用户名: 密码: 验证码:
荸荠枯萎病菌病原学、分子检测及防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荸荠枯萎病是中国荸荠生产上的最重要病害之一,主要为害植株的茎基部,最终导致植株倒伏或枯死,病株地下部结出发育差的浅白色球茎或不结球茎,或者球茎变成黑褐色腐烂,从而严重影响了荸荠的产量和品质。目前,对该病害只在国内有报道,且只进行了病原菌形态学鉴定、生物学特性和化学防治方面的初步研究,并没有进行系统的研究。本研究通过形态学、致病性测定和分子生物学手段对荸荠枯萎病菌进行鉴定,在此基础上对荸荠枯萎病菌遗传多样性、病原菌分子检测及病害田间发生动态进行研究并结合生产实际探讨了病害的防治技术。研究结果如下:
     1.为了鉴定荸荠枯萎病的病原菌,从湖北,浙江,福建,安徽,湖北,湖南6个不同省的发病荸荠植株上分离获得69株镰刀菌。根据形态学及分子生物学特征鉴定出了Fusarium commune (92.8%)是主要的分离物,广泛地分布在这6个省,在湖北省和浙江省还发现了藤仓赤霉复合种(GFSC)的新种(5.8%),同时在湖北省还发现了一种未知的镰刀菌(1.4%)。随机从不同省份选择了30株F. commune菌株和所有的GFSC菌株分析其线粒体小亚基rDNA (mtSSU),α-延伸因子(EF-1α)和核糖体基因间隔区(IGS)的序列。最大简约法和贝叶斯方法单独或联合分析这3个序列片段均显示这2种镰刀菌分别形成一个独立的分支。不同地方的菌株位于散布于系统发育树的不同分支上,显示与地理来源无联系。致病性测定结果表明这3种镰刀菌均可导致荸荠‘团风七号’品种枯萎,病原菌致病力大小显示与地理来源无相关性。这是在中国首次报道F. commune,藤仓赤霉复合种(GFSC)的新种,Fusarium sp是荸荠枯萎病的病原菌。
     2.建立了适合于F. commune的ISSR-PCR反应体系,对34条ISSR引物进行筛选,获得5条具有较高的多态性的ISSR引物。用这5条引物对供试的60株荸荠枯萎病菌F. commune进行ISSR扩增,对其遗传多样性分析显示,基因多样性指数(H)为0.22,Shannon信息指数(Ⅰ)为0.35,表明我国荸荠枯萎病菌具有丰富的遗传多样性。对不同地理种群遗传结构与分化分析结果表明,荸荠枯萎病菌在各群体间遗传多样性存在差异,群体内多样性大于群体间多样性,地理种群间存在着一定的基因流动,但各种群间的基因流动受到了一定的阻碍。6个省份11个不同地区子群体间遗传变异结果表明,湖北省团风县和福建省龙海市遗传相似性最低,遗传距离最大。湖北省团风县和湖北省孝感市遗传相似性最高,遗传距离最小。按照非加权算术平均(UPGMA)法聚类对种群聚类分析发现,11个不同种群可聚为四类,其中湖北省和安徽省群体亲缘关系最近。当相似系数设定为0.79时,用UPGMA聚类分析法可将60个供试菌株分为4个类群,其中类群Ⅱ包括了49个菌株,为我国荸荠枯萎病菌的一个优势类群。同时,聚类分析也说明菌株之间的遗传多态性与其地理来源之间无明显的相关性。
     3.根据荸荠枯萎病病原菌F. commune的mtSSU序列设计了一对引物(FO1/FO2)用于实时荧光定量PCR(qPCR)检测。参与引物特异性PCR检测的41个菌株,只有来自6个不同省份的的21株F. commune扩增出一条大小为178bp的特异性条带。用10倍梯度稀释的F. commune基因组DNA,根据扩增结果绘制qPCR标准曲线为:Y=-3.707x+31.85(R2=0.994,E=86.08%),检测灵敏度为1fg/μ1。加入10ng植物组织DNA至10倍梯度稀释的F. commune基因组DNA,根据扩增结果绘制标准曲线为:Y=-4.179x+33.84(R2=0.990,E:73.38%),检测灵敏度为1pg/μ1.由于植物组织DNA的加入影响了qPCR的扩增效率和标准曲线的相关系数,因此用加入植物DNA后获得的标准曲线计算植物组织中F. commune的DNA含量。以不同浓度分生孢子液接种土壤的总DNA为模板进行qPCR扩增,土壤中分生孢子数目的对数(X)和对应的土壤DNA在qPCR反应的CT值(Y)之间的线性关系为:Y=-3.039X+43.48(R2=0.990,E=113.30%),检测灵敏度为1,000个孢子/克土壤。荸荠茎秆中F. commune的DNA含量与枯萎病发病严重度呈显著正相关,不同发病级别植株下土壤中的F. commune的含量与枯萎病发病严重度无显著相关性。2012年荸荠枯萎病病情指数和F. commune在土壤中的含量呈显著正相关Y=2674X+24750,但是2011年荸荠枯萎病病情指数和F. commune在土壤中的含量无显著相关性。该qPCR方法可以快速和特异性地检测植物和土壤样品中的F.commune,这将有利于对病原菌进行监测,并有利于病害的防治。
     4.2010-2012年荸荠枯萎病田间发生动态调查数据表明,三年田间病害发展趋势基本一致,病害于8月中旬开始发生,由于温度较高,一直处于零星发生阶段。8下旬-9月上旬,温度适宜,病害开始缓慢增长。9月下旬-10月中旬为该病的高峰期,之后病害发生呈不断增长趋势至最后一次调查。三年的病情指数均与温度呈负相关,但各年份的病情指数与相对湿度和降雨量无显著相关性。通过12种药剂在PDA平板上对F. commune进行的抑菌试验,筛选出10%苯醚.甲环唑,25%多菌灵可湿性粉剂,40%氟硅唑,25%嘧菌酯4种药剂用于处理荸荠球茎。球茎药剂处理室内盆栽和田间试验结果均表明四种药剂处理均有利于荸荠出苗。球茎药剂处理假植到大田2个月后经多菌灵和氟硅唑处理的球茎对荸荠枯萎病仍有一定的防治效果,防效分别为22.3%,27.0%,嘧菌酯和苯醚.甲环唑均无防效。荸荠枯萎病抗病评价研究结果表明,沙洋荠、肇庆荠、韶关马坝荠、桂林-1在两年的田间试验中均表现出对枯萎病有较强的抗性。
Fusarium wilt is one of the most important diseases of Eleocharis dulcis (Chinese water chestnut) in China. The stem base is the main infection area. The disease can eventually lead the whole plant to fall down or death. The underground of the diseased plants bear white corms, or not bear corms, or corms become dark brown rot. E. dulcis yield and quality can be significantly reduced. Thus far the disease has only been reported in China, and limited studies on morphological identification, biological characteristic and chemical control have been conducted. In this paper, the causal agents of Fusairum wilt were identified based on morphology, pathogenicity and molecular anlyses. And then, genetic divercity, molecular detection of the pathogen, occurence and control of Fusarium wilt disease were studied. The research results were summarized as follows:
     1. In order to characterize the pathogens responsible,69Fusarium isolates were collected from diseased plants in E. dulcis production areas of the Chinese provinces Anhui, Fujian, Hubei, Hunan, Jiangsu and Zhejiang. These were then identified based on morphological and molecular characteristics. F. commune was the most common species (92.8%), and widely distributed in the six provinces, a novel species within the Gibberella fujikuroi Species Complex (GFSC) was found in Hubei and Zhejiang provinces (5.8%), and an unidentified Fusarium sp. was also found in Hubei province (1.4%). Thirty F. commune isolates from different provinces and four GFSC isolates were selected for sequence analyses of the translation elongation factor1-a (EF-la), the mitochondrial small subunit rDNA (mtSSU), and the nuclear ribosomal intergenic spacer region (IGS). Maximum parsimony and Bayesian analyses of the multilocus sequence data of these two species plus other taxa showed that the two species formed two distinct, well-supported clades among the three individual and combined gene genealogies. Isolates from different locations were scattered, with no evidence of geographic specialization. Pathogenicity assays showed that the two Fusarium species, including the unidentified Fusarium sp. were pathogenic to E. dulcis cv.'Tuanfeng seven'. There was no relationship between the source of isolates and their pathogenicity. This is the first description of F. commune, a novel species within the GFSC and an unidentified Fusarium sp. as causal agents of Fusarium wilt of E. dulcis in China.
     2. A suitable ISSR-PCR reaction system for F. commune was established. Five ISSR primers showed high polymorphism were screened out from34ISSR primers. The five primers were used to amplify60isolates of F. commune. The result of genetic diversity analyses showed that gene diversity index (H) and Shannon's information index (I) were0.22and0.35, which indicated that the genetic diversity was considerably abundant among F. commune. The results of population genetic structure and differentiation of different geographical groups indicated that genetic variation within population was the main source of genetic variation. There was a certain gene flow between different geographical groups, however, it was obstructed. The results of genetic variation of11different geographical groups from six provinces showed that the genetic identity between Tuanfeng county, Hubei province and Longhai city, Fujian province was the lowest, and the gentetic distance was the most longest. The genetic identity between Tuanfeng county, Hubei province and Xiaogan city, Hubei province was the highest, and the gentetic distance was the closest. The11different geographical groups were clustered into four clusters by unweighted pair-group mean average (UPGMA) analysis, and the genetic relationship between population of Hubei province and Anhui province was the closest. The60tested isolates were cluster into four clusters at the genetic similar coefficient0.79based on UPGMA analysis. The cluster Ⅱ contained49isolates, including the majority of tested isolates, which indicated that cluster II was the dominant population of F. commune in China. There was no significant correlation between the genetic polymorphism of isolates and their geographical origins.
