用户名: 密码: 验证码:
胆管转分化对斑马鱼肝脏严重受损后的修复作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏是人体最大的内脏器官,具有分泌胆汁、消化和代谢脂肪、合成和分泌氨基酸、合成和储存糖原、储存和过滤血液、解毒及排除废物、分泌血清白蛋白以维持体内环境的稳定等多种重要功能。肝脏发挥正常生理功能是保障人口健康的基本要素之一。对于恶性肝脏疾病如肝癌,迄今为止最有效的治疗和防止病情恶化的方式就是手术切除癌变部分肝脏,但是由此会导致患者的肝脏功能大大减弱,因此促进肝脏再生以使得受损肝脏恢复功能至关重要。与脊椎动物的其它器官相比,肝脏的再生能力较强,在正常肝脏中的肝细胞虽然是静默不分裂的,但是肝细胞却拥有强大的分裂增殖能力并可在肝损伤后迅速进入细胞分裂周期。肝脏经手术切除三分之二的大鼠或小鼠可在7-10天内恢复100%的肝脏重量。当肝脏细胞的增殖能力被抑制或者肝脏受到严重损伤时,一部分肝脏前体细胞会参与肝脏再生的修复,但是对这些前体细胞鉴定和分离至今尚有突破性进展。因此,建立更大程度的甚至肝脏完全损伤后再生的动物模型,对于鉴定肝脏再生过程中发挥关键作用的内源性肝脏前体细胞并深入揭示肝脏再生的分子调控机制具有重要意义。在肝脏再生过程中,成熟的胆管细胞是否会转分化为肝脏细胞到目前为止还没有报道,在本研究中我们主要以斑马鱼为动物模型探究肝脏严重受损后胆管细胞是否会转分化为肝脏细胞来参与肝脏再生过程。
     在本研究中,我们利用斑马鱼作为模式生物来研究肝脏再生的细胞来源和分子机制,首先我们构建了药物特异性诱导损伤肝脏细胞的转基因斑马鱼肝脏再生模型,通过大量的品系筛选和药物优化发现Mtz处理后可以使近100%的肝细胞诱导凋亡并在撤去药物后肝脏能够恢复正常再生。BODIPY FL C5和糖原显色PAS反应实验检测到新生的肝脏细胞具有脂肪代谢、胆酸分泌和糖原储存能力。因此我们构建的斑马鱼肝脏再生模型是一种功能性的再生模型。
     当肝脏细胞被药物特异性诱导损伤后,胆管变粗,胆管表皮细胞收缩同时有一小部分胆管细胞开始表达肝细胞的标志物,再生中后期,所有的胆管细胞都失去了正常的形态并表达肝脏特异性的分子标记,这表明胆管对肝脏再生起了重要作用。EdU标记实验发现新生肝脏区域出现大量的增殖现象并且这些增殖细胞主要集中在胆管中。而再生的开始阶段,胆管细胞的增殖能力非常低,同时TUNEL实验未能检测到胆管细胞在再生过程中发生凋亡,因此胆管细胞在肝脏受损的过程中保持了完整性,这表明胆管细胞在肝脏受损后可以转分化为肝脏细胞。为了进一步确定胆管细胞的向肝脏细胞的转分化现象,我们利用Cre-Loxp系统来追踪胆管来源的肝脏细胞,再生后期70%的新生肝脏细胞都来源于胆管细胞。这些现象表明肝脏受损再生过程中,胆管细胞形态发生变化同时增殖转分化为肝脏细胞并对肝脏再生起了主要的贡献作用。
     为了进一步确定胆管细胞在肝脏再生过程中的功能作用,我们在胚胎发育的早期抑制Notch信号来特异性的抑制胆管系统的发育,胆管系统发育受损的肝脏再生明显受到抑制。同时我们利用胆管突变体证明了胆管细胞对肝脏再生的重要性。另外,在斑马鱼中用胆管毒性药物处理早期胚胎发现即使对胆管微弱的毒副作用也会抑制胆管细胞向肝脏的转分化和肝脏的正常再生。肝脏再生初期胆管细胞开始表达一些内胚层和肝脏早期的特异性标记因子,这也说明胆管细胞转分化会伴随一个去分化为多功能细胞的过程。
     荧光原位杂交偶联抗体显色发现除了早期内胚层相关的转录因子外sox9b也会在胆管细胞中上调表达,再生初期胆管细胞并未发现增殖现象但是sox9b的表达已经上调。在sox9b突变体中,胆管细胞向肝脏细胞的转分化受到抑制同时肝脏再生减慢,这说明sox9b对胆管细胞的转分化具有重要作用。已有研究表明Sox9b是Notch信号途径的一个靶基因,当抑制了Notch后肝脏再生减慢同时sox9b的表达下调。在肝脏受损的过程中,Notch的靶基因hes5在胆管中上调,这说明Notch通过介导sox9b来参与了胆管细胞的转分化过程。
     综上所述,本研究成功构建了斑马鱼肝脏严重受损模型,鉴定了与肝脏受损相关的信号机制,并首次表明斑马鱼肝脏在儿乎100%受损后,乃然可进行再生;并揭示在受损肝脏的再生修复过程中,成熟胆管细胞的转分化起了重要作用;同时也证明胆管细胞的转分化依赖于Notch信号途径。本研究关于新生肝脏再生的来源和机制的研究对肝病的治疗能够提供一定的临床指导意义和参考价值。
The liver is the largest human visceral organs, with bile secretion, digestion and metabolism of fatty, synthesis and secretion of amino acid, the synthesis and storage of glycogen, the storage and filtering blood, detoxification and elimination of waste, the secretion of serum albumin to maintain a stable internal environment and other important functions. Liver function is one of the basic elements of security of population health. For malignant liver diseases such as liver cancer, so far the most effective treatment and prevention the exacerbation of operation is to remove the cancerous portion of the liver, but it will greatly reduce the patient's liver function, thus to promote liver regeneration in the damaged liver is important. Compared with other organs of vertebrates, liver has greatly ability of regeneration, in normal liver cells is not split the silent, but liver cells have strong proliferation ability and can quickly enter the cell division cycle after liver injury. Liver by operation was performed in2/3rats or mice can recover100%of liver weight in7-10days. When the proliferation of hepatocyte is inhibited or liver damage, a portion of the liver precursor cells may participate in the repair of liver regeneration, but the identification and isolation of precursor cell still has difficult up to know. Therefore, to establish a greater degree of even fully liver injury animal model is of great significance. Identification of endogenous precursor cells and regulatory mechanism in liver regeneration process is very mportant. The liver has high regenerative capacity, but it is not clear whether most biliary cells (particularly larger cholangiocytes) transdifferentiate into hepatocytes in regenerating liver. We investigated how this process might contribute to liver regeneration in zebrafish.
