用户名: 密码: 验证码:
艾灸及艾烟对ApoE~(-/-)小鼠动脉粥样硬化胆固醇代谢和炎性反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察艾灸及艾烟干预对动脉粥样硬化的影响,并从调节脂代谢、抑制炎症等角度探索艾灸及艾烟的作用机制。
     方法:51只8周龄ApoE-/-小鼠随机分为3组:模型组,艾烟组,艾灸组,每组17只,20只同龄C57BL/6小鼠作为正常对照。正常组、模型组小鼠常规抓取、固定;艾烟组小鼠暴露于10mg/m3-15mg/m3艾烟环境;艾灸组小鼠艾灸关元穴。所有干预20min/日,6日/周,连续干预12周。血生化法检测血清’TC、TG、HDL-C、LDL-C、VLDL-C、ox-LDL、ApoA-I含量;elisa法测定血清TNFα、IL-1、IL-6、IL-10、hs-CRP、vWF、ICAM-1、VCAM-1、MCP-1的含量;HE染色、油红“0”染色观察主动脉根、胸主动脉病理改变并定量分析斑块大小;western blot法检测主动脉组织中ABCA1、ABCG1、LXRα、CD36、PPARγ、NFKB的表达情况;HE染色观察肝脏病理形态;免疫组化法检测肝脏ABCA1、LXRα、CD36、 PPARγ表达。
     结果:
     1.血脂水平
     模型组小鼠血清TG、LDL、VLDL含量显著高于正常组(p=0.003,0.001,0.004)ApoA-I、HDL含量显著低于正常组(p=0.001,0.007),TC、ox-LDL含量与正常组差异不显著(p>0.05);艾灸组小鼠血清TG、LDL含量显著低于模型组(p=0.03,0.001),ApoA-Ⅰ含量显著高于模型组(p=0.001),VLDL、HDL含量与模型组无显著差异(p=0.11,0.11);艾烟组小鼠血清TG、LDL含量显著低于模型组(p=0.01,0.008),ApoA-Ⅰ含量显著高于模型组(p=0.01),VLDL、HDL含量与模型组无显著差异(p=0.24,0.11)。艾灸组与艾烟组各项血脂指标均无显著性差异(p>0.05)。
     2.血清炎性因子和主动脉NFKB表达
     模型组小鼠血清IL-1、IL-6、TNFα、hs-CRP、vWF、ICAM-1、VCAM-1、MCP-1含量显著高于正常组(p<0.001),IL-10含量显著低于正常组(p<0.001);艾灸组小鼠血清IL-1、IL-6、TNFα、hs-CRP、vWF、ICAM-1、VCAM-1、MCP-1含量显著低于模型组(p=0.005,0.001,<0.001,0.01,0.001,0.001,<0.001,0.002),IL-10含量显著高于模型组(p<0.001);艾烟组小鼠血清IL-1、IL-6、TNFα、hs-CRP、vWF、ICAM-1、VCAM-1、MCP-1含量显著低于模型组(p=0.003,0.003,<0.001,0.01,0.02,0.03,<0.001,0.005),IL-10含量显著高于模型组(p=0.01);艾灸组小鼠各项指标与艾烟组无显著差异(p>0.05)。
     各组小鼠胸主动脉NFKB表达差异不显著。
     3.主动脉粥样硬化斑块面积比
     各组ApoE-/-小鼠主动脉根部斑块面积比分别为:模型组15.76%,艾烟组8.55%,艾灸组7.34%;胸主动脉斑块面积比分别为:模型组9.05%,艾烟组4.37%,艾灸组2.47%。艾灸组显著低于模型组(主动脉根p=0.04,胸主动脉p=0.01);艾烟组与模型组差异不显著(主动脉根p=0.08,胸主动脉p=0.08);艾灸组与艾烟组差异不显著(p>0.05)。
     4.主动脉ABCA1、ABCG1、CD36、LXRα、PPARγ表达
     模型组小鼠胸主动脉ABCA1、ABCG1、LXR α表达显著低于正常组(p<0.001,0.04,0.004);CD36、PPAR γ表达与正常组无显著性差异(p>0.05);艾灸组小鼠胸主动脉ABCA1、LXRα表达显著高于模型组(p=0.05,0.03),ABCG1表达与模型组无显著性差异(p=0.14);艾烟组ABCA1、LXR α表达显著高于模型组(p<0.001,0.02),ABCG1表达与模型组无显著性差异(p=0.14);艾灸组与艾烟组ABCA1、ABCG1、LXR α表达无显著差异(p>0.05)。
     5.肝脏ABCA1、CD36、LXRα、PPARγ表达
     模型组小鼠肝脏ABCA1、PPARγ表达显著低于正常组(P<0.001,<0.001),CD36、LXR a表达显著高于正常组(p=0.004,0.002);艾灸组ABCA1、 PPARγ表达显著高于模型组(p=0.03,0.03),LXR α表达显著低于模型组(p=0.03),CD36表达与模型组无显著性差异(p=0.09);艾烟组ABCA1、PPARγ表达显著高于模型组(p=0.002,0.01),CD36、LXRα表达显著低于模型组(p=0.02,0.02);艾灸组与艾烟组ABCA1、CD36、LXR α、PPARγ表达均无显著差异(p>0.05)
     结论:
     1.艾灸可以有效缓解动脉粥样硬化病变,抑制动脉粥样硬化斑块生长;艾烟有抑制动脉粥样硬化斑块生长的作用趋势。
     2.艾灸和艾烟可以调节血脂代谢、促进病变处胆固醇外流、改善肝脏脂代谢功能,是防治动脉粥样硬化的机制之一。
     3.艾灸和艾烟可以抑制体内炎性反应,是防治动脉粥样硬化的机制之一。
Objective:To observe the effect of moxibustion and moxa smoke on atherosclerosis and to explain their effect mechanism on lipid metablosim and inflammation.
     Methods:Sixty-eight ApoE-/-mice (8weeks old) were randomly divided into3groups (17in each group):model control group, moxa smoke group, moxibustion group, twenty same age C57BL/6mice were used as blank controls. Mice in the blank control and model control group were handled everyday. Mice in the moxa smoke group were exposed to moxa smoke with a concentration of10-15mg/m3while mice in the moxibustion group were treated with moxibustion on GuanYuan (RN4) point. All the manipulations were did20min each day,6days each week,12weeks totally.
     Blood biochemistry method was used to test the level of TC, TG, HDL-C, LDL-C, VLDL-C, ox-LDL, ApoA-Ⅰ in the serum. Elisa method was used to test the level of TNFa, IL-1, BL-6, IL-10, hs-CRP, vWF, ICAM-1, VCAM-1, MCP-1in the serum. HE and Red oil "O" stain were used to observe the plague area in the aorta root and thoracic aorta. Western blot method was used to detect the ABCA1, ABCG1, LXRa, CD36, PPARy, NFKB expression in the thoracic aorta. Immunohistochemical method was used to detect the ABCA1, LXRa, CD36, PPARy expression in the liver.
     Results:
     1. Blood lipid level
     Comparing to the normal control group, mice in the model control group had significant higher level of TG, LDL, VLDL (p=0.003,0.001,0.004), and significant lower level of ApoA-Ⅰ, HDL (p=0.001,0.007) in the serum; no significant differences were found between the two groups on the level of TC and ox-LDL; comparing to the model control group, mice in the moxibustion group had significant lower TG and LDL (p=0.03,0.001), significant higher ApoA-1(p=0.001), while no significant differences were found between the two groups on VLDL and HDL (p=0.11,0.11); comparing to the model control group, mice in the moxa smoke group had significant lower TG and LDL (p=0.01,0.008), significant higher ApoA-Ⅰ (p=0.01), no significant difference were found on VLDL, HDL (p=0.24,0.11); no significant differences were found between the moxibustion group and the moxa smoke group (p>0.05)
     2. Inflammatory cytokines and NFKB
     Comparing to the normal control group, mice in the model control group had significant higher level of IL-1, IL-6, TNFa, hs-CRP, vWF, ICAM-1, VCAM-1, MCP-1(p<0.001), significant lower level of IL-10(p<0.001) in the serum; comparing to the model control group, mice in the moxibustion group had significant lower IL-1, IL-6, TNFa, hs-CRP, vWF, ICAM-1, VCAM-1, MCP-1(p=0.005,0.001,0.001,0.01,0.001,0.001,0.001,0.002), significant higher level of IL-10(p<0.001); comparing to the model control group, mice in the moxa smoke group had significant lower IL-1, IL-6, TNFa, hs-CRP, vWF, ICAM-1, VCAM-1, MCP-1(p=0.003,0.003,0.001,0.01,0.02,0.03,0.001,0.005), significant higher level of IL-10(p=0.01); no significant differences were found between the moxibustion group and the moxa smoke group (p>0.05).
     There were no significant differences among all groups on NFKB expression in the aorta.