     3. A SYBR Green I-based real-time quantitative polymerase chain reaction (qPCR) assay was developed based on mtSSU sequences of F. commune. Assay specificity of FO1/FO2primers was tested on41fungal isolates. A single PCR band of approximately178bp DNA fragment was only amplified for21tested F. commune isolates collected from six provinces. Standard regression line for10-fold serial dilutions F. commune DNA was Y=-3.707X+31.85(R2=0.994, E=86.08%), with a detection limit of1fg/μl. When10ng DNA extracted from plant tissue was added to the10-fold serial dillutions of F. commune genomic DNA, the standard regression line was Y=-4.179X+33.84(R2=0.990, E=73.38%), with a detection limit of1pg/μl. Since the efficiency and correlation coefficient of the qPCR assay standard regression lines were influenced by presence of the host DNA, standard regression line of fungal genomic DNA added with the host DNA was used to estimate the amount of F. commune in plant tissues.When conidia were added to sterile soil, a linear relationship was obtained between the logarithm of inoculum concentrations (X) and the quantification cycle threshold values (Y):Y=-3.039X+43.48(R2=0.990, E=113.30%). The amount of target fungal DNA in stem tissues detected by qPCR was significantly correlated with the disease level, however, the qPCR assay showed no significant positive correlations between spore density in soil of different Fusarium wilt severity groups and disease level. The spore density of F. commune detected was positively correlated with disease index in the2012growing season, but not in2011. The qPCR method can be used for rapid and specific detection of F. commune in plant and soil samples, which will facilitate monitoring of this pathogen, and potentially improve plant disease management.
     4. The results of occurence study for Fusarium wilt of E. dulcis throughout2010to2012growing seasons showed that the disease development trend was nearly the same during the three years. Symptoms of the disease were initially occurred in the middle August. Due to the high temperature, the disease sporadically happened; Because of the appropriate temperature, late August to early September was suitable for the disease, and it began to grow slowly; Late September to middle October was the peak stage of the disease and disease index kept increase until the last survey. The disease index of the three years was negatively correlated with temperature, but has no significant correlation with relative humidity and rainfall.10%difenoconazole,25%carbendazim,40%flusilazole and25%azoxystrobin were screened out from12fungicides through inhibition of mycelial growth of F. commune and they were used for fungicidal corm treatments. The results of pot and field fungicidal corm treatments experiment indicated that all the four fungicides were good for E. dulcis corms to germinate. The results of field fungicidal corm treatments experiment indicated that two months after provisional planting, corms treated by carbendazim and flusilazole still have control effect, with control efficiency of22.3%and27.0%, respectively. Neither difenoconazole nor azoxystrobin had control efficiency. The evaluation of E. dulcis cultivar resistance showed that Shayang, Zhaoqing, Shaoguan maba and Guilin-1water chestnut have a relative strong resistance to Fusarium wilt in two year field trials.
引文
1.方中达.植物病理研究方法(第三版)北京:中国农业出版社,1998
    2.李本金,童川拉,罗文彬,谢世勇,卢同.荸荠枯萎病菌生物学特性及药剂防治研究.福建农业学报,2005,20:23-25
    3.李川,刘海英,范永山,李聪文.植物病原真菌群体遗传学研究进展.河北农业大学学报,2003,z1:177-179
    4.蒋冬花,陈鸿逵,王拱辰.荸荠枯萎病浙江省一种荸荠新病害.植物病理学报,1988,18:197-202
    5.孔庆东.中国水生蔬菜品种资源.湖北:湖北科学技术出版社,2005
    6.潘丽,朱志贤,郑露,黄俊斌.荸荠主要病害的研究进展.长江蔬菜,2010,14:10-14
    7.颜梅新.荸荠贮藏期真菌性病害种类调查鉴定及棘孢木霉的生物学特性研究.[硕士学位论文].南宁:广西大学,2005
    8.刘爱媛.荸荠枯萎病病原菌及其生物学研究.植物保护学报,1999,26:255-259
    9.鲁红学,周燚,赵明敏,王莉,徐万才.荸荠枯萎病病原鉴定及生物学特性.湖北农业科学,2007,45:753-754
    10.有为.中国水生蔬菜.北京:中国农业出版社,1999
    11.臧睿.中国苹果树腐烂病菌的种群组成,分子检测及其ISSR遗传分析.[博士学位论文].杨凌:西北农林科技大学,2012
    12.张素轩.镰刀菌属分类进展.真菌学报,1991,10:85-94
    13. Abdel-Satar MA, Khalil MS, Mohmed I, Abd-Elsalam KA, Verreet JA. Molecular phylogeny of Fusarium species by AFLP fingerprint. African Journal of Biotechnology, 2003,2:51-55
    14. Alaei H, Baeyen S, Maes M, Hofte M, Heungens K. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. J Microbiol Methods,2009,76:136-145
    15. Assigbetse K, Fernandez D, Dubois M-P, Geiger J-P. Differentiation of Fusarium oxysporum f. sp. vasinfectum races on cotton by random amplified polymorphic DNA(RAPD) analysis. Phytopathology,1994,84:622-626
    16. Baysal O, Siragusa M, Ikten H, Polat I, Gumrukcu E, Yigit F, et al. Fusarium oxysporum f. sp. lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiol Mol Plant P, 2009, 74: 68-75
    17. Bentley S, Pegg K, Dale J. Optimization of RAPD-PCR fingerprinting to analyse genetic variation within populations of Fusarium oxysporum f. sp. cubense. Journal of phytopathology,1994,142:64-78
    18. Biles C, Martyn R. Local and systemic resistance induced in watermelons by formae speciales of Fusarium oxysporum. Phytopathology,1989,79:856-860
    19. Bithell SL, McKay A, Butler RC, Herdina, Ophel-Keller K, Hartley D, et al. Predicting take-all severity in second-year wheat using soil DNA concentrations of Gaeumannomyces graminisvar.tritici determined with qPCR. Plant Dis,2012,96: 443-451
    20. Bogale M, Wingfield BD, Wingfield MJ, Steenkamp ET. Characterization of Fusarium oxysporum isolates from Ethiopia using AFLP, SSR and DNA sequence analyses. Fungal Diversity,2006,23:51-66
    21. Bogale M, Wingfield BD, Wingfield MJ, Steenkamp ET. Species-specific primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum. Fems Microbiol Lett,2007,271:27-32