     In this study, we use zebrafish as a model organism to explore the cell sources and mechanisms in liver regeneration, first we construct a transgenic zebrafish whose liver can be killed specificity induced by Mtz. We found that the liver can be induced to cell death close to100%and return to normal regeneration after withdraw the Mtz. By BOD1PY FL C5and glycogen color PAS reaction assays, we find the new regenerated liver cells have the ability to fat metabolization, bile acid secretion and glycogen storage. Therefore zebrafish liver injury model we established is a functional regeneration model.
     When the liver cells were injuried specificly, bile duct coarsens, contraction and a small part of the bile duct cells begain to express hepatic cells markers in regeneration, later, all of the bile duct cells lose their normal morphology and express the specific markers of hepatocyte, suggesting that the bile duct played an important role in liver regeneration. EdU labeling experiments found that a large number of proliferation cells are mainly concentrated in the bile duct cells. And at the beginning of regeneration, the proliferation of bile duct is very low, while the TUNEL experiments failed to detect the apoptosis of bile duct cells in the regeneration, so bile duct cells maintain integrity in the process of liver regeneration. In order to further determine whether the bile duct cell transdifferentiate into hepatocyte, we use Cre-Loxp systems to track the destiny of bile duct,70%new hepatocyte regeneration are derived from the bile duct cells. These phenomena indicate after liver damage during regeneration, the bile duct cells changed their morphology, transdifferentiate into liver cells and play a major contribution on liver regeneration.
     In order to further define the function of bile duct cells during liver regeneration, inhibiting Notch signal to specifically reduce the development of bile duct system in the early embryonic development, liver regeneration is impaired after the development of bile duct system was significantly inhibited. At the same time, we use a bile duct mutant to further prove the roles of biliary cells on liver regeneration. In addition, in zebrafish embryos with biliary toxicity by drug treatment found that even weak toxicity also inhibits bile duct cells to transdifferentiation. At the beginning of regeneration, bile duct cells began to express some early endoderm and liver specific markers, which also show that the bile duct cells will be accompanied by a process of dedifferentiation to an intermediate of precursor cells.
     At the same time, we used fluorescence in situ hybridization coupled antibody staining found early endodermal transcription factors are up regulated in bile duct cells, sox9b also upregulated in bile duct cells in liver regeneration. There is no proliferation in bile duct but the expression of sox9b has been raised after liver damaged. In sox9b mutants, we found that the bile duct cells to the hepatocyte transdifferentiation is restrained and liver regeneration slowed down, indicating that sox9b on bile duct cell transdifferentiation is important. Sox9b is one of the target gene of Notch signal pathway, when the Notch signaling suppressed, the transcription of sox9b is also suppressed. At the same time, we can detect the up regulation of another Notch target gene Hes5in the biliary system during the Mtz treatment, indicating that Notch mediated liver regeneration through the sox9b to participate in the transdifferentiation of bile duct cell.
     In summary, we have successfully constructed the liver injury model, identied the signal mechanisms associated with liver damage and firstly show that almost100%of zebrafish liver injured, it can be recovered to normal regeneration; we also revealed in the process of regeneration and repair of damaged liver, the transdifferentiation of mature biliary duct cells play a very important role; at the same time we validate that the transdifferentiation of bile duct cells is dependent on Notch signaling pathway. Study on the sources and mechanisms of liver regeneration can provide some clinical significance for liver disease.
