生参考。
     本研究以小家鼠具有高效挖掘功能的爪趾为仿生原型,以降低深松铲的耕作阻力为目标,对深松铲的铲柄破土刃口曲线形式进行结构仿生设计。研究发现,深松铲的耕作阻力主要来自于铲柄破土刃口对坚硬土层的犁切作用,因此,降低铲柄破土刃口的切土阻力将会使深松铲耕作阻力显著下降。研究发现,小家鼠爪趾的纵剖面上表面轮廓线具有指数特征,其方程的具体形式为:Y=66.61e0.0117X+17.78e0.1835X。将爪趾轮廓拟合曲线应用于深松铲铲柄的破土刃口曲线结构设计之中,设计制备了指数函数曲线型仿生减阻深松铲。在室内土槽实验室与L型、倾斜型、抛物线型三种类型的深松铲进行了耕作阻力对比试验。耕作阻力对比分析结果表明,耕深和前进速度对深松铲的耕作阻力具有显著影响。在相同试验条件下,指数函数曲线型深松铲的耕作阻力均小于其它三种类型,阻力降低幅度为7.9%-58.7%,说明指数函数曲线型深松铲具有明显的减阻效果。利用指数函数曲线型深松铲与普通圆弧型深松铲在田间进行了耕作阻力试验,结果表明,在相同试验条件下,指数函数曲线型深松铲的耕作阻力明显小于普通圆弧型深松铲,阻力降低幅度为8.5%-39.5%,由此更进一步证明指数函数曲线型深松铲具有优良的减阻性能。对两种类型深松铲的耕层土壤扰动横剖面形貌进行了分析,结果显示,指数函数曲线型深松铲耕作后的土壤直缝较窄,土壤隆起的程度较小,说明对表层土壤的扰动作用小,更有利于提高耕后土壤的蓄水保墒能力。对仿生深松铲柄和仿生深松铲刃的协同减阻性能进行了土槽耕作阻力试验研究,结果表明,在相同试验条件下,与传统平板型深松铲刃相比,仿生棱纹形深松铲刃可以有效减小深松铲的耕作阻力。三种类型的仿生深松铲刃中,1.5D型深松铲刃的减阻效果最佳。
     利用离散单元法对指数函数曲线型深松铲和抛物线型深松铲的土壤耕作过程进行了数值模拟,结果显示,指数函数曲线型深松铲的应力场和速度场均明显小于抛物线型,这一模拟结果再一次证明了指数函数曲线型深松铲优异的减阻性能。
Using bionic principle to solve practical engineering problems has become a majoradvancement in the developments of science and technology. The researchs and applicationsof modern bionics have permeated almost all fields of industrial and agricultural production,including field of agricultural machinery. Heavy wear and large tillage resistance havebecome two main technical problems which have not been solved well in the field ofagricultural machinery, especially for subsoiler, a typical agricultural soil-working part thathas big working resistance, high energy consumption, spear badly wear and short life. In thisstudy, the structural optimal design of subsoiler was performed in order to reduce tillageresistance and increase wear-resistance of subsoiler spear based on structural bionics andfunctional bionics means.