     3. Plaque area ratio in the aorta
     The plague area ratio in the aorta root were:15.76%in the model control group,8.55%in the moxa smoke group,7.34%in the moxibustion group. The plague area ratio in the thoracic aorta were:9.05%in the model control group,4.37%in the moxa smoke group,2.47%in the moxibustion group.
     Comparing to the model control group, mice in the moxibustion group had significant lower plague area ratio both in the aorta root and the thoracic aorta (p=0.04,0.01); the difference between the moxa smoke group and model control group in the plague area ratio was not significant(p=0.08,0.08); No significant differences were found between the moxibustion group and the moxa smoke group (p>0.05)
     4. Expression of CD36, ABCA1, ABCG1, LXRa, PPARy in the aorta
     Comparing to the normal control group, mice in the model control group had significant lower ABCA1、ABCG1. LXRa expression(p<0.001,0.04,0.004), no significant different CD36、PPARy expression in the thoracic aorta(p>0.05); comparing to the model control group, mice in the moxibustion group had significant higher ABCA1、LXRa expression (p=0.05,0.03), no significant different ABCG1experssion(p=0.14), comparing to the model control group, mice in the moxa smoke group had significant higher ABCA1, LXRa expression (p<0.01,0.02), no significant different ABCG1experssion(p=0.14); no significant differences were found in the ABCA1, ABCG1, LXRa expression between the moxibustion group and the moxa smoke group (p>0.05).
     5. Expression of CD36, ABCA1, LXRa, PPARy in the liver
     Comparing to the normal control group, mice in the model control group had significant lower ABCA1, PPARγ expression(P<0.001,<0.001), significant higher CD36, LXRa expression (p=0.004,0.002); ABCA1, PPARy expression were significant higher (p=0.03,0.03) while the LXRa expression was significant lower (p=0.03) in the moxibusiton group than in the model conrol group, the CD36expression showed no significant difference between the two groups(p=0.09); ABCA1, PPARy expression were significant higher (p=0.002,0.01) while the CD36, LXRa expression was significant lower (p=0.02,0.02) in the moxibusiton group than in the model conrol group; no significant differences were found in the ABCA1, CD36, LXRa, PPARy expression between the moxibustion group and moxa smoke group (p>0.05).
     Conclusions:
     1. Moxibustion could alleviate atherosclerosis, inhibit the growth of plague, and moxa somke also have this tendency.
     2. Moxibustion and moxa smoke could regulate lipid metabolism and promote the cholesterol efflux at the lesion area and improve the metabolic function of liver, which may be one of the mechanisms of their anti-atherosclerosis effect.
     3. Moxibustion and moxa smoke could inhibite inflammation in the body, which may be one of the mechanisms of their anti-atherosclerosis effect.
引文
[1]World Health Organization http://www.who.int/mediacentre/factsheets/fs317/en/[accessed 31.01.11].[Z].
    [2]Lusis A J. Atherosclerosis[J]. Nature.2000,407(6801):233-241.
    [3]Tabas I, Williams K J, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis:update and therapeutic implications[J]. Circulation.2007,116(16):1832-1844.
    [4]Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis[J]. Nat Rev Immunol. 2010,10(1):36-46.
    [5]Li A C, Glass C K. The macrophage foam cell as a target for therapeutic intervention[J]. Nat Med.2002, 8(11):1235-1242.
    [6]Bobryshev Y V. Monocyte recruitment and foam cell formation in atherosclerosis[J]. Micron.2006,37(3): 208-222.
    [7]Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation[J]. Nat Rev Immunol.2007,7(6):467-477.
    [8]Katsuda S, Kaji T. Atherosclerosis and extracellular matrix[J]. J Atheroscler Thromb.2003,10(5):267-274.
    [9]Newby A C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates[J]. Cardiovasc Res.2006,69(3):614-624.
    [10]Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis[J]. Acta Med Indones.2007,39(2):86-93.
    [11]Schonbeck U, Sukhova G K, Shimizu K, et al. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice[J]. Proc Natl Acad Sci U S A.2000,97(13):7458-7463.
    [12]Halvorsen B, Otterdal K, Dahl T B, et al. Atherosclerotic plaque stability-what determines the fate of a plaque?[J]. Prog Cardiovasc Dis.2008,51(3):183-194.
    [13]Steinberg D. Thematic review series:the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy:part I[J]. J Lipid Res.2004,45(9):1583-1593.
    [14]Konstantinov I E, Mejevoi N, Anichkov N M. Nikolai N. Anichkov and his theory of atherosclerosis[J]. Tex Heart Inst J.2006,33(4):417-423.
    [15]Steinberg D. Progress, prospects and provender. Chairman's address before the Council on Arteriosclerosis, American Heart Association, Dallas, Texas, November 12,1969[J]. Circulation.1970,41(4):723-728.
    [16]Lowering blood cholesterol to prevent heart disease. NIH Consensus Development Conference statement[J] Arteriosclerosis.1985,5(4):404-412.
    [17]Ross R, Harker L. Hyperlipidemia and atherosclerosis[J]. Science.1976,193(4258):1094-1100.
    [18]Navab M, Reddy S T, Van Lenten B J, et al. The role of dysfunctional HDL in atherosclerosis[J]. J Lipid Res.2009,50 Suppl:S145-S149.
    [19]Mosser D M, Edwards J P. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol. 2008,8(12):958-969.
    [20]Llodra J, Angeli V, Liu J, et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques[J]. Proc Natl Acad Sci U S A.2004,101(32):11779-11784.
    [21]Hansson G K, Hermansson A. The immune system in atherosclerosis[J]. Nat Immunol.2011,12(3): 204-212.
    [22]Charo I F, Taubman M B. Chemokines in the pathogenesis of vascular disease[J]. Circ Res.2004,95(9): 858-866.
    [23]Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis:an update[J]. Arterioscler Thromb Vasc Biol.2008,28(11):1897-1908.
    [24]Mclaren J E, Ramji D P. Interferon gamma:a master regulator of atherosclerosis[J]. Cytokine Growth Factor Rev.2009,20(2):125-135.
    [25]Hansson G K, Libby P. The immune response in atherosclerosis:a double-edged sword[J]. Nat Rev Immunol.2006,6(7):508-519.
    [26]Pluddemann A, Neyen C, Gordon S. Macrophage scavenger receptors and host-derived ligands[J]. Methods. 2007,43(3):207-217.
    [27]Zhou X, He W, Huang Z, et al. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism[J]. J Biol Chem.2008,283(4): 2129-2138.
    [28]Goldstein J L, Brown M S. The LDL receptor[J]. Arterioscler Thromb Vase Biol.2009,29(4):431-438.
    [29]Rios F J, Gidlund M, Jancar S. Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages[J]. Cell Physiol Biochem.2011,27(3-4):363-372.
    [30]Kunjathoor V V, Febbraio M, Podrez E A, et al. Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages[J]. J Biol Chem.2002,277(51):49982-49988.
    [31]Podrez E A, Febbraio M, Sheibani N, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species[J]. J Clin Invest.2000,105(8):1095-1108.
    [32]Berliner J A, Territo M C, Sevanian A, et al. Minimally modified low density lipoprotein stimulates
    monocyte endothelial interactions[J]. J Clin Invest.1990,85(4):1260-1266. [33] Kruth H S, Jones N L, Huang W, et al. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein[J]. J Biol Chem.2005,280(3):2352-2360.
    [34]Tabas I. Nonoxidative modifications of lipoproteins in atherogenesis[J]. Annu Rev Nutr.1999,19: 123-139.
    [35]Mead J R, Ramji D P. The pivotal role of lipoprotein lipase in atherosclerosis[J]. Cardiovasc Res.2002, 55(2):261-269.
    [36]Tall A R, Yvan-Charvet L, Terasaka N, et al. HDL, ABC transporters, and cholesterol efflux:implications for the treatment of atherosclerosis[J]. Cell Metab.2008,7(5):365-375.
    [37]Greenow K, Pearce N J, Ramji D P. The key role of apolipoprotein E in atherosclerosis[J]. J Mol Med (Berl).2005,83(5):329-342.
    [38]Yancey P G, Bortnick A E, Kellner-Weibel G, et al. Importance of different pathways of cellular cholesterol efflux[J]. Arterioscler Thromb Vasc Biol.2003,23(5):712-719.
    [39]Gantman A, Fuhrman B, Aviram M, et al. High glucose stimulates macrophage SR-BI expression and induces a switch in its activity from cholesterol efflux to cholesterol influx[J]. Biochem Biophys Res Commun. 2010,391(1):523-528.
    [40]Kaperonis E A, Liapis C D, Kakisis J D, et al. Inflammation and atherosclerosis[J]. Eur J Vasc Endovasc Surg.2006,31(4):386-393.
    [41]Ross R, Glomset J A. The pathogenesis of atherosclerosis (first of two parts)[J]. N Engl J Med.1976, 295(7):369-377.
