用户名: 密码: 验证码:
棉花丝裂原活化蛋白激酶基因GbMPK3的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝裂原活化蛋白激酶(MAPK)信号级联广泛存在于各种真核生物体内,在细胞信号传导的过程中具有重要作用。本研究从海岛棉Hai7124根系中分离到一个在受黄萎病菌侵染时上调表达的MAPK类基因GbMPK3,并分别在本氏烟和陆地棉YZ1中对其在植物抗非生物胁迫和生物胁迫中的功能和调控机理进行了分析,取得的主要结果如下:
     1. GbMPK3的克隆及序列分析
     从海岛棉Hai7124受黄萎病菌V991处理的RNA-seq数据库中分离到一条在黄萎病菌侵染时表达量明显变化的EST序列(CL1Contig1773),通过RACE和Genome-walking获得该基因的全长和启动子序列。氨基酸序列比对和系统进化树分析发现其编码的蛋白具有MAPK的典型特征,属于MAPK基因家族TEY亚家族A组的成员,并与拟南芥MPK3的同源度为68%,因此将其命名为GbMPK3。将GbMPK3蛋白的N端融合GFP,瞬时转化烟草表皮细胞,结果显示GbMPK3蛋白主要定位于细胞核。
     2. GbMPK3的表达模式分析利用RT-PCR和qPCR分析了GbMPK3的表达模式。结果表明GbMPK3的表达水平较低且具有组织特异性,在根系、花瓣、花药和纤维中表达量相对较高。GbMPK3在棉花根系中的表达还受到冷、高温、盐、甲基紫精(MV)和脱水等非生物逆境、水杨酸(SA)等激素以及黄萎病菌侵染的诱导。
     3.超量表达GbMPK3提高了烟草对干旱和氧化胁迫的耐受性构建了GbMPK3基因超量表达载体并分别转化烟草和棉花。通过抗性筛选和分子鉴定分别获得了高量表达GbMPK3的转基因烟草和棉花株系。对野生型和转基因烟草在成株期进行干旱胁迫处理,发现转基因烟草具有更强的耐旱性。表现为转基因系复水之后的株高和存活率显著高于野生型。生理生化分析发现超表达GbMPK3提高了烟草在干旱胁迫下抗氧化酶APX的基因表达和酶活性,从而减少了烟草细胞内的活性氧积累。用MV处理烟草种子和成株期烟草叶片,发现MV对野生型和转基因系都造成了氧化胁迫,但是野生型对MV更敏感。MV处理之后野生型烟草种子的萌发率和成株期叶盘的叶绿素含量均显著低于转基因植株。RT-PCR分析结果显示,GbMPK3超表达的烟草在MV处理后抗氧化酶APX的基因表达量高于野生型。推测超量表达GbMPK3增强烟草对干旱和氧化胁迫的耐受性可能与提高抗氧化酶的表达和活性有关。
     4.超量表达GbMPK3影响了烟草对烟草花叶病毒(TMV)和灰霉病菌的抗性对超量表达GbMPK3基因的烟草转基因系和野生型进行病原菌接种处理。转基因烟草对TMV的抗性增强,超表达GbMPK3降低了TMV在烟草中扩散和繁殖的速率;而接种灰霉病菌后转基因烟草则表现出更感病的表型。
     5.超量表达GbMPK3降低了烟草和棉花对黄萎病菌的抗性对超量表达GbMPK3的烟草和棉花转基因材料进行黄萎病菌接种实验,发现转基因烟草和棉花的抗病性都显著降低。受黄萎病菌侵染后,野生型和转基因材料都表现出叶片萎蔫、黄化等黄萎病的典型病征,但野生型的叶片黄化与萎蔫出现的时期晚于转基因系,具体表现为野生型的发病率和病指显著低于转基因系。利用VIGS方法抑制棉花中GbMPK3的表达,对GbMPK3沉默的棉花进行接种实验。接种黄萎病菌后,对照材料和抑制GbMPK3表达的材料之间没有观察到抗病性的差异,两者在叶片黄化和脱落程度上无明显区别。说明抑制(GbMPK3表达对棉花抗黄萎病的影响不大,而超量表达GbMPK3显著减弱了植物对黄萎病菌的抗病性。
     6. GbMPK3影响黄萎病菌侵染下棉花SA相关基因的表达qPCR分析显示,无论是GbMPK3抑制表达、GbMPK3超量表达还是野生型的棉花根系中SA相关基因,如WRKY70、 PR1和PR5等,在接种5天后相对于接水处理的对照组都显著上调。与野生型相比,GbMPK3超量表达转基因系中WRKY70,PR1和PR5等基因的表达水平显著升高;而抑制GbMPK3表达并未影响PRl和PR5的表达。这些结果说明棉花品种YZ1受黄萎病菌侵染后SA路径被激活,GbMPK3的超量表达增强了SA信号路径的激活水平。现有的一些研究结果表明,JA可能正调控植物对黄萎病菌的抗性,SA和JA信号路径通过WRKY70、 NPR1等关键因子相互拮抗。因此,SA也可能影响棉花对黄萎病菌的抗性,但SA调控棉花抗性的具体机理、超量表达GbMPK3降低陆地棉对黄萎病菌的抗性与其显著升高的SA信号传导水平是否关联还有待进一步的研究。
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules found in all eukaryotes, and they play essential roles in cell signal transduction. A mitogen-activated protein kinase gene, GbMPK3, was induced upon Verticillium dahliae infection. In this work, GbMPK3was isolated from sea-island cotton Hai7124and its functional roles in response to different abiotic and biotic stress conditions were analyzed in both tobacco (Nicotiana benthamiana) and upland cotton YZ1. The main results of this work were as follows:
     1. Cloning and characterization of GbMPK3An EST (CLlContig1773) putatively encoded a MAPK, GbMPK3, was isolated based on the results of RNA-seq of sea-island cotton Hai7124inoculation with V. dahliae. The full-length of cDNA and DNA sequences were obtained through RACE and Genome-walking. Sequence similarity search and phylogenetic analysis revealed that GbMPK3was classified as a group A MAPK. The35S-GFP::GbMPK3constructs were completed and introduced into tobacco leaves to investigate the subcellular localization of GbMPK3, and the result indicated that GbMPK3protein mainly accumulated in the nucleus.2. Expression profile of GbMPK3