     Some shells of aquatic mollusks such as shells and clams show excellent wear-resistance performance although long-term abrasive wear by water sand in their livingenvironments. Pangolin, as a typical soil cave animal, its squama also has phenomenalcharacteristic withstanding repeated abrasive wear of soil and gravel during their activity andpredation process. The reason why these two organisms have such excellent wear-resistance,on the one hand they have wear-resistant material composition of tissues and organs, on theother hand may be microscopic or macroscopic geometrical structure on the surface of theorgans play a vital role in their performances. The abrasive wear form of subsoiler spear withsoil is extremely similar to wear-resistant organs of two organisms surface. In this study,Inspired by the relations between subsoiler and these two organisms, shell of chlamys farreriand squama of pangolin were established as the bionic prototype. After through the analysisof wear-resistant surfaces of these two objects, it was found that both shells and squama haveridge geometry structure with radial distribution. The outer surface ridge structure geometryinformation of these two research objects was extracted using Reverse Engineeringtechnology and then the outline coordinate points distributions of the cross-sectional of ridgestructure were obtained. According to the distribution of the coordinates, sine function curvewas selected to fit the coordinates and the fitting degree of approximation was evaluated thenthe fitting curve and fitting equation were obtained finally. The general form of fittingequation is: f (x)=asin(bx+c), the soil-engaging surface of subsoiler spear withwear-resistant bionic structure was designed. Based on the mathematical model, the functionof contour curve of ridge structure, which will be applied to the design of bionic structural surface of subsoiler spear, was final established as follows: f (x)=1.3sin(0.4x)based ontaking into account agronomic requirements of subsoiler spear in the practical workingprocess, meanwhile the manufacturing processes should be also considered. Finally, thebionic ridge stripe with the bottom width (D) of5mm and the high (H) of1.3mm wasdesigned. There are following three types distribution space of1D,1.5D and2D on thesurface of subsoiler spear and the length of the ridge stripe is equal with the width ofsubsoiler spear. Based on the above design scheme, two wear-resistant steel65Mn and T10were selected as the manufacture materials of bionic wear-resistant subsoiler spear samplesand the abrasive wear tests were carried out using bionic samples and general flat subsoilerspear samples in the abrasive wear testing machine, and then the mass wear losses were got.The analysis results of abrasive wear tests showed that the wear losses of all bionic ridgesamples are less than those of general flat samples under the same test conditions, and thereduction range is7.1%-44%which indicate the bionic ridge geometrical structure canimprove the wear-resistance of subsoiler spear obviously. The wear loss of the samples isincreased with the sliding velocity which demonstrate that the sliding velocity can influenceon the wear characteristics of samples significantly. The contrastive analysis results of wearloss for the same material samples showed that the wear losses of samples with distributionspace of1.5D are less than those of samples with distribution space of1D and2D, itdemonstrate that the distribution space of bionic ridge structure has significant impact on thewear-resistance of subsoiler spear and it is most conductive to improve the wear-resistanceof subsoiler spear when distribution distance is1.5D. The wear loss comparative analysisresults for the same type of samples which manufactured by different materials showed thatthe wear losses of T10samples are less than those of65Mn, it can be concluded that thewear-resistance of T10is higher than that of65Mn.This may provide theoretical basis forselection of manufacturing materials of subsoiler spear in the future.
     Utilizing bionics to reduce tillage resistance of subsoiler is another problem need solvedin this study.
     Some organs of natural creatures have excellent special features after millions of yearsof evolution, Such as a typical soil cave animal mus musculus which claw toes haveextremely high-efficiency soil digging functions. This may provide bionic reference foranti-drag structural design of subsoiler.
     In this study, the claw toe of mus musculus which has highly efficient digging functionwas took as bionic biological prototype, soil-cutting edge curve form of bionic subsoilershaft was designed in order to reduce the tillage resistance of subsoiler. The study found thattillage resistance of subsoiler mainly come from cutting soil action of soil-cutting edge ofshaft in the hard soil, therefore, reducing soil-cutting resistance of soil-cutting edge of shaftcould decrease the tillage resistance of subsoiler significantly. The previous study found thatthe upper surface contour on the longitudinal section of claw toe of mus musculus hasexponential feature, the fitting curve function is as follows:Y=66.61e0.0117X+17.78e0.1835X. The fitting curve of claw toe contour of mus musculus was applied to the curve structuraldesign of soil-cutting edge on the subsoiler shaft and the bionic anti-drag subsoiler withexponential feature was manufactured. The tillage resistance contrast tests were conducted inthe indoor soil bin using bionic anti-drag subsoiler, L-type suboiler, tilt type subsoiler andparabolic type subsoiler, respectively. The results of comparative analysis of tillageresistances showed that both tillage depth and forward speed have significant influence onthe tillage resistance of subsoiler. The tillage resistances of bionic anti-drag subsoiler withexponential feature are less than those of other three types subsoilers under the same testconditions and the decreased range is7.9%-58.7%, which indicate that the bionic anti-dragsubsoiler has obvious reducing resistance effect. The contrast tests were carried out inoutdoor field using traditional arc-shape subsoiler and bionic anti-drag subsoiler, thecomparative results of tillage resistances showed that tillage resistances of bionic subsoiler isobvious less than those of traditional arc-shape subsoiler under the same test conditions andthe decreased range is8.5%-39.5%, which gave more evidence that bionic anti-dragsubsoiler has excellent anti-drag property.