    [42]Kaski J C. [Inflammation, infection and coronary artery disease:myths and realities. Special XXXV Conference of the National Congress of the Spanish Society of Cardiology][J]. Rev Esp Cardiol.2000,53(10): 1311-1317.
    [43]Libby P. Inflammation in atherosclerosis[J]. Arterioscler Thromb Vasc Biol.2012,32(9):2045-2051.
    [44]Landmesser U, Hornig B, Drexler H. Endothelial function:a critical determinant in atherosclerosis?[J]. Circulation.2004,109(21 Suppl 1):127-133.
    [45]Schachinger V, Britten M B, Elsner M, et al. A positive family history of premature coronary artery disease is associated with impaired endothelium-dependent coronary blood flow regulation[J]. Circulation.1999,100(14): 1502-1508.
    [46]Cybulsky M I, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis[J]. J Clin Invest.2001,107(10):1255-1262.
    [47]Nagel T, Resnick N, Atkinson W J, et al. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells[J]. J Clin Invest.1994,94(2):885-891.
    [48]Lee R T, Yamamoto C, Feng Y, et al. Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells[J]. J Biol Chem.2001,276(17):13847-13851.
    [49]Mach F, Sauty A, Iarossi A S, et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells[J]. J Clin Invest.1999,104(8):1041-1050.
    [50]Qiao J H, Tripathi J, Mishra N K, et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice[J]. Am J Pathol.1997,150(5):1687-1699.
    [51]Lefkowitz R J, Willerson J T. Prospects for cardiovascular research[J]. JAMA.2001,285(5):581-587.
    [52]Santos-Gallego C G, Picatoste B, Badimon J J. Pathophysiology of acute coronary syndrome[J]. Curr Atheroscler Rep.2014,16(4):401.
    [53]Fuster V. Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction:insights from studies of vascular biology[J]. Circulation.1994,90(4):2126-2146.
    [54]Casscells W, Hathom B, David M, et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques:possible implications for plaque rupture and thrombosis[J]. Lancet.1996,347(9013):1447-1451.
    [55]Davies M J. A macro and micro view of coronary vascular insult in ischemic heart disease[J]. Circulation. 1990,82(3 Suppl):138-146.
    [56]Schonbeck U, Mach F, Sukhova G K, et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes:a role for CD40 signaling in plaque rupture?[J]. Circ Res.1997, 81(3):448-454.
    [57]Libby P. Current concepts of the pathogenesis of the acute coronary syndromes[J]. Circulation.2001, 104(3):365-372.
    [58]Biasucci L M, Liuzzo G, Fantuzzi G, et al. Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events[J]. Circulation.1999,99(16):2079-2084.
    [59]Brand K, Mackman N, Curtiss L K. Interferon-gamma inhibits macrophage apolipoprotein E production by posttranslational mechanisms[J]. J Clin Invest.1993,91(5):2031-2039.
    [60]Panousis C G, Zuckerman S H. Regulation of cholesterol distribution in macrophage-derived foam cells by interferon-gamma[J]. J Lipid Res.2000,41(1):75-83.
    [61]Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis:a comprehensive review of studies in mice[J]. Cardiovasc Res.2008,79(3):360-376.
    [62]Seli E, Pehlivan T, Selam B, et al. Estradiol down-regulates MCP-1 expression in human coronary artery endothelial cells[J]. Fertil Steril.2002,77(3):542-547.
    [63]Charo I F, Taubman M B. Chemokines in the pathogenesis of vascular disease[J]. Circ Res.2004,95(9): 858-866.
    [64]Popa C, Netea M G, van Riel P L, et al. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk[J]. J Lipid Res.2007,48(4):751-762.
    [65]Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al. Expression of angiotensin Ⅱ and interleukin 6 in human coronary atherosclerotic plaques:potential implications for inflammation and plaque instability [J]. Circulation. 2000,101(12):1372-1378.
    [66]Barnes P J, Karin M. Nuclear factor-kappaB:a pivotal transcription factor in chronic inflammatory diseases[J]. N Engl J Med.1997,336(15):1066-1071.
    [67]Ritchie M E. Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris[J]. Circulation.1998,98(17):1707-1713.
    [68]Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion[J]. J Clin Invest.1996,97(7):1715-1722.
    [69]Baeuerle P A, Henkel T. Function and activation of NF-kappa B in the immune system[J]. Annu Rev Immunol.1994,12:141-179.
    [70]Fiorentino D F, Zlotnik A, Vieira P, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells[J]. J Immunol.1991,146(10):3444-3451.
    [71]de Vries J E. Immunosuppressive and anti-inflammatory properties of interleukin 10[J]. Ann Med.1995, 27(5):537-541.
    [72]de Waal M R, Abrams J, Bennett B, et al. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes:an autoregulatory role of IL-10 produced by monocytes[J]. J Exp Med.1991,174(5):1209-1220.
    [73]Wang P, Wu P, Siegel M I, et al. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms[J]. J Biol Chem.1995,270(16):9558-9563.
    [74]Mahmud A, Feely J. Adiponectin and arterial stiffness[J]. Am J Hypertens.2005,18(12 Pt 1):1543-1548.
    [75]Black S, Kushner I, Samols D. C-reactive Protein[J]. J Biol Chem.2004,279(47):48487-48490.
    [76]林琳,刘明开,佟凤芝,等.超敏C反应蛋白与冠状动脉粥样硬化疾病的研究进展[J].大连医科大学学报.2009(01).
    [77]Haim M, Benderly M, Tanne D, et al. C-reactive protein, bezafibrate, and recurrent coronary events in patients with chronic coronary heart disease[J]. Am Heart J.2007,154(6):1095-1101.
    [78]Heidari B. C-reactive protein and other markers of inflammation in hemodialysis patients[J]. Caspian J Intern Med.2013,4(1):611-616.
    [79]Aukrust P, Halvorsen B, Yndestad A, et al. Chemokines and cardiovascular risk[J]. Arterioscler Thromb Vasc Biol.2008,28(11):1909-1919.
    [80]Benhamou M, Gossec L, Dougados M. Clinical relevance of C-reactive protein in ankylosing spondylitis and evaluation of the NSAIDs/coxibs'treatment effect on C-reactive protein[J]. Rheumatology (Oxford).2010, 49(3):536-541.
    [81]Tannock L R, O'Brien K D, Knopp R H, et al. Cholesterol feeding increases C-reactive protein and serum amyloid A levels in lean insulin-sensitive subjects[J]. Circulation.2005,111(23):3058-3062.
    [82]Hotamisligil G S, Arner P, Caro J F, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance[J]. J Clin Invest.1995,95(5):2409-2415.
    [83]Snel M, van Diepen J A, Stijnen T, et al. Immediate and long-term effects of addition of exercise to a 16-week very low calorie diet on low-grade inflammation in obese, insulin-dependent type 2 diabetic patients[J]. Food Chem Toxicol.2011,49(12):3104-3111.
    [84]Cani P D, Amar J, Iglesias M A, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes.2007,56(7):1761-1772.
    [85]Kleemann R, Verschuren L, van Erk M J, et al. Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake:a combined transcriptomics and metabolomics analysis[J]. Genome Biol. 2007,8(9):R200.
    [86]de Vries-Van D W J, Toet K, Zadelaar S, et al. Anti-inflammatory salicylate beneficially modulates pre-existing atherosclerosis through quenching of NF-kappaB activity and lowering of cholesterolfJ]. Atherosclerosis.2010,213(1):241-246.
    [87]Weisberg S P, Mccann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue[J]. J Clin Invest.2003,112(12):1796-1808.
    [88]Cai D, Yuan M, Frantz D F, et al. Local and systemic insulin resistance resulting from hepatic activation of KK-beta and NF-kappaB[J]. Nat Med.2005,11(2):183-190.
    [89]Duewell P, Kono H, Rayner K J, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature.2010,464(7293):1357-1361.
    [90]Bieghs V, Wouters K, van Gorp P J, et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice[J]. Gastroenterology.2010,138(7):2477-2486,2481-2486.
    [91]Wong M C, van Diepen J A, Hu L, et al. Hepatocyte-specific IKKbeta expression aggravates atherosclerosis development in APOE*3-Leiden mice[J]. Atherosclerosis.2012,220(2):362-368.
    [92]Bieghs V, Rensen P C, Hofker M H, et al. NASH and atherosclerosis are two aspects of a shared disease: central role for macrophages[J]. Atherosclerosis.2012,220(2):287-293.
    [93]van Tits L J, Stienstra R, van Lent P L, et al. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages:a crucial role for Kruppel-like factor 2[J]. Atherosclerosis.2011,214(2): 345-349.
    [94]Duewell P, Kono H, Rayner K J, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature.2010,464(7293):1357-1361.
    [95]Rajamaki K, Lappalainen J, Oorni K, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages:a novel link between cholesterol metabolism and inflammation[J]. PLoS One.2010,5(7): e11765.