     The expression level of GbMPK3in cotton tissues under normal condition was evaluated by RT-PCR, and the results showed that GbMPK3expression level was low in all tissues and preferentially expressed in roots, petals, anthers and fibers. qPCR was employed to determine whether the expression of GbMPK3was affected by hormones and stresses, and GbMPK3was up-regulated upon cold (4℃), heat (42℃),10μmol/L MV,200mmol/L NaCl, dehydration, hormones (such as1mmol/L SA) and V. dahliae treatments in our study.
     3. Overexpression of GbMPK3enhances drought and oxidative stress tolerance in tobacco
     GbMPK3was introduced into tobacco and cotton to generate transgenic plants with constitutively higher expression of GbMPK3. Homozygous (T2) transgenic tobacco were conferred with enhanced drought tolerance, reduced water loss during drought treatment, improved plant height and survival rates after re-watering. Additionally, the gene expression levels and enzymatic activity of antioxidant enzymes were more strongly induced with depressed hydrogen peroxide accumulation in GbMPK3-overexpressing tobacco compared with wild-type under drought condition. Furthermore, observation of seed germination and leaf morphology showed that tolerance of transgenic plants to MV was improved due to increased antioxidant enzyme expression, suggesting that GbMPK3may positively regulate drought tolerance through enhanced reactive oxygen species scavenging ability.
     4. Overexpression of GbMPK3affects tobacco disease resistance to Tobacco mosaic virus (TMV) and Botrytis cinerea
     Wilt-type and transgenic tobacco were inoculated with different types of plant pathogens. Transgenic tobacco enhances resistance against TMV with reduced spreading rate and reproduction of TMV. Yet overexpression of GbMPK3significantly reduces tobacco resistance to the fungal pathogen Botrytis cinerea.
     5. Overexpression of GbMPK3reduces V. dahliae resistance in tobacco and cotton
     Wilt-type and transgenic plants were inoculated with V. dahliae to investigate the involvement of GbMPK3in plant defence. GbMPK3overexpression tobacco and cotton shows enhanced disease susceptiblity to V. dahliae strain V991. Both wilt-type and transgenic plants shows typical symptoms of verticillium wilt several days post V. dahliae infection, including wilting and yellowing leaves. Whereas the disease symptoms appeared early in GbMPK3-overexpression plants, resulting in elevated rate of diseased plants and disease index compared to wilt-type. The V. dahliae resistance was also analyzed in VIGS built GbMPK3-silencing plants. Silence of GbMPK3in cotton did not affect pathogen invasion, but slightly reduces yellowing and wilting leaves of diseased plants, as show by the decreased disease index. Therefore, while the effect of GbMPK3-silencing on cotton resistance to V. dahliae turns out to be weak, GbMPK3overexpression could significantly enhances V. dahliae susceptibility in both tobacco and cotton.