     The cross-section disturbance morphologies of topsoil were analyzed after tilling usingbionic subsoiler and traditional arc-shape subsoiler, the analysis results showed that thetillage layer morphology of bionic anti-drag subsoiler has characteristics of more narrowfurrow and less extent soil uplift which means that the bionic anti-drag subsoiler has slightdisturbance effect on the topsoil and it is more beneficial to soil water storage andpreservation ability after subsoiling. The synergistic anti-drag effect of bionic subsoiler shaftand bionic spear was analyzed by tillage resistance test in the indoor soil bin, the resultsshowed that the bionic subsoiler spears can reduce tillage resistance of subsoiler comparedwith traditional flat subsoiler spear under the same test conditions, the1.5D type subsoilerspear has excellent anti-drag effect among three types bionic subsoiler spears.
     Numerical simulations of subsoiling process of the bionic anti-drag subsoiler andparabola type subsoiler was performed based on discrete element method (DEM), the resultsof simulations showed that both the stress field and velocity field of the bionic anti-dragsubsoiler are significant less than those of parabola type subsoiler and the simulation resultsproved again that bionic anti-drag subsoiler has excellent anti-drag property.
引文
[1] Tong Jin, Chen Donghui, Tomataru Yamaguchi, Zhang Sunjun, Ren Luquan.Geometrical features of claws of house mouse mus musculus and biomimetic designmethod of subsoiler structure[J]. Journal of Bionic Engineering,2005,8(1):53-63.
    [2]徐宗保.振动式深松中耕作业机的设计与试验研究[D].哈尔滨:东北农业大学,2009.
    [3] Raper R. L. In-row subsoilers that reduce soil compaction and residue disturbance[J].Applied Engineering in Agriculture,2007,23(3):253-258.
    [4] He Jin, Li Hongwen, Wang Xiaoyan, Mchugh A. D, Li Wenying, Gao Huanwen, KuhnN. J. The adoption of annual subsoiling as conservation tillage in dryland maize andwheat cultivation in northern China[J]. Soil&Tillage Research,2007,94(2):493-502.
    [5] Natsis A., Petropoulos G., Pandazaras C. Influence of local soil conditions onmouldboard ploughshare abrasive[J]. Wear Tribology International,2008,41(3):151-157.
    [6]徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,1998.
    [7] Eyre T. S. Review of abrasive study[J]. Tribology International,1978,(11):91-98.
    [8]邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988.
    [9]张健,周力行.突扩回流与大速差射流回流湍流气固两相流动的数值模拟[J].空气动力学学报,1996,14(2):154-161.
    [10]章本照,沈新荣,方建农.矩形截面弯管内气固两相流及对壁面磨损的数值分析[J].空气动力学学报,1995,13(40):435-441.
    [11]章本照,陈洪波.曲线管道气固两相流颗粒运动特性及对管壁磨损的数值分析[J].空气动力学学报,1995,13(4):135-141.
    [12]林建忠,梁新南,赵伯龙.气固两相流离心叶轮机械磨损特性研究[J].流体机械,1994,22(1):12-17.
    [13]沈天耀,林建忠,章本照.叶轮机械气固两相流研究[J].力学与实践,1993,15(5):1-9.
    [14]岑可法,樊建人.工程气固多相流的理论与计算[M].杭州:浙江大学出版社,1992.
    [15]刘大有,李洪洲.论流态化的颗粒当作流体处理的条件及有关问题[C].第四届全国多相流、非牛顿流和物理化学流的学术会议论文集,西安,1993:93-100.
    [16]刘大有.二相流体力学[M].北京:高等教育出版社,1993.
    [17]赵大为,李秀娟,姚志刚,郭忠军.1S-360型深松机的设计[J].农业科技与装备,2008,5:15-17.