    [96]Patel S, Di Bartolo B A, Nakhla S, et al. Anti-inflammatory effects of apolipoprotein A-I in the rabbit[J]. Atherosclerosis.2010,212(2):392-397.
    [97]Cai L, Wang Z, Meyer J M, et al. Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages[J]. J Lipid Res.2012,53(8):1472-1481.
    [98]Sammalkorpi K, Valtonen V, Kerttula Y, et al. Changes in serum lipoprotein pattern induced by acute infections[J]. Metabolism.1988,37(9):859-865.
    [99]Khovidhunkit W, Kim M S, Memon R A, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism:mechanisms and consequences to the host[J]. J Lipid Res.2004,45(7):1169-1196.
    [100]Berbee J F, Havekes L M, Rensen P C. Apolipoproteins modulate the inflammatory response to lipopolysaccharide[J]. J Endotoxin Res.2005,11(2):97-103.
    [101]Feingold K R, Staprans I, Memon R A, et al. Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia:low doses stimulate hepatic triglyceride production while high doses inhibit clearance[J]. J Lipid Res.1992,33(12):1765-1776. [102] Feingold K R, Grunfeld C. Role of cytokines in inducing hyperlipidemia[J]. Diabetes.1992,41 Suppl 2: 97-101.
    [103]Memon R A, Staprans I, Noor M, et al. Infection and inflammation induce LDL oxidation in vivo[J]. Arterioscler Thromb Vasc Biol.2000,20(6):1536-1542.
    [104]Rosenson R S, Brewer H J, Davidson W S, et al. Cholesterol efflux and atheroprotection:advancing the concept of reverse cholesterol transport[J]. Circulation.2012,125(15):1905-1919.
    [105]Mcneish J, Aiello R J, Guyot D, et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1[J]. Proc Nat1 Acad Sci U S A.2000,97(8): 4245-4250.
    [106]Kennedy M A, Barrera G C, Nakamura K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation[J]. Cell Metab.2005,1(2):121-131.
    [107]Wang N, Lan D, Chen W, et al. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins[J]. Proc Natl Acad Sci U S A.2004,101(26):9774-9779.
    [108]Wang N, Silver D L, Costet P, et al. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1[J]. J Biol Chem.2000,275(42):33053-33058.
    [109]Francis G A, Knopp R H, Oram J F. Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease[J]. J Clin Invest.1995,96(1):78-87.
    [110]Liu L, Bortnick A E, Nickel M, et al. Effects of apolipoprotein A-I on ATP-binding cassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol:formation of nascent high density lipoprotein particles[J]. J Biol Chem.2003,278(44):42976-42984.
    [111]Vaughan A M, Oram J F. ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions[J]. J Lipid Res.2003,44(7):1373-1380.
    [112]Vedhachalam C, Duong P T, Nickel M, et al. Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles[J]. J Biol Chem. 2007,282(34):25123-25130.
    [113]Nagata K O, Nakada C, Kasai R S, et al. ABCA1 dimer-monomer interconversion during HDL generation revealed by single-molecule imaging[J]. Proc Natl Acad Sci U S A.2013,110(13):5034-5039.
    [114]Chen W, Sun Y, Welch C, et al. Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes[J]. J Biol Chem.2001,276(47):43564-43569.
    [115]Takahashi Y, Smith J D. Cholesterol efflux to apolipoprotein A1 involves endocytosis and resecretion in a calcium-dependent pathway[J]. Proc Natl Acad Sci U S A.1999,96(20):11358-11363.
    [116]Christiansen-Weber T A, Voland J R, Wu Y, et al. Functional loss of ABC A1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency [J]. Am J Pathol.2000,157(3):1017-1029.
    [117]Brooks-Wilson A, Marcil M, Clee S M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency[J]. Nat Genet.1999,22(4):336-345.
    [118]Singaraja R R, Fievet C, Castro G, et al. Increased ABCA1 activity protects against atherosclerosis[J]. J Clin Invest.2002,110(1):35-42.
    [119]Singaraja R R, Van Eck M, Bissada N, et al. Both hepatic and extrahepatic ABCA1 have discrete and
    essential functions in the maintenance of plasma high-density lipoprotein cholesterol levels in vivo[J]. Circulation.2006,114(12):1301-1309.
    [120]Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease[J]. Nat Genet.1999,22(4):347-351.
    [121]Timmins J M, Lee J Y, Boudyguina E, et al. Targeted inactivation of hepatic Abcal causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I[J]. J Clin Invest.2005,115(5):1333-1342.
    [122]Brunham L R, Singaraja R R, Duong M, et al. Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis[J]. Arterioscler Thromb Vase Biol.2009,29(4):548-554.
    [123]Nakamura K, Kennedy M A, Baldan A, et al. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein[J]. J Biol Chem.2004,279(44):45980-45989.
    [124]Wang X, Collins H L, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo[J]. J Clin Invest.2007,117(8):2216-2224.
    [125]Westerterp M, Murphy A J, Wang M, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice[J]. Circ Res.2013,112(11): 1456-1465.
    [126]Terasaka N, Westerterp M, Koetsveld J, et al. ATP-binding cassette transporter Gl and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase[J]. Arterioscler Thromb Vase Biol.2010,30(11):2219-2225.
    [127]Wang N, Ranalletta M, Matsuura F, et al. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL[J]. Arterioscler Thromb Vasc Biol.2006,26(6): 1310-1316.
    [128]Tarling E J, Edwards P A. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter[J]. Proc Natl Acad Sci U S A.2011,108(49):19719-19724.
    [129]Gelissen I C, Harris M, Rye K A, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I[J]. Arterioscler Thromb Vase Biol.2006,26(3):534-540.
    [130]Yvan-Charvet L, Ranalletta M, Wang N, et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice[J]. J Clin Invest.2007,117(12):3900-3908.
    [131]Yvan-Charvet L, Welch C, Pagler T A, et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages:free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions[J]. Circulation.2008,118(18):1837-1847.
    [132]Koseki M, Hirano K, Masuda D, et al. Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-alpha secretion in Abcal-deficient macrophages[J]. J Lipid Res.2007,48(2):299-306.
    [133]Zhu X, Lee J Y, Timmins J M, et al. Increased cellular free cholesterol in macrophage-specific Abcal knock-out mice enhances pro-inflammatory response of macrophages[J]. J Biol Chem.2008,283(34): 22930-22941.
    [134]Asch A S, Barnwell J, Silverstein R L, et al. Isolation of the thrombospondin membrane receptor[J]. J Clin Invest.1987,79(4):1054-1061.
    [135]Mcgregor J L, Catimel B, Parmentier S, et al. Rapid purification and partial characterization of human platelet glycoprotein Ⅲb. Interaction with thrombospondin and its role in platelet aggregation[J]. J Biol Chem. 1989,264(1):501-506.
    [136]Matsumoto K, Hirano K, Nozaki S, et al. Expression of macrophage (Mphi) scavenger receptor, CD36, in cultured human aortic smooth muscle cells in association with expression of peroxisome proliferator activated receptor-gamma, which regulates gain of Mphi-like phenotype in vitro, and its implication in atherogenesis[J]. Arterioscler Thromb Vase Biol.2000,20(4):1027-1032.
    [137]Kunjathoor V V, Febbraio M, Podrez E A, et al. Scavenger receptors class A-I/n and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages[J]. J Biol Chem.2002,277(51):49982-49988.
    [138]Nozaki S, Kashiwagi H, Yamashita S, et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects[J]. J Clin Invest.1995,96(4):1859-1865.
    [139]Marleau S, Harb D, Bujold K, et al. EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E-deficient mice from developing atherosclerotic lesions[J]. FASEB J.2005,19(13):1869-1871.
    [140]Tontonoz P, Nagy L, Alvarez J G, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL[J]. Cell.1998,93(2):241-252.
    [141]Steinberg D. Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis[J]. Circulation.1997,95(4):1062-1071.
    [142]Febbraio M, Podrez E A, Smith J D, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J]. J Clin Invest.2000,105(8):1049-1056.
    [143]Febbraio M, Guy E, Silverstein R L. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis [J]. Arterioscler Thromb Vasc Biol.2004,24(12):2333-2338.
    [144]Shiffman D, Mikita T, Tai J T, et al. Large scale gene expression analysis of cholesterol-loaded macrophages[J]. J Biol Chem.2000,275(48):37324-37332.
    [145]Dumka D, Puri P, Carayol N, et al. Activation of the p38 Map kinase pathway is essential for the antileukemic effects of dasatinib[J]. Leuk Lymphoma.2009,50(12):2017-2029.
    [146]Feng J, Han J, Pearce S F, et al. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma[J]. J Lipid Res.2000,41(5):688-696.
    [147]Munteanu A, Taddei M, Tamburini I, et al. Antagonistic effects of oxidized low density lipoprotein and alpha-tocopherol on CD36 scavenger receptor expression in monocytes:involvement of protein kinase B and peroxisome proliferator-activated receptor-gamma[J]. J Biol Chem.2006,281(10):6489-6497.