     6. GbMPK3affects SA-related gene expression in cotton
     qPCR analysis showed that the transcripts of SA-related genes (including the transcription factor WRKY70and two maker genes PR1and PR5) were accumulated in both wild-type, GbMPK3-silencing and overexpression cotton roots at day5post V. dahliae inoculation, suggested an up-regulation role of SA signaling in susceptible cotton cultivar YZ1. The elevated level of PR1and PR5was almost the same in wild-type and GbMPK3-silencing plants, yet transcripts of WRKY70, PR1and PR5were higher in GbMPK3overexpression cotton, indicating that GbMPK3overexpression may enhances V. dahliae induced SA signaling transduction. In previous studies, researches suggested JA signaling acted as a positively regulator in plants defense to V. dahliae. SA signaling is usually known antagonistic to JA signaling. Many important genes in regulating SA and JA signaling were reported, such as WRKY70and NPR1. Thus, SA may also participate in the complex signal networks of V. dahliae resistance in plants. But the mechanism of SA involved in cotton defense and the relation between elevated SA-related defence gene expression and reduced V. dahliae resistance still need to be studied further.
引文
1. 郝娟.棉花纤维伸长相关基因GbTCP的克隆及功能分析.[博士学位论文].武汉:华中农业大学图书馆,2012.
    2. 金双侠.棉花遗传转化体系的优化及突变体的创制.[博士学位论文].武汉:华中农业大学图书馆,2006.
    3. 涂礼莉.海岛棉花纤维发育相关基因表达谱分析及功能基因的发掘.[博士学位论文]武汉:华中农业大学图书馆,2007.
    4. 徐理,朱龙付,张献龙.棉花抗黄萎病机制研究进展.作物学报,2012,8(9):1553-1560.
    5. 徐理.棉花与黄萎病菌的互作分子机制研究及GbWAKY1基因的功能鉴定.[博士学位论文]武汉:华中农业大学图书馆,2011.
    6. 喻树迅.我国棉花生产现状与发展趋势.中国工程科学,2013,15(4):9-13.
    7. 袁斌.OsMPK6双向调控水稻抗病反应.[博士学位论文]武汉:华中农业大学图书馆,2007.
    8. 章元寿,王建新,刘经芬,方中达.大丽轮枝菌毒素的分离、提纯及生物测定.菌物学报,1989,8(2):62-69.
    9. Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J. Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J 2004,40 (4):512-522.
    10. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002, 415 (6875):977-983.
    11. Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol 2009,69 (4):473-488.
    12. Bartels S, Anderson JC, Gonzalez Besteiro MA, Carreri A, Hirt H, Buchala A, Metraux JP, Peck SC, Ulm R. MAP kinase phosphatasel and protein tyrosine phosphatasel are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 2009, 21 (9):2884-2897.
    13. Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 2009, 21 (3):944-953.
    14. Bethke G, Unthan T, Uhrig JF, Poschl Y, Gust AA, Scheel D, Lee J. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 2009, 106 (19):8067-8072.
    15. Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDSl and PAD4. Plant J 2006, 47 (4):532-546.
    16. Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 1999, 18 (3):664-674.
    17. Chang R, Jang CJ, Branco-Price C, Nghiem P, Bailey-Serres J. Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. Plant Mol Biol 2012, 78 (1-2):109-122.
    18. Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 2004, 55 (395):225-236.
    19. Choudhary D, Prakash A, Johri BN. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 2007, 47 (4):289-297.
    20. Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 2008, 413 (2):217-226.
    21. de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BP. Tomato immune receptor Vel recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A 2012, 109 (13):5110-5115.
    22. del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 2006, 141 (2):330-335.
    23. Denance N, Sanchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in plant science 2013,4:155.
    24. Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H. Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 2007, 318 (5849):453-456.
    25. Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C. Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett 2002, 527 (1-3):43-50.
    26. Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett 2004, 574 (1-3):42-48.
    27. Dubery IA, Meyer R. Specific binding of a Verticillium dahliae phytotoxin to protoplasts of cotton, Gossypium hirsutum. Plant Cell Rep 1996, 15 (10):777-780.