    [18]邱立春,李宝筏.自激振动深松机减阻试验研究[J].农业工程学报,2000,16(6):72-76.
    [19]李建军.全方位可调式深松机[D].长春:吉林大学,硕士学位论文,2010.
    [20]赵大为.振动深松机的研究设计[J].农业科技与装备,2010,4:15-17.
    [21]李艳龙,刘宝,崔涛,张东兴.1SZ-460型杠杆式深松机设计与试验[J].农业机械学报,2009,40(增刊):37-40.
    [22]荆苗.双排反向振动深松机的设计及田间试验[D].焦作:河南理工大学,硕士学位论文,2012.
    [23]王天慧,张维安,王利斌,于猛,宋清德,于雷.分层深松铲的受力分析及碎土效果研究[J].农业机械,2012,32:94-96.
    [24]王瑞丽,邱立春,李宝筏,张治坤,毕翠英.1HS-2型行间深松机的研究设计[J].农机化研究,2004,4:98-99.
    [25]张璐.深松铲减阻技术研究[D].长春:吉林大学,硕士学位论文,2013.
    [26]张强,张璐,刘宪军,于路路,贾洪雷.基于有限元法的仿生钩形深松铲耕作阻力[J].吉林大学学报(工学版),2012,42(增刊):117-121.
    [27]张强,张璐,于海业,肖英奎.复合形态深松铲耕作阻力有限元分析与试验[J].农业机械学报,2012,43(8):62-65.
    [28]朱凤武.金龟子形态分析及深松耕作部件仿生设计[D].长春:吉林大学,2005.
    [29]郭志军,周德义,周志立.几种不同触土曲面耕作部件的力学性能仿真研究[J].机械工程学报,2010,46(15):71-75.
    [30]周桂霞,邬雨昕.通径系数法研究深松铲关键参数与牵引阻力的关系[J].农机化研究,2009,3:53-55.
    [31]荣宝军.耐磨仿生几何结构表面及其土壤磨料磨损[D].长春:吉林大学,2008.
    [32]李建桥,任露泉,刘朝宗,陈秉聪.减粘降阻仿生犁壁的研究[J].农业机械学报,1996,27(2):1-4.
    [33]杨文伍,何天贤,邓文礼.壁虎的动态吸附与壁虎纳米材料仿生学[J].化学进展,2009,21(4):777-783.
    [34]廖庚华,胡钦超,杨莹,韩志武,任露泉,刘庆平.基于典型鸟类翅膀特征的小型轴流风机叶片仿生设计与试验[J].吉林大学学报(工学版),2012,42(5):1163-1167.
    [35]范旭娟.典型金属基仿生超疏水表面的制备方法研究[D].大连:大连理工大学,硕士学位论文,2012.
    [36]谢峰,沈维蕾,张晔,刘国林.河狸门牙几何特征的提取及其生物力学性能分析[J].中国机械工程,2011,10(22):1149-1153.
    [37]庄东汉.材料失效分析[M].上海:华东理工大学出版社,2009.
    [38]欧阳习科,蒋业华,周荣.磨料磨损理论发展[J].水力电力机械,2004,26(6):25-40.
    [39]材料耐磨抗蚀及其表面技术丛书编委会.材料的磨料磨损[M].北京:机械工业出版社,1990.
    [40] O. E. C. D. Glossary of terms and definitions in the field of friction wear andlubrication[M]. Michigan: Organization for Economic Co-operation and Development,1969.
    [41] Yazici A. Investigation of the wear behavior of martempered30MnB5steel for soiltillage [J]. Transactions of The ASABE,2012,55(01):15-20.
    [42]高原,张维,李冰,袁琳,王成磊.等离子表面钨钼稀土(钇)合金强化层滑动磨损性能[J].材料热处理学报,2012,33(8):130-133.
    [43]王小明,袁浩,李小蕾.超耐磨焊管母材65Mn钢卷的退火工艺[J].金属热处理,2012,37(10):129-131.