引文
Adams, G.B., and Scadden, D.T. (2006). The hematopoietic stem cell in its place. Nat Immunol 7,333-337.
    Agarwal, S., Holton, K.L., and Lanza, R. (2008). Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 26, 1117-1127.
    Aikawa, M., Miyazawa, M., Okada, K., Toshimitsu, Y., Torii, T., Otani, Y., Koyama, I., and Ikada, Y. (2007). Regeneration of extrahepatic bile duct--possibility to clinical application by recognition of the regenerative process. Journal of smooth muscle research= Nihon Heikatsukin Gakkai kikanshi 43,211-218.
    Akhurst, B., Matthews, V., Husk, K., Smyth, M.J., Abraham, L.J., and Yeoh, G.C. (2005). Differential lymphotoxin-beta and interferon gamma signaling during mouse liver regeneration induced by chronic and acute injury. Hepatology 41, 327-335.
    Alison, M.R., Golding, M., Sarraf, C.E., Edwards, R.J., and Lalani, E.N. (1996). Liver damage in the rat induces hepatocyte stem cells from biliary epithelial cells. Gastroenterology 110,1182-1190.
    Allan, A.L., Albanese, C., Pestell, R.G., and LaMarre, J. (2001). Activating transcription factor 3 induces DNA synthesis and expression of cyclin D1 in hepatocytes. Journal of Biological Chemistry 276,27272-27280.
    Alpini, G., Roberts, S., Kuntz, S.M., Ueno, Y., Gubba, S., Podila, P.V., LeSage, G., and LaRusso, N.F. (1996). Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 110, 1636-1643.
    Alpini, G., Ulrich, C., Roberts, S., Phillips, J.O., Ueno, Y., Podila, P.V., Colegio, O., LeSage, G.D., Miller, L.J., and LaRusso, N.F. (1997). Molecular and functional heterogeneity of cholangiocytes from rat liver after bile duct ligation. American Journal of Physiology-Gastrointestinal and Liver Physiology 272, G289-G297.
    Alpini, G.P., Ueno, Y., Glaser, S.S., Marzioni, M., Phinizy, J.L., Francis, H., and LaSage, G. (2001). Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology 34,868-876.
    Alvaro, D., Mancino, M.G., Glaser, S., Gaudio, E., Marzioni, M., Francis, H., and Alpini, G. (2007). Proliferating cholangiocytes:A neuroendocrine compartment in the diseased liver. Gastroenterology 132,415-431.
    Anlezark, G.M., Melton, R.G., Sherwood, R.F., Coles, B., Friedlos, F., and Knox, R.J. (1992). The bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954)--I. Purification and properties of a nitroreductase enzyme from Escherichia coli--a potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem Pharmacol 44,2289-2295.
    Apte, U., Gkretsi, V., Bowen, W.C., Mars, W.M., Luo, J.H., Donthamsetty, S., Orr, A., Monga, S.P., Wu, C., and Michalopoulos, G.K. (2009). Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase. Hepatology 50,844-851.
    Asahina, K., Sato, H., Yamasaki, C., Kataoka, M., Shiokawa, M., Katayama, S., Tateno, C., and Yoshizato, K. (2002). Pleiotrophin/heparin-binding growth-associated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver. American Journal of Pathology 160, 2191-2205.
    Astuti, P., Pike, T., Widberg, C., Payne, E., Harding, A., Hancock, J., and Gabrielli. B. (2009). MAPK Pathway Activation Delays G(2)/M Progression by Destabilizing Cdc25B. Journal of Biological Chemistry 284,33781-33788.
    Azuma, H., Paulk, N., Ranade, A., Dorreil, C., Al-Dhalimy, M., Ellis, E., Strom, S., Kay, M.A., Finegold, M., and Grompe, M. (2007). Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/I12rg-/-mice. Nat Biotechnol 25,903-910.
    Bartek, J., and Lukas, J. (2007). DNA damage checkpoints:from initiation to recovery or adaptation. Current Opinion in Cell Biology 19,238-245.
    Basma, H., Soto-Gutierrez, A., Yannam, G.R., Liu, L.P., Ito, R., Yamamoto, T., Ellis, E., Carson, S.D., Sato, S., Chen, Y., et al. (2009). Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes. Gastroenterology 136,990-999.
    Bataller, R., and Brenner, D.A. (2001). Hepatic stellate cells as a target for the treatment of liver fibrosis. Seminars in Liver Disease 21,437-451.
    Baumann, U., Crosby, H.A., Ramani, P., Kelly, D.A., and Strain, A.J. (1999). Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: Identification of a human hepatic progenitor cell? Hepatology 30,112-117.
    Becker, T., Wullimann, M.F., Becker, C.G., Bernhardt, R.R., and Schachner, M. (1997). Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377,577-595.
    Behrens, A., Sibilia, M., David, J.P., Mohle-Steinlein, U., Tronche, F., Schutz, G., and Wagner, E.F. (2002). Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. Embo Journal 21,1782-1790.