    [148]Rahaman S O, Lennon D J, Febbraio M, et al. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation[J]. Cell Metab.2006,4(3):211-221.
    [149]Lipsky R H, Eckert D M, Tang Y, et al. The carboxyl-terminal cytoplasmic domain of CD36 is required for oxidized low-density lipoprotein modulation of NF-kappaB activity by tumor necrosis factor-alpha[J]. Recept Signal Transduct.1997,7(1):1-11.
    [150]Han C Y, Park S Y, Pak Y K. Role of endocytosis in the transactivation of nuclear factor-kappaB by oxidized low-density lipoprotein[J]. Biochem J.2000,350 Pt 3:829-837.
    [151]Janabi M, Yamashita S, Hirano K, et al. Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients[J]. Arterioscler Thromb Vasc Biol.2000,20(8):1953-1960.
    [152]Podrez E A, Byzova T V, Febbraio M, et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype[J]. Nat Med.2007,13(9):1086-1095.
    [153]Chen K, Febbraio M, Li W, et al. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein[J]. Circ Res.2008,102(12):1512-1519.
    [154]Han J, Zhou X, Yokoyama T, et al. Pitavastatin downregulates expression of the macrophage type B scavenger receptor, CD36[J]. Circulation.2004,109(6):790-796.
    [155]Puccetti L, Sawamura T, Pasqui A L, et al. Atorvastatin reduces platelet-oxidized-LDL receptor expression in hypercholesterolaemic patients[J]. Eur J Clin Invest.2005,35(1):47-51.
    [156]Chinetti-Gbaguidi G, Staels B. Lipid ligand-activated transcription factors regulating lipid storage and release in human macrophages [J]. Biochim Biophys Acta.2009,1791(6):486-493.
    [157]Bensinger S J, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors[J]. Nature.2008,454(7203):470-477.
    [158]Oosterveer M H, Grefhorst A, Groen A K, et al. The liver X receptor:control of cellular lipid homeostasis and beyond Implications for drug design[J]. Prog Lipid Res.2010,49(4):343-352.
    [159]Repa J J, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-binding protein-lc gene (SREBP-lc) by oxysterol receptors, LXRalpha and LXRbeta[J]. Genes Dev.2000,14(22):2819-2830.
    [160]Bischoff E D, Daige C L, Petrowski M, et al. Non-redundant roles for LXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptor knockout mice[J]. J Lipid Res.2010,51(5): 900-906.
    [161]Rader D J, Pure E. Lipoproteins, macrophage function, and atherosclerosis:beyond the foam cell?[J]. Cell Metab.2005,1(4):223-230.
    [162]Mclaren J E, Michael D R, Ashlin T G, et al. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy[J]. Prog Lipid Res.2011,50(4):331-347.
    [163]Parthasarathy S, Rankin S M. Role of oxidized low density lipoprotein in atherogenesis[J]. Prog Lipid Res. 1992,31(2):127-143.
    [164]Calkin A C, Tontonoz P. Liver x receptor signaling pathways and atherosclerosis[J]. Arterioscler Thromb Vase Biol.2010,30(8):1513-1518.
    [165]Allen A M, Taylor J M, Graham A. Mitochondrial (dys)function and regulation of macrophage cholesterol efflux[J]. Clin Sci (Lond).2013,124(8):509-515.
    [166]Topper J N, Cai J, Falb D, et al. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli:cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress[J]. Proc Natl Acad Sci U S A.1996,93(19): 10417-10422.
    [167]Bultel S, Helin L, Clavey V, et al. Liver X receptor activation induces the uptake of cholesteryl esters from high density lipoproteins in primary human macrophages[J]. Arterioscler Thromb Vase Biol.2008,28(12): 2288-2295.
    [168]Buono C, Li Y, Waldo S W, et al. Liver X receptors inhibit human monocyte-derived macrophage foam cell formation by inhibiting fluid-phase pinocytosis of LDL[J]. J Lipid Res.2007,48(11):2411-2418.
    [169]Schuster G U, Parini P, Wang L, et al. Accumulation of foam cells in liver X receptor-deficient mice[J]. Circulation.2002,106(9):1147-1153.
    [170]Tangirala R K, Bischoff E D, Joseph S B, et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis[J]. Proc Natl Acad Sci U S A.2002,99(18):11896-11901.
    [171]Joseph S B, Mckilligin E, Pei L, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice[J]. Proc Natl Acad Sci U S A.2002,99(11):7604-7609.
    [172]Naik S U, Wang X, Da S J, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo[J]. Circulation.2006,113(1):90-97.
    [173]Terasaka N, Hiroshima A, Koieyama T, et al. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice[J]. FEBS Lett.2003,536(1-3):6-11.
    [174]Gronholdt M L, Dalager-Pedersen S, Falk E. Coronary atherosclerosis:determinants of plaque rupture[J]. Eur Heart J.1998,19 Suppl C:C24-C29.
    [175]Blaschke F, Leppanen O, Takata Y, et al. Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries[J]. Circ Res.2004,95(12): e110-e123.
    [176]Delvecchio C J, Bilan P, Radford K, et al. Liver X receptor stimulates cholesterol efflux and inhibits expression of proinflammatory mediators in human airway smooth muscle cells[J]. Mol Endocrinol.2007,21(6): 1324-1334.
    [177]Delvecchio C J, Bilan P, Nair P, et al. LXR-induced reverse cholesterol transport in human airway smooth muscle is mediated exclusively by ABCA1 [J]. Am J Physiol Lung Cell Mol Physiol.2008,295(5):L949-L957.
    [178]Jeon T I, Zhu B, Larson J L, et al. SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice[J]. J Clin Invest.2008,118(11):3693-3700.
    [179]Morello F, Saglio E, Noghero A, et al. LXR-activating oxysterols induce the expression of inflammatory markers in endothelial cells through LXR-independent mechanisms[J]. Atherosclerosis.2009,207(1):38-44.
    [180]Joseph S B, Laffitte B A, Patel P H, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors[J]. J Biol Chem.2002,277(13):11019-11025.
    [181]Schultz J R, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis[J]. Genes Dev.2000,14(22): 2831-2838.
    [182]Cha J Y, Repa J J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR[J]. J Biol Chem.2007,282(1):743-751.
    [183]Hong C, Tontonoz P. Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors[J]. Curr Opin Genet Dev.2008,18(5):461-467.
    [184]Joseph S B, Castrillo A, Laffitte B A, et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors[J]. Nat Med.2003,9(2):213-219.
    [185]Ghisletti S, Huang W, Jepsen K, et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways[J]. Genes Dev.2009,23(6): 681-693.
    [186]Im S S, Osborne T F. Liver x receptors in atherosclerosis and inflammation[J]. Circ Res.2011,108(8): 996-1001.
    [187]Michael D R, Ashlin T G, Buckley M L, et al. Liver X receptors, atherosclerosis and inflammation[J]. Curr Atheroscler Rep.2012,14(3):284-293.
    [188]Rigamonti E, Chinetti-Gbaguidi G, Staels B. Regulation of macrophage functions by PPAR-alpha, PPAR-gamma, and LXRs in mice and men[J]. Arterioscler Thromb Vasc Biol.2008,28(6):1050-1059.
    [189]Szanto A, Roszer T. Nuclear receptors in macrophages:a link between metabolism and inflammation[J]. FEBS Lett.2008,582(1):106-116.
    [190]Bensinger S J, Bradley M N, Joseph S B, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response[J]. Cell.2008,134(1):97-111.
    [191]Wang Y D, Chen W D, Moore D D, et al. FXR:a metabolic regulator and cell protector[J]. Cell Res.2008, 18(11):1087-1095.
    [192]Naiki Y, Sonrentino R, Wong M H, et al. TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis[J]. J Immunol.2008,181(10): 7176-7185.
    [193]Hansson G K. Inflammation, atherosclerosis, and coronary artery disease[J]. N Engl J Med.2005,352(16): 1685-1695.
    [194]Jiang C, Ting A T, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines[J]. Nature.1998,391(6662):82-86.
    [195]Bouhlel M A, Staels B, Chinetti-Gbaguidi G. Peroxisome proliferator-activated receptors--from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease[J]. J Intern Med.2008,263(1):28-42.
    [196]Pasceri V, Cheng J S, Willerson J T, et al. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs[J]. Circulation.2001, 103(21):2531-2534.
    [197]Panza A, Votino C, Gentile A, et al. Peroxisome proliferator-activated receptor gamma-mediated induction of microRNA-145 opposes tumor phenotype in colorectal cancer[J]. Biochim Biophys Acta.2014.
    [198]Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma(PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro[J]. Am J Pathol. 1998,153(1):17-23.