    [44]邢泽炳,翟鹏飞,张静,张秀全.低碳钢表面渗碳及其耐磨性能研究[J].山西农业大学学报(自然科学版),2012,32(1):81-85.
    [45]何乃如,吴劲锋,朱宗光,张克平,连潇,黄晓鹏.激光强化60Si2Mn钢表面植物磨料磨损试验研究[J].甘肃农业大学学报,2013,48(4):139-143.
    [46]丛锦玲,王维新,李景彬.氧乙炔镍基合金粉末喷焊处理技术在犁铧刃表面的应用研究[J].石河子大学学报(自然科学版),2010,28(6):790-792.
    [47]高红霞,崔晓康,海伟,刘建秀.犁铧表面耐磨层的消失模铸渗工艺研究[J].铸造技术,2010,31(9):1205-1208.
    [48] Muammer Nalbant, Tufan Palali A. Effects of diff erent material coatings on thewearing of plowshares in soil tillage[J]. Turkey Journal of Agriculture,2011,35:215-223.
    [49]郝建军,马跃进,黄继华,张建纲.氩弧熔覆Ni60A耐磨层在农机刀具上的应用[J].农业工程学报,2005,21(11):73-76.
    [50]郝建军,马跃进,李会平.根茬粉碎还田机灭茬甩刀喷焊NiWC的耐磨粒磨损性能[C].中国农业机械学会成立40周年庆典暨2003年学术年会论文集,2003,1066-1069.
    [51]郝建军,马跃进,杨欣,刘俊峰.火焰熔覆镍基/铸造碳化钨熔覆层在犁铧上的应用[J].农业工程学报,2005,36(11):139-142.
    [52]朱瑞祥,张军昌,薛少平,姚万生,李俊耀,邓海涛.保护性耕作条件下的深松技术试验[J].农业工程学报,2009,25(6):145-147.
    [53] Shinners K. J., Alcock R., Wilkes J. M. Combining active and passive tillage elementsto reduce draft requirements[J]. Transactions of the ASAE,1990,33(2):400-404.
    [54] Lu Yongxiang. Significance and progress of bionics[J]. Journal of BionicsEngineering,2004,1(1):1-7.
    [55] Barthlott W., Neinhuis C. The lotus-effect: non-adhesive biological and biomimetictechnical surfaces[C]. Proceedings of The First International Industrial ConferenceBionic,2004,211-214.
    [56] Yamashita H., Nakao H., Takeuchi M., Nakatani Y., Anpo M. Coating of TiO2photocatalysts on super-hydrophobic porous teflon membrane by an ion assisteddeposition method and their self-cleaning performance[J]. Nuclear Instruments andMethods in Physics Research B,2003,206:898-901.
    [57] Ren Luquan. Progress in the bionic study on anti-adhesion and resistance reduction ofterrain machines[J]. Science in China Series E: Technological Sciences,2009,52(2):273-284.
    [58]孙久荣,程红,丛茜,李建桥,陈秉聪,任露泉.蜣螂(Copris ochus Motschulsky)减粘脱附的仿生学研究[J].生物物理学报,2001,17(4):785-793.
    [59]李建桥,李忠范,李重涣,邱晓明.仿生非光滑犁壁规范化设计[J].农机化研究,2004,6:119-121.
    [60]邓石桥.仿生犁壁的减粘机理及其仿生设计[D].长春:吉林大学,2004.
    [61]左春柽,张守勤,马成林,贺焕平.圆盘开沟器减粘降阻的试验研究[J].农业机械学报,1997,28(增刊):37-40.
    [62]贾贤,任露泉,陈秉聪.地面机械触土部件仿生涂层的减粘降阻特性[J].农业工程学报,1995,11(4):10-13.
    [63]佟金,孙霁宇,张书军,任露泉.神农蜣螂前胸背板表面形态分形及润湿性[J].农机学报,2002,33(4):74-76.
    [64]王淑杰,任露泉,韩志武,邱兆美.植物叶表面防粘特性的研究[J].农机化研究,2005,4:176-181.
    [65]孙世元,任露泉,佟金.减粘脱附柔性内衬的设计与应用[J].农业工程学报,1996,12(1):65-70.