    Bernhardt, R.R., Tongiorgi, E., Anzini, P., and Schachner, M. (1996). Increased expression of specific recognition molecules by retinal ganglion cells and by optic pathway glia accompanies the successful regeneration of retinal axons in adult zebrafish. J Comp Neurol 376,253-264.
    Beyer, T.A., and Werner, S. (2008). The cytoprotective Nrf2 transcription factor controls insulin receptor signaling in the regenerating liver. Cell Cycle 7,874-878.
    Beyer, T.A., Xu, W., Teupser, D., Keller, U.A.D., Bugnon, P., Hildt, E., Thiery, J., Kan, Y.W., and Werner, S. (2008). Impaired liver regeneration in Nrf2 knockout mice:role of ROS-mediated insulin/IGF-1 resistance. Embo Journal 27,212-223.
    Bhat, N.K., Fisher, R.J., Fujiwara, S., Ascione, R., and Papas, T.S. (1987). Temporal and tissue-specific expression of mouse ets genes. Proceedings of the National Academy of Sciences of the United States of America 84,3161-3165.
    Blau, H.M., Chiu, C.P., and Webster, C. (1983). Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32,1171-1180.
    Borowiak, M., Garratt, A.N., Wustefeld, T., Strehle, M., Trautwein, C., and Birchmeier, C. (2004). Met provides essential signals for liver regeneration. Proceedings of the National Academy of Sciences of the United States of America 101,10608-10613.
    Bosch, F.X., Ribes, J., Diaz, M., and Cleries, R. (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-S16.
    Boulter, L., Govaere, O., Bird, T.G., Radulescu, S., Ramachandran, P., Pellicoro, A., Ridgway, R.A., Seo, S.S., Spee, B., Van Rooijen, N., et al (2012). Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 18,572-579.
    Bralet, M.P., Branchereau, S., Brechot, C., and Ferry, N. (1994). Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Am J Pathol 144,896-905.
    Brockes, J.P., and Kumar, A. (2008). Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24,525-549.
    Brooling, J.T., Campbell, J.S., Mitchell, C., Yeoh, G.C., and Fausto, N. (2005). Differential regulation of rodent hepatocyte and oval cell proliferation by interferon gamma. Hepatology 41,906-915.
    Brown, S.L., Sekhar, K.R., Rachakonda, G., Sasi, S., and Freeman, M.L. (2008). Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway. Cancer Research 68,364-368.
    Brues, A.M., and Marble, B.B. (1937). An Analysis of Mitosis in Liver Restoration. J Exp Med 65,15-27.
    Buchholz, M., and Ellenrieder, V. (2007). An emerging role for Ca2+/calcineurin/NFAT signaling in cancerogenesis. Cell Cycle 6,16-19.
    Buchholz, M., Kestler, H.A., Holzmann, K., Ellenrieder, V., Schneiderhan, W., Siech, M., Adler, G., Bachem, M.G., and Gress, T.M. (2005). Transcriptome analysis of human hepatic and pancreatic stellate cells:organ-specific variations of a common transcriptional phenotype. Journal of Molecular Medicine-Jmm 83, 795-805.
    Buniatian, G., Hamprecht, B., and Gebhardt, R. (1996). Glial fibrillary acidic protein as a marker of perisinusoidal stellate cells that can distinguish between the normal and myofibroblast-like phenotypes. Biology of the Cell 87,65-73.
    Cai, J., Zhao, Y., Liu, Y.X., Ye, F., Song, Z.H., Qin, H., Meng, S., Chen, Y.Z., Zhou, R.D., Song, X. J., et al: (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45,1229-1239.
    Cardinale, V., Semeraro, R., Torrice, A., Gatto, M., Napoli, C., Bragazzi, M.C., Gentile, R., and Alvaro, D. (2010). Intra-hepatic and extra-hepatic cholangiocarcinoma: New insight into epidemiology and risk factors. World journal of gastrointestinal oncology 2,407-416.
    Cardinale, V., Wang, Y., Carpino, G., Mendel. G., Alpini G., Gaudio, E., Reid, L.M., and Alvaro, D. (2012). The biliary tree--a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol 9,231-240.
    Cardinale, V., Wang, Y.F., Carpino, G., Cui, C.B., Gatto, M., Rossi, M., Berloco, P.B., Cantafora, A., Wauthier, E., Furth, M.E., et al: (2011). Multipotent Stem/Progenitor Cells in Human Biliary Tree Give Rise to Hepatocytes, Cholangiocytes, and Pancreatic Islets. Hepatology 54,2159-2172.
    Carmena, M., and Earnshaw, W.C. (2003). The cellular geography of aurora kinases. Nature Reviews Molecular Cell Biology 4,842-854.
    Carpentier, R., Suner, R.E., van Hul, N., Kopp, J.L., Beaudry, J.B., Cordi, S., Antoniou, A., Raynaud, P., Lepreux, S., Jacquemin, P., et al: (2011). Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141,1432-1438,1438 e1431-1434.