    28. Duerr B, Gawienowski M, Ropp T, Jacobs T. MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell 1993,5 (1):87-96.
    29. El Oirdi M, Trapani A, Bouarab K. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen. Environ Microbiol 2010,12 (1):239-253.
    30. Foyer CH, Noctor G Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environment 2005,28 (8):1056-1071.
    31. Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GC, Joosten MH, Thomma BP. Interfamily transfer of tomato Vel mediates Verticillium resistance in Arabidopsis. Plant Physiol 2011,156 (4):2255-2265.
    32. Fradin EF, Thomma BP. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 2006, 7 (2):71-86.
    33. Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CD, Nazar RN, Robb J, Liu CM, Thomma BP. Genetic dissection of Verticillium wilt resistance mediated by tomato Vel. Plant Physiol 2009, 150 (1):320-332.
    34. Fujii H, Zhu JK. Osmotic stress signaling via protein kinases. Cell Mol Life Sci 2012,69(19):3165-3173.
    35. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. REB1 is a transcription, activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 2005,17 (12):3470-3488.
    36. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of plant research 2011,124 (4):509-525.
    37. Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol 2011,157 (2):804-814.
    38. Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR, Mullineaux PM. The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 2009, 21 (7):2143-2162.
    39. Gao F, Su Q, Fan Y, Wang L. Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses. Science China Life sciences 2010,53 (11):1315-1321.
    40. Gao W, Long L, Zhu L, Xu L, Gao W, Sun L, Liu L, Zhang X. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that Gossypol, Brassinosteroids and Jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics 2013,12 (12):3690-3703.
    41. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 2005, 43:205-227.
    42. Group M. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 2002,7 (7):301-308.
    43. Gu L, Liu Y, Zong X, Liu L, Li DP, Li DQ. Overexpression of maize mitogen-activated protein kinase gene, ZmSIMKl in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 2010, 37 (8):4067-4073.
    44. Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW. Plant disease resistance genes:Current status and future directions. Physiol Mol Plant P 2012,78 (0):51-65.
    45. Gutjahr C, Paszkowski U. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant Microbe Interact 2009, 22 (7):763-772.
    46. Haas D, Keel C, Reimmann C. Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek 2002, 81 (1-4):385-395.
    47. Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE. Ancient signals:comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 2006, 11 (4):192-198.
    48. Hammond-Kosack KE, Jones JD. Plant Disease Resistance Genes. Annu Rev Plant Physiol Plant Mol Biol 1997, 48 (1):575-607.
    49. Han L, Li GJ, Yang KY, Mao G, Wang R, Liu Y, Zhang S. Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J 2010, 64 (1):114-127.
    50. Horsch RB, Fry JE, HoVmann NL, Eichholtz D, Rogers SG, Fraley RT. A simple and general method for transferring genes into plants. Science 1985, 227 (4691):1229-1231.
    51. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 2012, 39 (2):969-987.
    52. Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 2009, 106 (48):20520-20525.
    53. Jaspers P, Kangasjarvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plant 2010, 138 (4):405-413.
    54. Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S. Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco, Plant J 2003,33 (4):719-731.
    55. Jonak C, Heberle-Bors E, Hirt H. MAP kinases:universal multi-purpose signaling tools. Plant Mol Biol 1994,24 (3):407-416.
    56. Jonak C, Okresz L, Bogre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 2002, 5 (5):415-424.
    57. Jones JD, Dangl JL. The plant immune system. Nature 2006, 444 (7117):323-329.
    58. Jones JD. Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 2001,4 (4):281-287.
    59. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A2001,98(11):6511-6515.
    60. Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H, Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 2000,12(11):2247-2258.
    61. Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 2003,15 (11):2707-2718.
    62. Kim SH, Woo DH, Kim JM, Lee SY, Chung WS, Moon YH. Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophys Res Commun 2011,412 (1):150-154.
    63. Kloepper JW, Tuzun S, Kuc JA. Proposed definitions related to induced disease resistance. Biocontrol Sci Technol 1992,2 (4):349-351.
    64. Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 2000,97 (6):2940-2945.
    65. Kumar D, Klessig DF. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact 2000,13 (3):347-351.
    66. Kumar KR, Srinivasan T, Kirti PB. A mitogen-activated protein kinase gene, AhMPK3 of peanut: molecular cloning, genomic organization, and heterologous expression conferring resistance against Spodoptera litura in tobacco. Mol Genet Genomics 2009,282 (1):65-81.