    [199]Gordon S, Taylor P R. Monocyte and macrophage heterogeneity[J]. Nat Rev Immunol.2005,5(12): 953-964.
    [200]Hou X, Zhang Y, Shen Y H, et al. PPAR-gamma activation by rosiglitazone suppresses angiotensin II-mediated proliferation and phenotypictransition in cardiac fibroblasts via inhibition of activation of activator protein 1[J]. Eur J Pharmacol.2013,715(1-3):196-203.
    [201]Kang K, Reilly S M, Karabacak V, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity[J]. Cell Metab.2008,7(6):485-495.
    [202]Dumka D, Puri P, Carayol N, et al. Activation of the p38 Map kinase pathway is essential for the antileukemic effects of dasatinib[J]. Leuk Lymphoma.2009,50(12):2017-2029.
    [203]Kunjathoor V V, Febbraio M, Podrez E A, et al. Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages[J]. J Biol Chem.2002,277(51):49982-49988.
    [204]Endemann G, Stanton L W, Madden K S, et al. CD36 is a receptor for oxidized low density lipoprotein[J]. J Biol Chem.1993,268(16):11811-11816.
    [205]Lim H J, Lee S, Lee K S, et al. PPARgamma activation induces CD36 expression and stimulates foam cell like changes in rVSMCs[J]. Prostaglandins Other Lipid Mediat.2006,80(3-4):165-174.
    [206]Chawla A, Boisvert W A, Lee C H, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis[J]. Mol Cell.2001,7(1):161-171.
    [207]Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway[J]. Nat Med.2001,7(1): 53-58.
    [208]Law R E, Meehan W P, Xi X P, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia[J]. J Clin Invest.1996,98(8):1897-1905.
    [209]Gao D F, Niu X L, Hao G H, et al. Rosiglitazone inhibits angiotensin Ⅱ-induced CTGF expression in vascular smooth muscle cells-role of PPAR-gamma in vascular fibrosis[J]. Biochem Pharmacol.2007,73(2): 185-197.
    [210]Zambon A, Gervois P, Pauletto P, et al. Modulation of hepatic inflammatory risk markers of cardiovascular diseases by PPAR-alpha activators:clinical and experimental evidence[J]. Arterioscler Thromb Vase Biol.2006, 26(5):977-986.
    [211]Nissen S E, Wolski K, Topol E J. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus[J]. JAMA.2005,294(20):2581-2586. [212] Kesavadev J, Joshi S R. Improvement of glycemic control with addition of insulin detemir to existing antidiabetic therapy:a sub-group analysis of Alchieve observational study[J]. J Assoc Physicians India.2013,
    61(1 Suppl):28-30. [213] Li A C, Binder C J, Gutierrez A, et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma[J]. J Clin Invest.2004,114(11):1564-1576.
    [214]Calkin A C, Allen T J, Lassila M, et al. Increased atherosclerosis following treatment with a dual PPAR agonist in the ApoE knockout mouse[J]. Atherosclerosis.2007,195(1):17-22.
    [215]Nakaya H, Summers B D, Nicholson A C, et al. Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone[J]. Am J Pathol.2009,174(6):2007-2014.
    [216]Hennuyer N, Tailleux A, Torpier G, et al. PPARalpha, but not PPARgamma, activators decrease macrophage-laden atherosclerotic lesions in a nondiabetic mouse model of mixed dyslipidemia[J]. Arterioscler Thromb Vase Biol.2005,25(9):1897-1902.
    [217]Li G, Gu H M, Zhang D W. ATP-binding cassette transporters and cholesterol translocation[J]. IUBMB Life.2013,65(6):505-512.
    [218]Moore K J, Rayner K J, Suarez Y, et al. microRNAs and cholesterol metabolism[J]. Trends Endocrinol Metab.2010,21(12):699-706.
    [219]Yang X, Peterson L, Thieringer R, et al. Identification and validation of genes affecting aortic lesions in mice[J]. J Clin Invest.2010,120(7):2414-2422.
    [220]Teupser D, Tan M, Persky A D, et al. Atherosclerosis quantitative trait loci are sex-and lineage-dependent in an intercross of C57BL/6 and FVB/N low-density lipoprotein receptor-/-mice[J]. Proc Natl Acad Sci U S A. 2006,103(1):123-128.
    [221]Smith J D, James D, Dansky H M, et al. In silico quantitative trait locus map for atherosclerosis susceptibility in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vase Biol.2003,23(1):117-122.
    [222]Miller N E. Associations of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis[J]. Am Heart J.1987,113(2 Pt 2):589-597.
    [223]Davidson W S, Silva R A, Chantepie S, et al. Proteomic analysis of defined HDL subpopulations reveals
    particle-specific protein clusters:relevance to antioxidative function[J]. Arterioscler Thromb Vase Biol.2009, 29(6):870-876.
    [224]Davidson M H. Update on CETP inhibition[J]. J Clin Lipidol.2010,4(5):394-398.
    [225]Nakashima Y, Plump A S, Raines E W, et al. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree[J]. Arterioscler Thromb.1994,14(1):133-140.
    [226]Rosenfeld M E, Polinsky P, Virmani R, et al. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse[J]. Arterioscler Thromb Vase Biol.2000,20(12):2587-2592.
    [227]Getz G S, Reardon C A. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall[J]. J Lipid Res.2009,50 Suppl:S156-S161.
    [228]Mazzone T, Reardon C. Expression of heterologous human apolipoprotein E by J774 macrophages enhances cholesterol efflux to HDL3[J]. J Lipid Res.1994,35(8):1345-1353.
    [229]Thorngate F E, Rudel L L, Walzem R L, et al. Low levels of extrahepatic nonmacrophage ApoE inhibit atherosclerosis without correcting hypercholesterolemia in ApoE-deficient mice[J]. Arterioscler Thromb Vase Biol.2000,20(8):1939-1945.
    [230]Linton M F, Fazio S. Macrophages, lipoprotein metabolism, and atherosclerosis:insights from murine bone marrow transplantation studies[J]. Curr Opin Lipidol.1999,10(2):97-105.
    [231]Barcat D, Amadio A, Palos-Pinto A, et al. Combined hyperlipidemia/hyperalphalipoproteinemia associated with premature spontaneous atherosclerosis in mice lacking hepatic lipase and low density lipoprotein receptor[J]. Atherosclerosis.2006,188(2):347-355.
    [232]Teupser D, Persky A D, Breslow J L. Induction of atherosclerosis by low-fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice:comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement)[J]. Arterioscler Thromb Vase Biol.2003,23(10):1907-1913.
    [233]Caligiuri G, Levy B, Pernow J, et al. Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice[J]. Proc Natl Acad Sci U S A.1999,96(12):6920-6924.
    [234]Braun A, Trigatti B L, Post M J, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice[J]. Circ Res.2002,90(3):270-276.
    [235]Plump A S, Scott C J, Breslow J L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse[J]. Proc Natl Acad Sci USA. 1994,91(20):9607-9611.
    [236]Boisvert W A, Black A S, Curtiss L K. ApoAl reduces free cholesterol accumulation in atherosclerotic lesions of ApoE-deficient mice transplanted with ApoE-expressing macrophages[J]. Arterioscler Thromb Vasc Biol.1999,19(3):525-530.
    [237]Combadiere C, Potteaux S, Rodero M, et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice[J]. Circulation.2008,117(13):1649-1657.
    [238]Duff G L, Mcmillan G C. The effect of alloxan diabetes on experimental cholesterol atherosclerosis in the rabbit[J]. J Exp Med.1949,89(6):611-630.
    [239]Nordestgaard B G, Zilversmit D B. Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits[J]. J Lipid Res.1988,29(11):1491-1500.
    [240]Bocan T M, Mueller S B, Mazur M J, et al. The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation[J]. Atherosclerosis.1993,102(1):9-22.
    [241]Kolodgie F D, Katocs A J, Largis E E, et al. Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type[J]. Arterioscler Thromb Vase Biol.1996,16(12):1454-1464.
    [242]Yanni A E, Yatzidis H A, Kavantzas N G, et al. Dietary L-aspartate and L-glutamate inhibit fatty streak initiation in cholesterol-fed rabbit[J]. Nutr Metab Cardiovasc Dis.2003,13(2):80-86.
    [243]West C E, Deuring K, Schutte J B, et al. The effect of age on the development of hypercholesterolemia in rabbits fed semipurified diets containing casein[J]. J Nutr.1982,112(7):1287-1295.
    [244]Hunt C E, Duncan L A. Hyperlipoproteinaemia and atherosclerosis in rabbits fed low-level cholesterol and lecithin[J]. Br J Exp Pathol.1985,66(1):35-46.
    [245]Rogers K A, Karnovsky M J. A rapid method for the detection of early stages of atherosclerotic lesion formation[J]. Am J Pathol.1988,133(3):451-455.
    [246]Cornhill J F, Roach M R. A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta[J]. Atherosclerosis.1976,23(3):489-501.