    [66]王云鹏,任露泉,杨晓东.仿生柔性非光滑表面减粘降阻的试验研究[J].农业机械学报,1999,30(4):1-4.
    [67]任露泉,王云鹏,李建桥.典型生物柔性非光滑体表的防粘研究[J].农业工程学报,1996,12(4):31-36.
    [68]田丽梅,任露泉,韩志武.仿生非光滑表面脱附与减阻技术在工程上的应用[J].农业机械学报,2005,36(3):138-142.
    [69] Raper R. L., Bergtold J. S. In-row Subsoiling: a Review and Suggestions for ReducingCost of This Conservation Tillage Operation[J]. Applied Engineering in Agriculture,2007,23(4):463-471.
    [70] Raper R. L. Subsoiler shapes for site-specific tillage[J]. Applied Engineering inAgriculture,2005,21(1):25-30.
    [71]郭志军,周志立,佟金,任露泉.抛物线型切削面刀具切削性能二维有限元分析[J].洛阳工学院学报,2002,23(4):1-4.
    [72]郭志军,周志立,徐东,张毅,牛毅,任露泉.高效节能仿生深松部件的试验[J].河南科技大学学报(自然科学版),2003,24(3):1-3.
    [73]吉林大学.鼠道犁仿生防粘减阻耐磨犁铲:中国, ZL201010531289.1[P].2012-12-07.
    [74]吉林大学.鼠道犁仿生减阻扩孔器:中国, ZL201010531296.1[P].2012-10-10.
    [75]汲文峰.旋耕-碎茬仿生刀片[D].长春:吉林大学,2010.
    [76]丛茜,金敬福,张宏涛,任露泉.仿生非光滑表面在混合润滑状态下的摩擦性能[J].吉林大学学报(工学版),2006,36(3):363-366.
    [77]李安琪,任露泉,陈秉聪,崔相旭.蚯蚓体表液的组成及其减粘脱土机理分析[J].农业工程学报,1996,6(3):8-14.
    [78]孙久荣,孙博宁,韦建恒.蚯蚓体表电位的测定及其与运动的关系[J].吉林工业大学学报,1991,4:18-23.
    [79]李建桥,刘国敏,邹猛,李因武,田喜梅.蚯蚓非光滑体表试样的法向土壤粘附特性[J].中国农业科技导报,2007,9(6):110-114.
    [80]周仲荣,雷源忠,张嗣伟.摩擦学发展前沿[M].北京:科学出版社,2006.
    [81] Dai Zhendong, Gorb S. N., Schwarz U. Roughness-dependent friction force of thetarsal claw system in the beetle pachnoda marginata (Coleopteran, Scarabaeidae)[J].Journal of Experimental Biology,2002,205:2479-2488.
    [82] Peressadko A. G., Gorb S. N. Surface profile and friction force generated by insect[C].Proceedings of the First International Industrial Conference Bionik,2004,257-263.
    [83] Hasenfuss I. The adhesive devices in larvae of lepidoptera (Insecta, Pterygota)[J].Zoomorphology,1999,119(3):143-162.
    [84] Gorb S. N., Peressadko A., Spolenak R., Arzt E. Biological hairy attachment devicesas a protptype for artificial adhesive systems[C]. Proceedings of The FirstInternational Industrial Conference Bionik,2004,237-242.
    [85] http://mly.hfutonline.net/html/chuangxinzhongguo/chuangxindongtai/2014/0105/136480.html.
    [86]徐淑芬.仿壁虎脚掌微观结构及应用研究[D].青岛:山东科技大学,硕士学位论文,2009.
    [87]王蓓蓓.蝗虫脚垫表面微结构粘附性研究[D].南京:南京航空航天大学,硕士学位论文,2010.
    [88]佟金,马云海,任露泉.天然生物材料及其摩擦学[J].摩擦学学报,2001,21(4):315-320.
    [89] Tong Jin, Ma Yunhai, Chen Donghui, Sun Jiyu, Ren Luquan. Effects of vascular fibercontent on abrasive wear of bamboo[J]. Wear,2005,259:78-83.