    67. Li Y, Zhang L, Wang X, Zhang W, Hao L, Chu X, Guo X. Cotton GhMPK6a negatively regulates osmotic tolerance and bacterial infection in transgenic Nicotiana benthamiana, and plays a pivotal role in development. FEBS J 2013,280 (20):5128-5144.
    68. Ligterink W, Hirt H. Mitogen-activated protein (MAP) kinase pathways in plants: Versatile signaling tools. In: International Review of Cytology 2001, 201:209-275.
    69. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP. Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 2002, 30 (4):415-429.
    70. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001,25 (4):402-408.
    71. Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 2005, 8 (5):532-540.
    72. Love A, Geri C, Laird J, Yuri B, Loake G, Sadanandom A, Milner J. An effector protein encoded by cauliflower mosaic virus inhibits SA-dependent defence responses in Arabidopsis via an NPR1-dependent mechanism. Comp Biochem Phys A 2008, 150 (3):S193-S193.
    73. Luo J, Zhao LL, Gong SY, Sun X, Li P, Qin LX, Zhou Y, Xu WL, Li XB. A cotton mitogen-activated protein kinase (GhMPK6) is involved in ABA-induced CAT1 expression and H2O2 production. J Genet Genomics 2011,38 (11):557-565.
    74. Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 2013, 51:245-266.
    75. Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 2000, 12 (1):165-178.
    76. Miles GP, Samuel MA, Ellis BE. Suppression of MKK5 reduces ozone-induced signal transmission to both MPK3 and MPK6 and confers increased ozone sensitivity in Arabidopsis thaliana. Plant Signal Behav 2009, 4 (8):687-692.
    77. Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant 2008, 133 (3):481-489.
    78. Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 2003,100 (1):358-363.
    79. Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 2003,113 (7):935-944.
    80. Mullineaux PM, Baker NR. Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 2010, 154 (2):521-525.
    81. Munne-Bosch S, Penuelas J. Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 2003,217 (5):758-766.
    82. Munnik T, Ligterink W, Meskiene Ⅱ, Calderini O, Beyerly J, Musgrave A, Hirt H. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J 1999, 20 (4):381-388.
    83. Ning J, Li X, Hicks LM, Xiong L. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 2010, 152 (2):876-890.
    84. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 2000, 103 (7):1111-1120.
    85. Pieterse CM, Van Loon LC. NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 2004,7 (4):456-464.
    86. Presley JT, Cams HR, Taylor EE and Schnathorst WC. Movement of conidia of Verticillium albo-atrum in cotton plants. Phytopathology 1996, 56:375.
    87. Prime APG, Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B. Priming:getting ready for battle. Mol Plant Microbe Interact 2006,19 (10):1062-1071.
    88. Ren CM, Zhu Q, Gao BD, Ke SY, Yu WC, Xie DX, Peng W. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling. J Integr Plant Biol 2008,50 (5):630-637.
    89. Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 2004, 427 (6977):858-861.
    90. Reusche M, Truskina J, Thole K, Nagel L, Rindfleisch S, Tran VT, Braus-Stromeyer SA, Braus GH, Teichmann T, Lipka V. Infections with the vascular pathogens Verticillium longisporum and Verticillium dahliae induce distinct disease symptoms and differentially affect drought stress tolerance of Arabidopsis thaliana. Environmental and Experimental Botany. 2013.
    91. Reyna NS, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact 2006, 19 (5):530-540.
    92. Rodriguez MC, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 2010, 61:621-649.
    93. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 2002, 290 (3):998-1009.
    94. Samuel MA, Ellis BE. Double jeopardy:Both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 2002, 14 (9):2059-2069.
    95. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protocols 2008,3 (6):1101-1108.
    96. Schwessinger B, Ronald PC. Plant innate immunity:perception of conserved microbial signatures. Annu Rev Plant Biol 2012, 63 (1):451-482.
    97. Seo S, Katou S, Seto H, Gomi K, Ohashi Y. The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J 2007,49 (5):899-909.
    98. Shao HB, Chu LY, Lu ZH, Kang CM. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. International journal of biological sciences 2008,4 (1):8-14.
    99. Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H. Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF 1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol Genet Genomics 2003,269 (5):583-591.
    100. Shi J, An HL, Zhang L, Gao Z, Guo XQ. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol 2010, 74 (1-2):1-17.
    101. Shi J, Zhang L, An H, Wu C, Guo X. GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol 2011,12:22.
    102. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 2002, 53 (372):1305-1319.