    [247]Adams C W, Miller N E, Morgan R S, et al. Lipoprotein levels and tissue lipids in fatty-fibrous atherosclerosis induced in rabbits by two years' cholesterol feeding at a low level[J]. Atherosclerosis.1982, 44(1):1-8.
    [248]West C E, Deuring K, Schutte J B, et al. The effect of age on the development of hypercholesterolemia in rabbits fed semipurified diets containing casein[J]. J Nutr.1982,112(7):1287-1295.
    [249]Rogers K A, Karnovsky M J. A rapid method for the detection of early stages of atherosclerotic lesion formation[J]. Am J Pathol.1988,133(3):451-455.
    [250]Abela G S, Picon P D, Friedl S E, et al. Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model[J]. Circulation.1995,91(3):776-784.
    [251]Aikawa M, Rabkin E, Voglic S J, et al. Lipid lowering promotes accumulation of mature smooth muscle cells expressing smooth muscle myosin heavy chain isoforms in rabbit atheroma[J]. Circ Res.1998,83(10): 1015-1026.
    [252]Worthley S G, Helft G, Fuster V, et al. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis[J]. Circulation.2000,101(6):586-589.
    [253]Johnstone M T, Botnar R M, Perez A S, et al. In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model[J]. Arterioscler Thromb Vase Biol.2001,21(9):1556-1560.
    [254]Shiomi M, Ito T. The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development:a tribute to the late Dr. Yoshio Watanabe[J]. Atherosclerosis.2009,207(1):1-7.
    [255]Buja L M, Kita T, Goldstein J L, et al. Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia[J]. Arteriosclerosis.1983,3(1):87-101.
    [256]Atkinson J B, Hoover R L, Berry K K, et al. Cholesterol-fed heterozygous Watanabe heritable hyperlipidemic rabbits:a new model for atherosclerosis[J]. Atherosclerosis.1989,78(2-3):123-136.
    [257]Shiomi M, Ito T, Shiraishi M, et al. Inheritability of atherosclerosis and the role of lipoproteins as risk factors in the development of atherosclerosis in WHHL rabbits:risk factors related to coronary atherosclerosis are different from those related to aortic atherosclerosis[J]. Atherosclerosis.1992,96(1):43-52.
    [258]Brousseau M E, Hoeg J M. Transgenic rabbits as models for atherosclerosis research[J]. J Lipid Res.1999, 40(3):365-375.
    [259]Duverger N, Kruth H, Emmanuel F, et al. Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits[J]. Circulation.1996,94(4):713-717.
    [260]Fan J, Wang J, Bensadoun A, et al. Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins[J]. Proc Natl Acad Sci USA. 1994,91(18):8724-8728.
    [261]Taylor J M. Transgenic rabbit models for the study of atherosclerosis[J]. Ann N Y Acad Sci.1997,811: 146-152,152-154.
    [262]Fan J, Mccormick S P, Krauss R M, et al. Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL[J]. Arterioscler Thromb Vasc Biol.1995, 15(11):1889-1899.
    [263]Brousseau M E, Hoeg J M. Transgenic rabbits as models for atherosclerosis research[J]. J Lipid Res.1999, 40(3):365-375.
    [264]Huang Y, Schwendner S W, Rail S J, et al. Apolipoprotein E2 transgenic rabbits. Modulation of the type III hyperlipoproteinemic phenotype by estrogen and occurrence of spontaneous atherosclerosis[J]. J Biol Chem. 1997,272(36):22685-22694.
    [265]Skold B H, Getty R, Ramsey F K. Spontaneous atherosclerosis in the arterial system of aging swine[J]. Am J Vet Res.1966,27(116):257-273.
    [266]Reiser R, Sorrels M F, Williams M C. Influence of high levels of dietary fats and cholesterol on atherosclerosis and lipid distribution in swine[J]. Circ Res.1959,7:833-846.
    [267]Koskinas K C, Feldman C L, Chatzizisis Y S, et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress:a serial, in vivo intravascular ultrasound study[J]. Circulation.2010,121(19):2092-2101.
    [268]Skold B H, Getty R, Ramsey F K. Spontaneous atherosclerosis in the arterial system of aging swine[J]. Am J Vet Res.1966,27(116):257-273.
    [269]Holvoet P, Theilmeier G, Shivalkar B, et al. LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs[J]. Arterioscler Thromb Vase Biol.1998,18(3):415-422.
    [270]Mckenzie J E, Scandling D M, Ahle N W, et al. Effects of soman (pinacolyl methylphosphonofiuoridate) on coronary blood flow and cardiac function in swine[J]. Fundam Appl Toxicol.1996,29(1):140-146.
    [271]Liedtke A J, Hughes H C, Neely J R. An experimental model for studying myocardial ischemia. Correlation of hemodynamic performance and metabolism in the working swine heart[J]. J Thorac Cardiovasc Surg.1975, 69(2):203-211.
    [272]Bowman T A, Hughes H C. Swine as an in vivo model for electrophysiologic evaluation of cardiac pacing parameters[J]. Pacing Clin Electrophysiol.1984,7(2):187-194.
    [273]Hughes H C. Swine in cardiovascular research[J]. Lab Anim Sci.1986,36(4):348-350.
    [274]Gerrity R G. The role of the monocyte in atherogenesis:I. Transition of blood-borne monocytes into foam cells in fatty lesions[J]. Am J Pathol.1981,103(2):181-190.
    [275]Gerrity R G, Goss J A, Soby L. Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta[J]. Arteriosclerosis.1985,5(1):55-66. [276] Gerrity R G, Natarajan R, Nadler J L, et al. Diabetes-induced accelerated atherosclerosis in swine[J]. Diabetes.2001,50(7):1654-1665.
    [277]Portman O W, Andrus S B. Comparative evaluation of three species of new world monkeys for studies of dietary factors, tissue lipids, and atherogenesis[J]. J Nutr.1965,87(4):429-438.
    [278]Wolfe M S, Sawyer J K, Morgan T M, et al. Dietary polyunsaturated fat decreases coronary artery atherosclerosis in a pediatric-aged population of African green monkeys[J]. Arterioscler Thromb.1994,14(4): 587-597.
    [279]Vesselinovitch D, Getz G S, Hughes R H, et al. Atherosclerosis in the rhesus monkey fed three food fats[J]. Atherosclerosis.1974,20(2):303-321.
    [280]Davis H R, Vesselinovitch D, Wissler R W. Histochemical detection and quantification of macrophages in rhesus and cynomolgus monkey atherosclerotic lesions[J]. J Histochem Cytochem.1984,32(12):1319-1327.
    [281]Mott G E, Jackson E M, Mcmahan C A, et al. Dietary cholesterol and type of fat differentially affect cholesterol metabolism and atherosclerosis in baboons[J]. J Nutr.1992,122(7):1397-1406.
    [282]Williams J K, Armstrong M L, Heistad D D. Vasa vasorum in atherosclerotic coronary arteries:responses to vasoactive stimuli and regression of atherosclerosis[J]. Circ Res.1988,62(3):515-523.
    [283]Armstrong M L, Megan M B. Lipid depletion in atheromatous coronary arteries in rhesus monkeys after regression diets[J]. Circ Res.1972,30(6):675-680.
    [284]Davis H R, Vesselinovitch D, Wissler R W. Histochemical detection and quantification of macrophages in rhesus and cynomolgus monkey atherosclerotic lesions[J]. J Histochem Cytochem.1984,32(12):1319-1327.
    [285]Davis H R, Vesselinovitch D, Wissler R W. Reticuloendothelial system response to hyperlipidemia in rhesus and cynomolgus monkeys[J]. J Leukoc Biol.1984,36(1):63-80.
    [286]Shively C A, Register T C, Clarkson T B. Social stress, visceral obesity, and coronary artery atherosclerosis in female primates[J]. Obesity (Silver Spring).2009,17(8):1513-1520.
    [287]Kaplan J R, Manuck S B, Clarkson T B, et al. Social status, environment, and atherosclerosis in cynomolgus monkeys[J]. Arteriosclerosis.1982,2(5):359-368.
    [288]Kaplan J R, Adams M R, Clarkson T B, et al. Psychosocial factors, sex differences, and atherosclerosis: lessons from animal models[J]. Psychosom Med.1996,58(6):598-611.
    [289]Strong J P, Mcgill H J. Diet and experimental atherosclerosis in baboons[J]. Am J Pathol.1967,50(4): 669-690.
    [290]王占奎,王伟志,傅立新,等.针灸对颈动脉粥样硬化患者颈动脉形态学和动力学的影响[J].上海 针灸杂志.2005(06).
    [291]张莉,刘雨英,张锴.针刺治疗下肢闭塞性动脉硬化症29例疗效观察[J].黑龙江中医药.2008(02).
    [292]毛喜荣,李佩芳,王月兰.穴位注射治疗冠状动脉粥样硬化性心脏病102例的临床观察[J].针灸临床杂志.1995(02).