    Carpino, G., Cardinale, V., Onori, P., Franchitto, A., Berloco, P.B., Rossi, M., Wang, Y., Semeraro, R., Anceschi, M., Brunelli, R., et al. (2012). Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts:an anatomical in situ study yielding evidence of maturational lineages. J Anat 220, 186-199.
    Carten, J.D., Bradford, M.K., and Farber, S.A. (2011). Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev Biol 360,276-285.
    Chen, B.P.C., Wolfgang, C.D., and Hai, T.W. (1996). Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Molecular and Cellular Biology 16,1157-1168.
    Chen, C.L., Chai, J., Singh, L., Kuo, C.Y., Jin, L., Feng, T., Marzano, S., Galeni, S., Zhang, N., Iacovino, M., et al. (2011). Characterization of an In Vitro Differentiation Assay for Pancreatic-Like Cell Development from Murine Embryonic Stem Cells:Detailed Gene Expression Analysis. Assay and Drug Development Technologies 9,403-419.
    Chen, L., Zhang, W., Zhou, Q.D., Yang, H.Q., Liang, H.F., Zhang, B.X., Long, X., and Chen, X.P. (2012). HSCs play a distinct role in different phases of oval cell-mediated liver regeneration. Cell Biochemistry and Function 30,588-596.
    Choi, J.H., Park, M.J., Kim, K.W., Choi, Y.H., Park, S.H., An, W.G., Yang, U.S., and Cheong, J. (2005). Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation. Febs Letters 579,2795-2801.
    Chu, J., and Sadler, K.C. (2009). New school in liver development: lessons from zebrafish. Hepatology 50,1656-1663.
    Cobaleda, C., Jochum, W., and Busslinger, M. (2007). Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473-U478.
    Columbano, A., Ledda-Columbano, G.M., Pibiri, M., Cossu, C., Menegazzi, M., Moore, D.D., Huang, W.D., Tian, J.M., and Locker, J. (2005). Gadd45 beta is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology 42,1118-1126.
    Costa, R.H., Kalinchenko, V.V., Tan, Y.J., and Wang, I.C. (2005). The CAR nuclear receptor and hepatocyte proliferation. Hepatology 42,1004-1008.
    Costa, R.H., Kalinichenko, V.V., Wang, X.H., Kuechle, J., Yoder, Y., and Shin, B. (2003). The mouse Forkhead Box m1B transcription factor is required for development of hepatocellular carcinomas. Hepatology 38,178A-178A.
    Cox, A.G., Saunders, D.C., Kelsey, P.B., Jr., Conway, A.A., Tesmenitsky, Y., Marchini, J.F., Brown, K.K., Stamler, J.S., Colagiovanni, D.B., Rosenthal, G.J., et al. (2014). S-Nitrosothiol Signaling Regulates Liver Development and Improves Outcome following Toxic Liver Injury. Cell Rep 6,56-69.
    Cressman, D.E., Greenbaum, L.E., DeAngelis, R.A., Ciliberto, G., Furth, E.E., Poli, V., and Taub, R. (1996). Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274,1379-1383.
    Cui, R.T., Nguyen, T.T., Taube, J.H., Stratton, S.A., Feuerman, M.H., and Barton, M.C. (2005). Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. Journal of Biological Chemistry 280,39152-39160.
    Curado, S., Anderson, R.M., Jungblut, B., Mumm, J., Schroeter, E., and Stainier, D.Y. (2007a). Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236,1025-1035.
    Curado, S., Anderson, R.M., Jungblut, B., Mumm, J., Schroeter, E., and Stainier, D.Y.R. (2007b). Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies. Developmental Dynamics 236,1025-1035.
    Curado, S., Ober, E.A., Walsh, S., Cortes-Hernandez, P., Verkade, H., Koehler, C.M., and Stainier, D.Y.R. (2010). The mitochondrial import gene tomm22 is specifically required for hepatocyte survival and provides a liver regeneration model. Disease Models & Mechanisms 3,486-495.
    D'Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., and Baetge, E.E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology 23,1534-1541.
    Daly, C., Pasnikowski, E., Burova, E., Wong. V., Aldrich, T.H., Griffiths, J., Ioffe, E., Daly, T.J., Fandl, J.P., Papadopoulos, N., et al. (2006). Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci U S A 103,15491-15496.
    Darwiche, H., Oh, S.H., Steiger-Luther, N.C., Williams, J.M., Pintilie, D.G., Shupe, T.D., and Petersen, B.E. (2011). Inhibition of Notch signaling affects hepatic oval cell response in rat model of 2AAF-PH. Hepat Med 3,89-98.
    De Alwis, N., Hudson, G., Burt, A.D., Day, C.P., and Chinnery, P.F. (2009). Human Liver Stem Cells Originate from the Canals of Hering. Hepatology 50,992-993.
    de Jonge, J., Kurian, S., Shaked, A., Reddy, K.R., Hancock, W., Salomon, D.R., and Olthoff, K.M. (2009). Unique Early Gene Expression Patterns in Human Adult-to-Adult Living Donor Liver Grafts Compared to Deceased Donor Grafts. American Journal of Transplantation 9,758-772.