    22. Booth, C. The Genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, England.1971
    23. Britz H, Wingfield B, Coutinho T, Wingfield M. Sequence characterized amplified polymorphic markers for the pitch canker pathogen, Fusarium circinatum. Molecular Ecology Notes,2002,2:577-580
    24. Brooks SA, Gabreski N, Miller D, Brisbin A, Brown HE, Streeter C, et al. Whole-genome SNP association in the horse:identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS genetics,2010,6:e1000909
    25. Chandra NS, Wulff EG, Udayashankar AC, Nandini BP, Niranjana SR, Mortensen CN, et al. Prospects of molecular markers in Fusarium species diversity. Appl Microbiol Biotechnol,2011,90:1625-1639
    26. Consortium BH. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science,2009,324:528-532
    27. Davis R, Colyer P, Rothrock C, Kochman J. Fusarium wilt of cotton:population diversity and implications for management. Plant Dis,2006,90:692-703
    28. Desjardins AE. Fusarium mycotoxins:chemistry, genetics, and biology. American Phytopathological Society (APS Press) 2006
    29. Dinolfo MI, Stenglein SA, Moreno MV, Nicholson P, Jennings P, Salerno GL. ISSR markers detect high genetic variation among Fusarium poae isolates from Argentina and England. Eur J Plant Pathol,2010,127:483-491
    30. Edel-Hermann V, Gautheron N, Steinberg C. Genetic diversity of Fusarium oxysporum and related species pathogenic on tomato in Algeria and other Mediterranean countries. Plant Pathol,2012,61:787-800
    31. Ellis M, Arias MD, Jimenez DC, Munkvold G, Leandro L. First Report of Fusarium commune Causing Damping-off, Seed Rot, and Seedling Root Rot on Soybean (Glycine max) in the United States. Plant Dis,2013,97:1557-1562
    32. Elmer WH, Marra RE. New species of Fusarium associated with dieback of Spartina alterniflora in Atlantic salt marshes. Mycologia,2011,103:806-819
    33. Fernandez-Ortuno D, Waalwijk C, Van der Lee T, Fan J, Atkins S, West JS, et al. Simultaneous real-time PCR detection of Fusarium asiaticum, F. ussurianum and F. vorosii, representing the Asian clade of the F. graminearum species complex. Int J Food Microbiol,2013,166:148-154
    34. Fourie G, Steenkamp E, Gordon T, Viljoen A. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Appl Environ Microb,2009,75:4770-4781
    35. Fourie G, Steenkamp ET, Ploetz RC, Gordon TR, Viljoen A. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect Genet Evol,2011,11:533-542
    36. Freeman S, Nizani Y, Dotan S, Even S, Sando T. Control of Colletotrichum acutatum in strawberry under laboratory, greenhouse, and field conditions. Plant Dis, 1997, 81: 749-752
    37. Gerlach, W., and H. Nirenberg. The Genus Fusarium-A Pictorial Atlas. Land-Forstwirtschaft, Berlin-Dahlem:Mitt. Biol. Bundesanst.1982
    38. Gilbert J, Haber S. Overview of some recent research developments in fusarium head blight of wheat. Canadian Journal of Plant Pathology, 2013,35:149-174
    39. Gill P. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int J Legal Med, 2001,114:204-210
    40. Goodwin P, Kirkpatrick B, Duniway J. Identification of Phytophthora citrophthora with cloned DNA probes. Appl Environ Microb, 1990, 56:669-674
    41. Guadet J, Julien J, Lafay JF, Brygoo Y. Phylogeny of some Fusarium species, as determined by large-subunit rRNA sequence comparison. Mol Biol Evol,1989, 6: 227-242
    42. Gundersen DE, Lee I-M, Rehner SA, Davis RE, Kingsbury DT. Phylogeny of mycoplasmalike organisms (phytoplasmas):a basis for their classification. J Bacteriol,1994,176:5244-5254
    43. Hamrick J. Gene flow and distribution of genetic variation in plant populations. Differentiation patterns in higher plants/edited by Krystyna M. Urbanska, 1987
    44. Henson JM, French RC. The polymerase chain reaction and plant disease diagnosis. Papers in Plant Pathology,1993,2
    45. Hogg A, Johnston R, Dyer A. Applying real-time quantitative PCR to Fusarium crown rot of wheat. Plant Dis,2007,91:1021-1028
    46. Hogg AC, Johnston RH, Johnston JA, Klouser L, Kephart KD, Dyer AT. Monitoring fusarium crown rot populations in spring wheat residues using quantitative real-time polymerase chain reaction. Phytopathology, 2010, 100:49-57
    47. Hoque A RS, Arima S, Takagi Y. Efficient in vitro germination and shoot proliferation of chilling-treated water chestnut (Trapa japonica Flerov) embryonal explants. In Vitro Cellular & Developmental Biology-Plant, 2001,37:369-374
    48. Jimenez-Fernandez D, Montes-Borrego M, Jimenez-Diaz RM, Navas-Cortes JA, Landa BB. In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay. Phytopathology,2011,101:250-262
    49. Jimenez-Fernandez D, Montes-Borrego M, Navas-Cortes JA, Jimenez-Diaz RM, Landa BB. Identification and quantification of Fusarium oxysporum in planta and soil by means of an improved specific and quantitative PCR assay. Appl Soil Ecol, 2010,46:372-382
    50. Kim M-S, Stewart JE, Dumroese RK, Klopfenstein NB. Occurrence of the Root Rot Pathogen, Fusarium commune, in Forest Nurseries of the Midwestern and Western United States. Journal of Phytopathology,2012,160:112-114
    51. Kornerup A, Wanscher J. Methuen handbook of colour (3 rd) Methuen. In. London 1978.
    52. Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microb, 1998,64:2463-2472
    53. Lacourt I, Duncan J. Specific detection of Phytophthora nicotianae using the polymerase chain reaction and primers based on the DNA sequence of its elictin gene ParA1. Eur J Plant Pathol,1997,103:73-83
    54. Landa BB, Navas-Cortes JA, del Mar Jimenez-Gasco M, Katan J, Retig B, Jimenez-Diaz RM. Temperature response of chickpea cultivars to races of Fusarium oxysporum f. sp. ciceris, causal agent of Fusarium wilt. Plant Dis, 2006, 90:365-374