    [90]贾兵云.凸包型仿生非光滑表面自由式磨料磨损行为[D].长春:吉林大学,2004.
    [91]马云海,佟金,周江,荣宝军,任露泉.穿山甲鳞片表面的几何形态特征及其性能[J].电子显微学报,2008,27(4):336-340.
    [92]王恒坤,几种天然生物材料结构特征和土壤磨料磨损行为[D].长春:吉林大学,硕士学位论文,2001.
    [93] Tong Jin, Wang Hengkun, Ma Yunhai, Ren Luquan. Two-body abrasive wear of theoutside shell surfaces of mollusc Lamprotula fibrosa Heude, Rapana venosaValenciennes and Dosinia anus Philippi[J]. Tribology Letters,2005,19(4):331-338.
    [94] Zhou B L. Some Progress in the biomimetic study of composite materials[J].Materials Chemistry and Physics,1996,45(2):114-119.
    [95] Rechenberg I. Tribological characteristics of sandfish[C]. Nature as Engineer andTeacher: Learning for Technology from Biological Systems, Shanghai,2003.
    [96]佟金,荣宝军,马云海,张金波.仿生棱纹几何结构表面的土壤磨料磨损[J].摩擦学学报,2008,28(3):193-197.
    [97]张永智.轮式水稻钵苗行载机关键部件仿生研究[D].长春:吉林大学,2009.
    [98]杨卓娟.凹坑形仿生非光滑轧辊耐磨性研究[D].长春:吉林大学,2006.
    [99]邓宝清.仿生非光滑活塞缸套系统耐磨机理分析[D].长春:吉林大学,2004.
    [100]董立春.凹坑型仿生形态汽车齿轮耐磨性能试验研究与数值模拟[D].长春:吉林大学,2010.
    [101] Gorb S. N. Frictional surfaces of the elytra-to-body arresting mechanism intenebrionid beetles (coleoptera: tenebrionidae): design of co-opted fields ofmicrotrichia and cuticle ultrastructure[J]. International Journal of Insect Morphology&Embryology,1998,27(3):205-225.
    [102] Parker A. R., Lawrence C. R. Water capture by a desert beetle[J]. Nature,2001,414:33-34.
    [103]孙久荣,戴振东.非光滑表面仿生学[J].自然科学进展,2008,18(3):241-246.
    [104]全国农业机械标准化技术委员会. JB/T9788-1999深松铲和深松铲柄[S].
    [105]周文凤,李昌安,王武顺.65Mn钢弹簧垫圈热处理工艺改进[J].热加工工艺,2010,39(6):163-164.
    [106]黄杉.65Mn弹簧夹紧夹头热处理工艺的研究[J].热加工工艺,2007,36(20):62-66.
    [107]全国热处理标准技术委员会.金属热处理标准应用手册[M].北京:机械工业出版社,1994.
    [108]李海龙.高锰钢性能的研究和提高[D].长春:长春理工大学,2007.
    [109]郭志军.土壤深松部件高效节能仿生设计及有限元分析[D].长春:吉林大学,2002.
    [110]曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    [111] Gill W. R., Vandenberg G. E. Soil dynamics in tillage and traction[M]. AgricultureHandbook, United States Department of Agriculture,1967.
    [112] Ren Luquan, Xu Xiaobao, Chen Bingcong, Cui Xiangxu, Wang Yuming ZhangBaolan, Ge Liaohai, Jin Guiping. Initial research on claw shapes of the typical soilanimals[J]. Transactions of The Chinese Society of Agricultural Machinery,1990,21(2):44-49.
    [113]李茂林.我国金属耐磨材料的发展和应用[J].铸造,2002,51(9):525-529.
    [114]张兴龙,周平安,杨振桓.犁铧的失效分析[J].摩擦磨损,1985,3:14-18.
    [115]田振祥,孙维连,李凌云.渗硼犁铧和等温淬火犁铧的磨损失效分析[J].摩擦磨损,1985,4:13-18.
    [116]沈新荣.抗磨肋条减少颗粒两相流对壁面磨损的机理研究[D].杭州:浙江大学,1998.