    [293]吕金阳.针药结合治疗冠状动脉粥样硬化性心脏病心绞痛62例临床观察[J].河北中医.2007(08).
    [294]涂伟钦.针刺治疗对血脂影响的观察[J].山西中医.2004(05).
    [295]张霞,肖苏红,周小青,等.针刺对主动脉粥样硬化兔自由基系统的影响[J].云南中医学院学报.1994(02).
    [296]王伟志,王占奎,赵建国,等.针灸对缺血性脑血管病颈动脉粥样硬化患者血脂、血流变、LPO和SOD、ET和CGRP的影响[J].上海针灸杂志.2005(07).
    [297]齐凤军,孙国杰.电针干预高脂血症大鼠动脉粥样硬化形成的实验研究[J].上海针灸杂志.2007(04).
    [298]张霞,肖苏红,周小青,等.针刺对主动脉粥样硬化兔自由基系统的影响[J].云南中医学院学报.1994(02).
    [299]毛喜荣,王月冬,周逸平.针刺对冠心病患者血脂、血糖的影响[J].针灸临床杂志.1994(02).
    [300]袁凌松,朱忠春,余明哲.针药结合对不同部位脑梗塞患者血清高、低密度脂蛋白的影响[J].上海中医药大学学报.2001(02).
    [301]常小荣,严洁,岳增辉,等.隔药饼灸对高脂血症兔高低密度脂蛋白含量及比值的影响[J].中国中医药信息杂志.2004(12).
    [302]冯起国,裴景春,马铁明,等.艾灸内关对家兔动脉粥样硬化作用的研究[J].辽宁中医杂志.2002(01).
    [303]岳增辉,严洁,常小荣,等.隔药饼灸对兔高脂血症合并动脉粥样硬化血管内皮细胞粘附因子E选择素nRNA表达的影响[J].中国中医药信息杂志.2006(07).
    [304]常小荣,符凌,张亮,等.隔药饼灸对兔动脉粥样硬化斑块中基质金属蛋白酶-2,9mRN表达的影响[J].中国康复理论与实践.2010(10).
    [305]李建萍,姚永年,何培达,等.艾灸治疗血脂异常患者的临床研究[J].中国针灸.2005(11).
    [306]牛晓红,金红,宋剑南,等.灸神阙穴降脂抗氧化作用的研究[J].中国中医基础医学杂志.2003(10).
    [307]尹仁,吴焕淦,李璟,等.艾灸法治疗高脂血症并动脉粥样硬化研究进展[J].中国中医药信息杂志.2011(11).
    [308]常小荣,严洁,岳增辉,等.隔药饼灸对高脂血症兔血浆前列环素和血栓素含量的影响[J].中国临床康复.2004(33).
    [309]常小荣,符凌,张亮,等.隔药饼灸对兔动脉粥样硬化斑块中基质金属蛋白酶-2,9mRNA表达的影响[J].中国康复理论与实践.2010(10).
    [310]王金海,赵天平,吴焕淦,等.艾烟临床安全性评价的思考[J].上海针灸杂志.2010(01).
    [311]唐健.艾烟的化学成分及药理作用研究进展[J].黑龙江科技信息.2011(19).
    [312]吕荧,叶春枚,高建芳,等.熏灸治疗外科感染性疾病575例(附艾烟抑菌试验)[J].安徽中医学院学报.1988(04).
    [313]何斌.艾烟熏治疗浸渍糜烂型足癣78例[J].中医外治杂志.2010(05).
    [314]许焕芳,崔莹雪,黄茶熙,等.艾燃烧生成物对快速老化模型小鼠SAMP8血清抗氧化酶的影响[J].中国针灸.2012(01).
    [315]Matsumoto H, Shimada J, Nagasaka H, et al. Inhibition by Moxa smoke of NO production and iNOS expression in mouse macrophage-like cells Raw 264.7[J]. In Vivo.2005,19(2):471-474.
    [316]Sakagami H, Matsumoto H, Satoh K, et al. Cytotoxicity and radical modulating activity of Moxa smoke[J]. In Vivo.2005,19(2):391-397.
    [317]Cui Y, Zhao B, Huang Y, et al. Effects of Moxa (Folium Artemisiae argyi) Smoke Exposure on Heart Rate and Heart Rate Variability in Healthy Young Adults:A Randomized, Controlled Human Study[J]. Evid Based Complement Alternat Med.2013,2013:510318.
    [318]李虹.艾灸生成物干预高脂血症大鼠模型的实验研究[Z].北京中医药大学,2009:硕士.
    [319]杨佳.不同浓度艾烟长期干预对大鼠心血管疾病易感因子影响的实验研究[Z].北京中医药大学,2013:硕士.
    [320]Ashraf M Z, Gupta N. Scavenger receptors:Implications in atherothrombotic disorders[J]. Int J Biochem Cell Biol.2011,43(5):697-700.
    [321]江一清,刘朝中,朱国英.现代冠心病学[Z].人民军医出版社,200148一-52一
    [322]Mukhopadhyay R. Mouse models of atherosclerosis:explaining critical roles of lipid metabolism and inflammation[J]. J Appl Genet.2013,54(2):185-192.
    [323]Diamond M S, Staunton D E, Marlin S D, et al. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation[J]. Cell.1991,65(6): 961-971.
    [324]Fiorentino D F, Bond M W, Mosmann T R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones[J]. J Exp Med.1989,170(6):2081-2095.
    [325]Blann A D, Taberner D A. A reliable marker of endothelial cell dysfunction:does it exist?[J]. Br J Haematol.1995,90(2):244-248.
    [326]吴爱须,李彦平,吴爱华,等.外科病房空气消毒方法的比较研究[J].河北医药.2010(13).
    [327]姜劲峰,王玲玲,徐斌,等.抗炎——艾灸温通的效应机制[J].中国针灸.2013(09).
    [328]冯起国,裴景春,马铁明,等.艾灸内关对家兔动脉粥样硬化作用的研究[J].辽宁中医杂志.2002(01).
    [329]Jun H J, Hoang M H, Yeo S K, et al. Induction of ABCA1 and ABCG1 expression by the liver X receptor modulator cineole in macrophages[J]. Bioorg Med Chem Lett.2013,23(2):579-583.
    [330]Matsumura T, Kinoshita H, Ishii N, et al. Telmisartan exerts antiatherosclerotic effects by activating peroxisome proliferator-activated receptor-gamma in macrophages[J]. Arterioscler Thromb Vase Biol.2011, 31(6):1268-1275.
    [331]Rios F J, Jancar S, Melo I B, et al. Role of PPAR-gamma in the modulation of CD36 and FcgammaRII induced by LDL with low and high degrees of oxidation during the differentiation of the monocytic THP-1 cell line[J]. Cell Physiol Biochem.2008,22(5-6):549-556.
    [332]Bao Y, Wang L, Xu Y, et al. Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner[J]. Atherosclerosis.2012,223(1):152-159.
    [333]Chawla A. Control of macrophage activation and function by PPARs[J]. Circ Res.2010,106(10): 1559-1569.
    [334]Odegaard J I, Ricardo-Gonzalez R R, Goforth M H, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance[J]. Nature.2007,447(7148):1116-1120.
    [335]魏国华,刘兰,蔡晓波,等.高脂饮食所致动脉粥样硬化家兔肝组织学损伤评估[J].中国动脉硬化杂志.2008(05).
    [336]郑广娟.脉心康调脂与抗动脉粥样硬化作用及干预载脂蛋白E基因敲除鼠动脉粥样硬化研究[z].山东中医药大学,2004:博士.
    [337]Koonen D P, Jacobs R L, Febbraio M, et al. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity[J]. Diabetes.2007,56(12):2863-2871.
    [338]Luiken J J, Arumugam Y, Dyck D J, et al. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats[J]. J Biol Chem.2001,276(44):40567-40573.
    [339]Degrace P, Moindrot B, Mohamed I, et al. Upregulation of liver VLDL receptor and FAT/CD36 expression in LDLR-/-apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acid[J]. J Lipid Res.2006,47(12): 2647-2655.
    [340]Greco D, Kotronen A, Westerbacka J, et al. Gene expression in human NAFLD[J]. Am J Physiol Gastrointest Liver Physiol.2008,294(5):G1281-G1287.
    [341]黄茶熙,赵百孝,刘平,等.京津地区艾灸场所夏季可吸入颗粒物(PM10)的质量浓度及微观形貌分析[J].中华中医药杂志.2012(12).
    [342]Xu H, Zhao B, Cui Y, et al. Effects of Moxa Smoke on Monoamine Neurotransmitters in SAMP8 Mice[J]. Evid Based Complement Alternat Med.2013,2013:178067.
    [343]崔莹雪,许焕芳,刘平,等.艾烟对快速老化模型小鼠脑内氨基酸类神经递质含量的影响[J].中国中医药信息杂志.2013(10).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700