    De Minicis, S., Day, C., and Svegliati-Baroni, G. (2013). From NAFLD to NASH and HCC:pathogenetic mechanisms and therapeutic insights. Curr Pharm Des 19, 5239-5249.
    de Vries, W.N., Evsikov, A.V., Brogan, L.J., Anderson, C.P., Graber, J.H., Knowles, B.B., and Solter, D. (2008). Reprogramming and differentiation in mammals: motifs and mechanisms. Cold Spring Harb Symp Quant Biol 73,33-38.
    Decker, K., and Keppler, D. (1972). Galactosamine induced liver injury. Prog Liver Dis 4,183-199.
    Delous, M., Yin, C., Shin, D., Ninov, N., Debrito Carten, J., Pan, L., Ma, T.P., Farber, S.A., Moens, C.B., and Stainier, D.Y. (2012). Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet 8, e1002754.
    Deschet, K., Nakatani, Y., and Smith, W.C. (2003). Generation of Ci-Brachyury-GFP stable transgenic lines in the ascidian Ciona savignyi.Genesis 35,248-259.
    Dezso, K., Jelnes, P., Laszlo, V., Baghy, K., Bodor, C., Paku, S., Tygstrup, N., Bisgaard, H.C., and Nagy, P. (2007). Thy-1 is expressed in hepatic myofibroblasts and not oval cells in stem cell-mediated liver regeneration. American Journal of Pathology 171,1529-1537.
    Diehl, A.M. (1998). Roles of CCAAT/Enhancer-binding proteins in regulation of liver regenerative growth. Journal of Biological Chemistry 273,30843-30846.
    Diep, C.Q., Ma, D., Deo, R.C., Holm, T.M., Naylor, R.W., Arora, N., Wingert, R.A., Bollig, F., Djordjevic, G., Lichman, B., et al. (2011). Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470, 95-100.
    Ding, B.S., Nolan, D.J., Butler, J.M., James, D., Babazadeh, A.O., Rosenwaks, Z., Mittal, V., Kobayashi, H., Shido, K., Lyden, D., et al. (2010). Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468,310-315.
    Dong, J.X., Feldmann, G., Huang, J.B., Wu, S., Zhang, N.L., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D.J. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133.
    Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429,41-46.
    Dorrell, C., Erker, L., Lanxon-Cookson, K.M., Abraham, S.L., Victoroff, T., Ro, S., Canaday, P.S., Streeter, P.R., and Grompe, M. (2008). Surface markers for the murine oval cell response. Hepatology 48,1282-1291.
    Duncan, A.W., Dorrell, C., and Grompe, M. (2009). Stem cells and liver regeneration. Gastroenterology 137,466-481.
    Duncan, A.W., Taylor, M.H., Hickey, R.D., Hanlon Newell, A.E., Lenzi, M.L., Olson, S.B., Finegold, M.J., and Grompe, M. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467,707-710.
    Eberhard, D., Tosh, D., and Slack, J.M.W. (2008). Origin of pancreatic endocrine cells from biliary duct epithelium. Cellular and Molecular Life Sciences 65, 3467-3480.
    Ebrahimkhani, M.R., Oakley, F., Murphy, L.B., Mann, J., Moles, A., Perugorria, M.J., Ellis, E., Lakey, A.F., Burt, A.D., Douglass, A., et al. (2011). Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nature Medicine 17,1668-U1189.
    Edwards, D.I. (1993). Nitroimidazole drugs--action and resistance mechanisms. I. Mechanisms of action. The Journal of antimicrobial chemotherapy 31,9-20.
    Eguizabal, C., Montserrat, N., Veiga, A., and Izpisua Belmonte, J.C. (2013). Dedifferentiation, transdifferentiation, and reprogramming:future directions in regenerative medicine. Semin Reprod Med 31,82-94.
    Elson, D.A., Ryan, H.E., Snow, J.W., Johnson, R., and Arbeit, J.M. (2000). Coordinate up-regulation of hypoxia inducible factor (HIF)-1 alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Research 60,6189-6195.
    English, K., French, A., and Wood, K.J. (2010). Mesenchymal Stromal Cells: Facilitators of Successful Transplantation? Cell Stem Cell 7,431-442.
    Erker, L., and Grompe, M. (2008). Signaling networks in hepatic oval cell activation. Stem Cell Research 1,90-102.
    Espanol-Suner, R., Carpentier, R., Van Hul, N., Legry, V., Achouri, Y., Cordi, S., Jacquemin, P., Lemaigre, F., and Leclercq, I.A. (2012). Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143,1564-1575 e1567.
    Evarts, R.P., Nakatsukasa, H., Marsden, E.R., Hsia, C.C., Dunsford, H.A., and Thorgeirsson, S.S. (1990). Cellular and molecular changes in the early stages of chemical hepatocarcinogenesis in the rat. Cancer Research 50,3439-3444.
    Factor, V.M., Radaeva, S.A., and Thorgeirsson, S.S. (1994). Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. American Journal of Pathology 145,409-422.