    55. Lander ES. The new genomics:global views of biology. Science, 1996, 274: 536-539
    56. Leach M, Agudelo P, Lawton-Rauh A. Genetic variability of Rotylenchulus reniformis. Plant Dis,2012,96:30-36
    57. Leslie JF, Summerell BA. The Fusarium laboratory manual. Blackwell publishing 2006.
    58. Lewontin R C. The apportionment of human diversity. Evol Biol, 1972, 6: 381-398.
    59. Li K, Rouse D, German T. PCR primers that allow intergeneric differentiation of ascomycetes and their application to Verticillium spp. Appl Environ Microb, 1994, 60:4324-4331
    60. Li S, Hartman G. Molecular detection of Fusarium solani f. sp. glycines in soybean roots and soil. Plant Pathol,2003,52:74-83
    61. Li S, Tam YK, Hartman GL. Molecular differentiation of Fusarium solani f. sp. glycines from other F. solani based on mitochondrial small subunit rDNA sequences. Phytopathology, 2000, 90:491-497
    62. Li W, Li D, Twieg E, Hartung JS, Levy L. Optimized quantification of unculturable Candidatus Liberibacter spp. in host plants using real-time PCR. Plant Dis, 2008,92: 854-861
    63. Lievens B, Claes L, Vakalounakis DJ, Vanachter AC, Thomma BP. A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum. Environ Microbiol, 2007,9:2145-2161
    64. Lievens B, Thomma BP. Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology,2005, 95:1374-1380
    65. Lin Y-H, Su C-C, Chao C-P, Chen C-Y, Chang C-J, Huang J-W, et al. A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4. Eur J Plant Pathol, 2012, 135:395-405
    66. Liu F, Wei J-g, Zhan R-l, Ou X-c, Chang J-m. Genetic diversity of Fusarium mangiferae isolated from mango malformation disease in China. Sci Hort,2014,165: 352-356
    67. Lopez-Mondejar R, Beaulieu R, Ros M, Pascual JA. SCAR-based real-time TaqMan PCR for early detection of Fusarium oxysporum in melon seedlings under greenhouse nursery conditions. Crop Prot,2012,33:1-6
    68. Lopez-Mondejar R, Beaulieu R, Ros M, Pascual JA. SCAR-based real-time TaqMan PCR for early detection of Fusarium oxysporum in melon seedlings under greenhouse nursery conditions. Crop Prot,2012,33:1-6
    69. Manulis S, Kogan N, Reuven M, Ben-Yephet Y. Use of the RAPD technique for identification of Fusarium oxysporum f. sp. dianthi from carnation. Phytopathology, 1994,84:98-101
    70. Marasas WF, Rheeder JP, Lamprecht SC, Zeller KA, Leslie JF. Fusarium andiyazi sp. nov., a new species from sorghum. Mycologia,2001,93:1203-1210
    71. Martin RR, James D, Levesque CA. Impacts of molecular diagnostic technologies on plant disease management. Annu Rev Phytopathol,2000,38:207-239
    72. Matheron ME, McCreight JD, Tickes BR, Porchas M. Effect of planting date, cultivar, and stage of plant development on incidence of Fusarium wilt of lettuce in desert production fields. Plant Dis,2005,89:565-570
    73. Mbofung GCY, Fessehaie A, Bhattacharyya MK, Leandro LFS. A new TaqMan real-Time polymerase chain reaction assay for quantification of Fusarium virguliforme in Soil. Plant Dis,2011,95:1420-1426
    74. Mbofung GCY, Pryor BM. A PCR-based assay for detection of Fusarium oxysporum f. sp. lactucae in lettuce seed. Plant Dis,2010,94:860-866
    75. Mbofung GY, Hong SG, Pryor BM. Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology,2007,97:87-98
    76. McDonald BA. The population genetics of fungi:tools and techniques. Phytopathology,1997,87:448-453
    77. Mes JJ, Weststeijn EA, Herlaar F, Lambalk JJ, Wijbrandi J, Haring MA, et al. Biological and molecular characterization of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groups. Phytopathology,1999,89: 156-160
    78. Mishra PK, Fox RT, Culham A. Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. Ferns Microbiol Lett,2003,218: 329-332