    103. Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 2004, 55 (399):1013-1019.
    104. Sinha AK, Jaggi M, Raghuram B, Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 2011,6 (2):196-203.
    105. Sink KC, Grey WE. A root-injection method to assess verticillium wilt resistance of peppermint (Mentha x piperita L.) and its use in identifying resistant somaclones of cv. Black Mitcham. Euphytica 1999, 106 (3):223-230.
    106. Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 2009, 60 (5):1439-1463.
    107. Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ. MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 2007, 143 (2):661-669.
    108. Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 412011, (6):649-660.
    109. Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 2007, 19 (3):805-818.
    110. Tanoue T, Adachi M, Moriguchi T, Nishida E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2000, 2 (2):110-116.
    111. Thaler JS, Owen B, Higgins VJ. The Role of the Jasmonate Response in Plant Susceptibility to Diverse Pathogens with a Range of Lifestyles. Plant Physiology 2004,135 (1):530-538.
    112. Thomma BP, Nurnberger T, Joosten MH. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 2011,23 (1):4-15.
    113. Tudzynski P, Kokkelink L. Botrytis cinerea: Molecular Aspects of a Necrotrophic Life Style. In: Deising H (ed) Plant Relationships, 2009, 5:29-50.
    114. Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J 2002, 21 (23):6483-6493.
    115. van den Ackerveken G, Marois E, Bonas U. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 1996, 87 (7):1307-1316.
    116. van Kan JA. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 2006,11 (5):247-253.
    117. van Loon LC, Geraats BP, Linthorst HJ. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 2006, 11 (4):184-191.
    118. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 2006, 45 (4):523-539.
    119. Wang MM, Zhang Y, Wang J, Wu XL, Guo XQ. A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. J Biochem Mol Biol 2007,40 (3):325-332.
    120. Wang P, Song CP. Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 2008, 178 (4):703-718.
    121. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 2008,67 (6):589-602.
    122. Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 2013,111 (6):1021-1058.
    123. Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 2001,414 (6863):562-565.
    124. Xiong L, Zhu JK. Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiol Plant 2001,112 (2):152-166.
    125. Xu L, Zhu L, Tu L, Guo X, Long L, Sun L, Gao W, Zhang X. Differential Gene Expression in Cotton Defence Response to Verticillium dahliae by SSH. Journal of Phytopathology 2011a,159 (9):606-615.
    126. Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 2011b,62 (15):5607-5621.
    127. Yap YK, Kodama Y, Waller F, Chung KM, Ueda H, Nakamura K, Oldsen M, Yoda H, Yamaguchi Y, Sano H. Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. Plant Physiol 2005, 139 (1):127-137.
    128. Young ND. The genetic architecture of resistance. Curr Opin Plant Biol 2000, 3 (4):285-290.
    129. Zhang B, Yang Y, Chen T, Yu W, Liu T, Li H, Fan X, Ren Y, Shen D, Liu L, Dou D, Chang Y. Island cotton Gbvel gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One 2012a, 7 (12): e51091.
    130. Zhang D, Jiang S, Pan J, Kong X, Zhou Y, Liu Y, Li D. The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biol (Stuttg) 2014, 16 (3):558-570.
    131. Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 2011a, 77 (1-2):17-31.
    132. Zhang L, Xi D, Luo L, Meng F, Li Y, Wu C, Guo X. Cotton GhMPK2 is involved in multiple signaling pathways and mediates defense responses to pathogen infection and oxidative stress. FEBS J 2011b, 278 (8):1367-1378.
    133. Zhang S, Klessig DF. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci U S A 1998,95 (13):7433-7438.
    134. Zhang S, Klessig DF. Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 1997,9 (5):809-824.
    135. Zhang Y, Wang XF, Ding ZG, Ma Q, Zhang GR, Zhang SL, Li ZK, Wu LQ, Zhang GY, Ma ZY. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics 2013,14:637.
    136. Zhao S, Qi X. Signaling in plant disease resistance and symbiosis. J Integr Plant Biol 2008,50 (7):799-807.
    137. Zhu JK. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 2001,4(5):401-406.
    138. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 2002,53:247-273.
    139. Zhu L, Tu L, Zeng F, Liu D, Zhang X. An Improved Simple Protocol for Isolation of High Quality RNA from Gossypium spp. Suitable for cDNA Library Construction. Acta Agron Sin 2005, 31 (12):1657-1659.
    140. Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 2009, 229 (3):485-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700