    Faktor, V.M., Engel'gardt, N.V., Iazova, A.K., Lazareva, M.N., Poltoranina, V.S., and Rudinskaia, T.D. (1990). [Common antigens of oval cells and cholangiocytes in the mouse. Their detection by using monoclonal antibodies]. Ontogenez 21, 625-632.
    Falkowski, O., An, H.J., Ianus, I.A., Chiriboga, L., Yee, H., West, A.B., and Theise, N.D. (2003). Regeneration of hepatocyte 'buds' in cirrhosis from intrabiliary stem cells. J Hepatol 39,357-364.
    Fausto, N. (2004). Liver regeneration and repair:hepatocytes, progenitor cells, and stem cells. Hepatology 39,1477-1487.
    Fausto, N. (2006a). Involvement of the innate immune system in liver regeneration and injury. J Hepatol 45,347-349.
    Fausto, N. (2006b). Involvement of the innate immune system in liver regeneration and injury. Journal of Hepatology 45,347-349.
    Fausto, N., and Campbell, J.S. (2003). The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 120,117-130.
    Fausto, N., Campbell, J.S., and Riehle, K.J. (2006). Liver regeneration. Hepatology 43, S45-53.
    Feng, R., Desbordes, S.C., Xie, H.F., Tillo, E.S., Pixley, F., Stanley, E.R., and Graf, T. (2008). PUA and C/EBP alpha/beta convert fibroblasts into macrophage-like cells. Proceedings of the National Academy of Sciences of the United States of America 105,6057-6062.
    Fisher, B., Szuch, P., Levine, M., and Fisher, E.R. (1971). A portal blood factor as the humoral agent in liver regeneration. Science 171,575-577.
    Fleig, S.V., Choi, S.S., Yang, L., Jung, Y., Omenetti, A., VanDongen, H.M., Huang, J., Sicklick, J.K., and Diehl, A.M. (2007). Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice. Laboratory Investigation 87,1227-1239.
    Fletcher, J., Cui, W., Samuel, K., Black, J.R., Hannoun, Z., Currie, I.S., Terrace, J.D., Payne, C., Filippi, C., Newsome, P., et al. (2008). The inhibitory role of stromal cell mesenchyme on human embryonic stem cell hepatocyte differentiation is overcome by Wnt3a treatment. Cloning and stem cells 10,331-339.
    Floreani, A. (2007). Liver diseases in the elderly: an update. Dig Dis 25,138-143.
    Flores, E.R., Sengupta, S., Miller, J.B., Newman, J.J., Bronson, R., Crowley, D., Yang, A., McKeon, F., and Jacks, T. (2005). Tumor predisposition in mice mutant for p63 and p73:Evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7,363-373.
    Forner, A., Llovet, J.M., and Bruix, J. (2012). Hepatocellular carcinoma. Lancet 379, 1245-1255.
    Friedman, S.L. (2008). Hepatic stellate cells:Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews 88,125-172.
    Friedman, S.L., Roll, F.J., Boyles, J., and Bissell, D.M. (1985). Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proceedings of the National Academy of Sciences of the United States of America 82,8681-8685.
    Friedman, S.L., Sheppard, D., Duffield, J.S., and Violette, S. (2013). Therapy for fibrotic diseases:nearing the starting line. Sci Transl Med 5,167sr161.
    Frith, J., Jones, D., and Newton, J.L. (2009). Chronic liver disease in an ageing population. Age and ageing 38,11-18.
    Fujio, K., Evarts, R.P., Hu, Z.Y., Marsden, E.R., and Thorgeirsson, S.S. (1994), Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Laboratory Investigation 70,511-516.
    Fukutomi, M., Enjoji, M., Iguchi, H., Yokota, M., Iwamoto, H., Nakamuta, M., Sakai, H., and Nawata, H. (2001). Telomerase activity is repressed during differentiation along the hepatocytic and biliary epithelial lineages:verification on immortal cell lines from the same origin. Cell Biochem Funct 19,65-68.
    Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S., Kuhara, T., Hosokawa, S., Elbahrawy, A., Soeda, T., Koizumi, M., et al. (2011). Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43,34-41.
    Gagliano, N., Grizzi, F., and Annoni, G. (2007). Mechanisms of aging and liver functions. Dig Dis 25,118-123.
    Gai, H., Nguyen, D.M., Moon, Y.J., Aguila, J.R., Fink, L.M., Ward, D.C., and Ma, Y.P. (2010). Generation of murine hepatic lineage cells from induced pluripotent stem cells. Differentiation 79,171-181.
    Gebhardt, R., Baldysiak-Figiel, A., Krugel, V., Ueberham, E., and Gaunitz, F. (2007). Hepatocellular expression of glutamine synthetase:an indicator of morphogen actions as master regulators of zonation in adult liver. Progress in histochemistry and cytochemistry 41,201-266.
    Geerts, A., Niki, T., Hellemans, K., De Craemer, D., Van Den Berg, K., Lazou, J.M., Stange, G., Van De Winkel, M., and De Bleser, P. (1998). Purification of rat hepatic stellate cells by side scatter-activated cell sorting. Hepatology 27, 590-598.