    79. Nalim F, Elmer W, McGovern R, Geiser D. Multilocus phylogenetic diversity of Fusarium avenaceum pathogenic on lisianthus. Phytopathology,2009,99:462-468
    80. Nayaka SC, Shankar AU, Niranjana S, Wulff EG, Mortensen C, Prakash H. Detection and quantification of fumonisins from Fusarium verticillioides in maize grown in southern India. World journal of Microbiology and Biotechnology, 2010, 26:71-78
    81. Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Science,1973,70,3321-3
    82. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics,1978,89:583-590
    83. Nelson PE, Toussoun TA, Marasas W. Fusarium species:an illustrated manual for identification.1983,
    84. O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC. Multiple evolutionary origins of the fungus causing Panama disease of banana:concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences, 1998,95:2044-2049
    85. O'Donnell K, Kistler HC, Tacke BK, Casper HH. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences,2000,97:7905-7910
    86. Okubara P, Harrison L, Gatch E, Vandemark G, Schroeder K, du Toit L. Development and Evaluation of a TaqMan Real-Time PCR Assay for Fusarium oxysporum f. sp. spinaciae. Plant Dis,2013,97:927-937
    87. Olson H, Benson D. Characterization of Phytophthora spp. on floriculture crops in North Carolina. Plant Dis,2011,95:1013-1020
    88. Qu B, Li H, Zhang J, Xu Y, Huang T, Wu A, et al. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol,2008,57:15-24
    89. Ozer N, Koycii N. Evaluation of seed treatments for controlling Aspergillus niger and Fusarium oxysporum on onion seed. Phytopathologia Mediterranea,1998,37: 33-40
    90. Paul L. New Records of Fungi on Chinese Waterchestnut. American Midland Naturalist.,1962,67:184-193
    91. Ploetz RC. Variability in Fusarium oxysporumf. sp. cubense.Can J Bot 1990, 68:1357-1363
    92. Ploetz RC. Malformation:a unique and important disease of mango, Mangifera indica L. In Fusarium:Paul E. Nelson Memorial Symposium, American Phytopathological Society (APS) Press, St Paul.2001; 233-247
    93. Pooler M, Myung I, Bentz J, Sherald J, Hartung J. Detection of Xylella fastidiosa in potential insect vectors by immunomagnetic separation and nested polymerase chain reaction. Lett Appl Microbiol,1997,25:123-126
    94. Posada D, Crandall KA. Modeltest:testing the model of DNA substitution. Bioinformatics,1998,14:817-818
    95. Primmer C, Borge T, Lindell J, S?tre GP. Single-nucleotide polymorphism characterization in species with limited available sequence information:high nucleotide diversity revealed in the avian genome. Mol Ecol, 2002, 11:603-612
    96. Pryor B, Gilbertson R. A PCR-based assay for detection of Alternaria radicina on carrot seed. Plant Dis,2001,85:18-23
    97. Ram R, Manuja S, Dhyani D, Mukherjee D. Evaluations of fortified fungicide solutions in managing corm rot disease of gladiolus caused by Fusarium oxysporum. Crop Prot,2004,23:783-788
    98. Reeb V, Lutzoni F, Roux C. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol, 2004,32:1036-1060
    99. Rep M, Kistler HC. The genomic organization of plant pathogenicity in Fusarium species. Curr Opin Plant Biol,2010,13:420-426
    100.Ronquist F, Huelsenbeck JP. MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics,2003,19:1572-1574
    101.Scarlett K, Tesoriero L, Daniel R, Guest D. Detection and quantification of Fusarium oxysporum f. sp. cucumerinum in environmental samples using a specific quantitative PCR assay. Eur J Plant Pathol,2013,137:315-324
    102.Schmale D, Bergstrom G. Fusarium head blight in wheat. Plant Health Instructor, doi, 2003,10:1094
    103.Schots A, Dewey F, Oliver R. Modern assays for plant pathogenic fungi: identification, detection and quantification. Cab International 1994.