    [117] Tong Jin, Lv Tiebiao, Ma Yunhai, Wang Hengkun, Ren Luquan, Arnell R. D.Two-body abrasive wear features of surfaces of pangolin scales[J]. Journal of BionicEngineering,2007,4(2):77-84.
    [118]张炜,吴建民,吴劲锋,赵武云,黄晓鹏.苜蓿草粉对45#钢磨损性能的影响[J].农业工程学报,2009,25(10):117-120.
    [119]韩同同.高铬白口铸铁和7CrMnMoS磨损性能的研究[D].武汉:华中科技大学,2011.
    [120] Cundall P. A. A computer model for simulating progressive large scale movements inblocky system[C]. Proceedings of The International Symposium on Rock Fracture,International Society of Rock Mechanics,1971,1(8):129-136.
    [121] Cundall P. A., Strack O. D. L. A discrete numerical method for granular assemblies[J].Geotechnique,1979,29(1):47-65.
    [122] Maini T., Cundall P. A. A computer modeling of jointed rock mass[R].1978,404.
    [123] Cundall P. A. Ball—a program to model granular media using the distinct elementmethod[M]. London: Dames&Moore Advanced Technology Group,1978.
    [124] Strack O. D. L., Cundall P. A. The distinct element method as a tool for research ingranular media[M]. Minnesota: Department of Civil and Mineral Engineering,Institute of technology, University of Minnesota,1978.
    [125] Lemos J. V. A hybrid distinct element computational model for the half-plane[D].Minnesota: M.S. Thesis, University of Minnesota,1983.
    [126] Lorig L. T. A hybrid computational model for excavation and support design in jointedmedia[D]. Minnesota: Ph.d. Thesis, University of Minnesota,1984.
    [127] Lorig L. T, Brady B. H. G., Cundall P. A. Hybrid distinct element–boundary elementanalysis of jointed rock[J]. International Journal of Rock Mechanics and MiningScience&Geomechanics Abstracts,1996,23(4):303-312.
    [128] Williams J. R., Hocking G., Mustoe G. G. W. The theoretical basis of the discreteelement method[C]. Proceedings of The NUMETA`85Conference, Swansea, January1985,897-906.
    [129] kawai T. New discrete models and their application to seismic response analysis ofstructures[J]. Nuclear Engineering and Design,1978,48(1):207-229.
    [130] Itasca Consulting Group, Inc. UDEC (Universal Distinct Element Code), Version2.0.Minneapolis: ICG,1998.
    [131] Itasca Consulting Group, Inc.3-DEC (3-Dimensional Distinct Element Code), Version3.1. Minneapolis: ICG,2000.
    [132] Itasca Consulting Group, Inc. PFC2D (Particle Flow Code in2-Demensional), Version3.0. Minneapolis: ICG,2002.
    [133] Itasca Consulting Group, Inc. PFC2D (Particle Flow Code in3-Demensional), Version2.0. Minneapolis: ICG,1999.
    [134] Wang C, Tannant D. D, Lilly P. A. Numerical analysis of the stability of heavilyjointed rock slopes using PFC-2D[J]. International Journal of Rock Mechanics andMining Sciences,2003,40:415-424.
    [135]王泳嘉.离散元法—一种适用于节理岩石力学分析的数值方法[C].第一届全国岩石力学数值计算及模型试验讨论会文集,西南交通大学出版社,1986,32-37.
    [136]中华人民共和国建设部. GB/T50123-1999土工试验方法标准[S].
    [137]南京水利科学研究院.土工测试规程(SL237-1999)[M].北京:中国水利水电出版社,1999.
    [138]杨光,田湛良.土的弹性模量测试方法的研究[J].城市道桥与防洪,2006,5:145-147.
    [139]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [140]张锐,李建桥,周长海,许述财.推土板表面形态对土壤动态行为影响的离散元模拟[J].农业工程学报,2007,23(9):13-19.
    [141]张锐,李建桥,许述财,李因武.推土板切土角对干土壤动态行为影响的离散元模拟[J].吉林大学学报(工学版),2007,37(4):822-827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700