    104.Schriewer A, Wehlmann A, Wuertz S. Improving qPCR efficiency in environmental samples by selective removal of humic acids with DAX-8. J Microbiol Meth,2011, 85:16-21
    105.Schroers H-J, Baayen R, Meffert J, De Gruyter J, Hooftman M, O'Donnell K. Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begoniax hiemalis) and the sister taxon of the Fusarium oxysporum species complex. Mycologia,2004,96:393-406
    106.Schubert R, Bahnweg G, Nechwatal J, Jung T, Cooke D, Duncan J, et al. Detection and quantification of Phytophthora species which are associated with root-rot diseases in European deciduous forests by species-specific polymerase chain reaction. Eur J Forest Pathol,1999,29:169-188
    107.Sivaramakrishnan S, Kannan S, Singh S. Genetic variability of Fusarium wilt pathogen isolates of chickpea (Cicer arietinum L.) assessed by molecular markers. Mycopathologia,2002,155:171-178
    108.Skovgaard K, Rosendahl, S., O'Donnell, K., and Hirenberh, H. I. Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia,2003,95:630-636
    109.Smith JA, O'Donnell K, Mount LL, Shin K, Peacock K, Trulock A, et al. A novel Fusarium species causes a canker disease of the critically endangered conifer, Torreya taxifolia. Plant Dis,2011,95:633-639
    110.Snyder, WC, Hansen, HN. The species concept in Fusarium. Amer. J Bot,1994, 27:64-67
    111.Stewart JE, Abdo Z, Dumroese RK, Klopfenstein NB, Kim MS. Virulence of Fusarium oxysporum and F. commune to Douglas-fir(Pseudotsuga menziesii) seedlings. Forest Pathol,2012,42:220-228
    112.Stewart JE, Kim MS, James RL, Dumroese RK, Klopfenstein NB. Molecular Characterization of Fusarium oxysporum and Fusarium commune Isolates from a Conifer Nursery. Phytopathology,2006,96:1124-1133
    113.Suarez MB, Walsh K, Boonham N, O'Neill T, Pearson S, Barker I. Development of real-time PCR (TaqMan) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiol Biochem,2005,43:890-899
    114.Suga H, Gale L, Kistler H. Development of VNTR markers for two Fusarium graminearum clade species. Molecular ecology notes,2004,4:468-470
    115.Summerell BA, Salleh B, Leslie JF. A utilitarian approach to Fusarium identification. Plant Dis,2003,87:117-128
    116.Sun X, Kang S, Zhang Y, Tan X, Yu Y, He H, et al. Genetic diversity and population structure of rice pathogen Ustilaginoidea virens in China. PLoS One,2013,8: e76879
    117.Susumu A, Hoque, A., and Sakae, A. Comparison of growth and yield performance of several water chestnut species collected from Southwestern Japan and Middle China. Plant Prod. Sci.,1999,2:273-278
    118.Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), version 4.0b 10.2003
    119.Syvanen A-C. Accessing genetic variation:genotyping single nucleotide polymorphisms. Nat Rev Genet,2001,2:930-942
    120.Taylor B, Manhart J, Amasino R, Glick B, Thompson J. Isolation and characterization of plant DNAs. Methods in plant molecular biology and biotechnology.,1993,37-47
    121.Thangavelu R, Kumar KM, Devi PG, Mustaffa M. Genetic diversity of Fusarium oxysporum f. sp. cubense isolates (Foc) of India by inter simple sequence repeats (ISSR) analysis. Mol Biotechnol,2012,51:203-211
    122.Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    123.Tsuchihashi Z, Dracopoli N. Progress in high throughput SNP genotyping methods. The pharmacogenomics journal,2002,2:103-110
    124.Van Poucke K, Monbaliu S, Munaut F, Heungens K, De Saeger S, Van Hove F. Genetic diversity and mycotoxin production of Fusarium lactis species complex isolates from sweet pepper. Int J Food Microbiol,2012,153:28-37
    125.Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol,2002,34: 275-306
    126.Waeschenbach A, Webster BL, Bray RA, Littlewood D. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes:Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Mol Phylogenet Evol,2007, 45:311-325
    127.Wang B, Brubaker CL, Burdon JJ. Fusarium species and Fusarium wilt pathogens associated with native Gossypium populations in Australia. Mycol Res,2004,108: 35-44
    128.Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res,1990,18:7213-7218
    129.Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990,18:6531-6535
    130.Werner M, Herbon N, Gohlke H, Altmuller J, Knapp M, Heinrich J, et al. Asthma is associated with single-nucleotide polymorphisms in ADAM33. Clinical & Experimental Allergy,2004,34:26-31
    131.Werner M, Sych M, Herbon N, Illig T, Konig IR, Wjst M. Large-scale determination of SNP allele frequencies in DNA pools using MALDI-TOF mass spectrometry. Hum Mutat,2002,20:57-64
    132.Wright S. Evolution in Mendelian populations. Genetics,1931,16:97
    133.Wulff EG, S?rensen JL, Liibeck M, Nielsen KF, Thrane U, Torp J. Fusarium spp. associated with rice Bakanae:ecology, genetic diversity, pathogenicity and toxigenicity. Environ Microbiol,2010,12:649-657
    134.Wunsch MJ, Baker AH, Kalb DW, Bergstrom GC. Characterization of Fusarium oxysporum f. sp. loti forma specialis nov., a monophyletic pathogen causing vascular wilt of birdsfoot trefoil. Plant Dis,2009,93:58-66
    135.Yadav MK, Babu BK, Saxena AK, Singh BP, Singh K, Arora DK. Real-time PCR assay based on topoisomerase-II gene for detection of Fusarium udum. Mycopathologia,2011,171:373-381
    136.Yan G, Smiley RW, Okubara PA, Skantar AM, Reardon CL. Developing a real-Time PCR assay for detection and quantification of Pratylenchus neglectus in Soil. Plant Dis,2013,97:757-764
    137.Yli-Mattila T, Gagkaeva T. Molecular chemotyping of Fusarium graminearum, F. culmorum, and F. cerealis isolates from Finland and Russia. In Molecular Identification of Fungi. Springer 2010; 159-177
    138.Yli-Mattila T, Paavanen-Huhtala S, Bulat SA, Alekhina IA, Nirenberg HI. Molecular, morphological and phylogenetic analysis of the Fusarium avenaceumlF. arthrosporioideslF. tricinctum species complex-a polyphasic approach. Mycol Res, 2002,106:655-669
    139.You YL, Duan, X.W., Wei, X.Y., Su, X.G., Zhao, M.M., Sun, J., Ruenroengklin, N., Jiang, Y.M. Identification of major phenolic compounds of Chinese water chestnut and their antioxidant activity. Molecules.,2007,12:842-852
    140.Young JM, Rawlence NJ, Weyrich LS, Cooper A. Limitations and recommendations for successful DNA extraction from forensic soil samples:A review. Sci Justice, 2014
    141.Yu JM, Babadoost M. Occurrence of Fusarium commune and F. oxysporum in Horseradish Roots. Plant Dis,2013,97:453-460
    142.Yun S-H, Srivastava SK, Huang X, Brar HK, Fakhoury AM, Bluhm BH, et al. The genome sequence of the fungal pathogen Fusarium virguliforme that causes sudden death syndrome in soybean. PLoS ONE,2014,9:e81832
    143.Zambounis A, Paplomatas E, Tsaftaris A. Intergenic spacer-RFLP analysis and direct quantification of Australian Fusarium oxysporum f. sp. vasinfectum isolates from soil and infected cotton tissues. Plant Dis,2007,91:1564-1573
    144.Zhang X, Zhang H, Pu J, Qi Y, Yu Q, Xie Y, et al. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical Race 4 in soil. PLOS ONE, 2013,8:e82841
    145.Zhou Q, Chen Y, Yang Y, Ahmed HU, Hwang SF, Strelkov SE. Effect of inoculum density and quantitative PCR-based detection of Rhizoctonia solani AG-2-1 and Fusarium avenaceum on canola. Crop Prot,2014,59:71-77
    146.Zhu Z, Zheng L, Pan L, Hsiang T, Huang J. Identification and Characterization of Fusarium Species Associated with Wilt of Eleocharis dulcis (Chinese water chestnut) in China. Plant Dis,2014,
    147.Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20: 176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700