    Gkretsi, V., Apte, U., Mars, W.M., Bowen, W.C., Luo, J.H., Yang, Y., Yu, Y.P., Orr, A., St-Arnaud, R., Dedhar, S., et al. (2008). Liver-Specific Ablation of Integrin-Linked Kinase in Mice Results in Abnormal Histology, Enhanced Cell Proliferation, and Hepatomegaly. Hepatology 48,1932-1941.
    Glaser, S., Francis, H., DeMorrow, S., LeSage, G., Fava, G., Marzioni, M., Venter, J., and Alpini, G. (2006). Heterogeneity of the intrahepatic biliary epithelium. World Journal of Gastroenterology 12,3523-3536.
    Glaser, S.S., Gaudio, E., Rao, A., Pierce, L.M., Onori, P., Franchitto, A., Francis, H.L., Dostal, D.E., Venter, J.K., DeMorrow, S., et al. (2009). Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Laboratory Investigation 89,456-469.
    Goessling, W., North, T.E., Loewer, S., Lord, A.M., Lee, S., Stoick-Cooper, C.L Weidinger, G., Puder, M., Daley, G.Q., Moon, R.T., et al. (2009a). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136,1136-1147.
    Goessling, W., North, T.E., Loewer, S., Lord, A.M., Lee, S., Stoick-Cooper, C.L. Weidinger, G., Puder, M., Daley, G.Q., Moon, R.T., et al. (2009b). Genetic Interaction of PGE2 and Wnt Signaling Regulates Developmental Specification of Stem Cells and Regeneration. Cell 136,1136-1147.
    Goessling, W., North, T.E., Lord, A.M., Ceol, C., Lee, S., Weidinger, G., Bourque, C., Strijbosch, R., Haramis, A.P., Puder, M., et al. (2008). APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev BioL 320,161-174.
    Gordon, G.J., Coleman, W.B., Hixson, D.C., and Grisham, J.W. (2000). Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. American Journal of Pathology 156,607-619.
    Gouon-Evans, V., Boussemart, L., Gadue, P., Nierhoff, D., Koehler, C.I., Kubo, A., Shafritz, D.A., and Keller, G. (2006). BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nature Biotechnology 24,1402-1411.
    Grabher, C., Joly, J.S., and Wittbrodt, J. (2004). Highly efficient zebrafish transgenesis mediated by the meganuclease I-Scel. Methods Cell Biol 77, 381-401.
    Greenbaum, L.E., Cressman, D.E., Haber, B.A., and Taub, R. (1995). Coexistence of C/EBP alpha, beta, growth-induced proteins and DNA synthesis in hepatocytes during liver regeneration. Implications for maintenance of the differentiated state during liver growth. Journal of Clinical Investigation 96,1351-1365.
    Grisham, J.W. (1962). A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res 22,842-849.
    Grompe, M., Aldhalimy, M., Finegold, M., Ou, C.N., Burlingame, T., Kennaway, N.G., and Soriano, P. (1993). Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes & Development 7,2298-2307.
    Gurdon, J.B. (1962). Adult frogs derived from the nuclei of single somatic cells. Developmental Biology 4,256-&.
    Hadem, J., Bockmeyer, C.L., Lukasz, A., Pischke, S., Schneider, A.S., Wedemeyer, H., Jonigk, D., Manns, M.P., and Kumpers, P. (2012). Angiopoietin-2 in acute liver failure. Critical care medicine 40,1499-1505.
    Haga, J., Shimazu, M., Wakabayashi, G., Tanabe, M., Kawachi, S., Fuchimoto, Y., Hoshino, K., Morikawa, Y., Kitajima, M., and Kitagawa, Y. (2008). Liver Regeneration in Donors and Adult Recipients After Living Donor Liver Transplantation. Liver Transplantation 14,1718-1724.
    Harris, J.A., Cheng, A.G., Cunningham, L.L., MacDonald, G., Raible, D.W., and Rubel, E.W. (2003). Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). Journal of the Association for Research in Otolaryngology:JARO 4,219-234.
    Haussinger, D., Lamers, W.H., and Moorman, A.F. (1992). Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46,72-93.
    Her, G.M., Chiang, C.C., Chen, W.Y., and Wu, J.L. (2003). In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 538,125-133.
    Herzer, K., Weyer, S., Krammer, P.H., Galle, P.R., and Hofmann, T.G. (2005). Hepatitis C virus core protein inhibits tumor suppressor protein promyelocytic leukemia function in human hepatoma cells. Cancer Research 65,10830-10837.
    Higgins, G.M., and Anderson, R.M. (1931). Experimental pathology of the liver I Restoration of the liver of the white rat following partial surgical removal. Archives of Pathology 12,186-202.
    Hsu, J.C., Bravo, R., and Taub, R. (1992). Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. Molecular and Cellular Biology 12,4654-4665.
    Hu, J., Srivastava, K., Wieland, M., Runge, A., Mogler, C., Besemfelder, E., Terhardt, D., Vogel, M.J., Cao, L., Korn, C., et al. (2014). Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343,416-419.
    Hu, Z.Y., Evarts, R.P., Fujio, K., Marsden, E.R., and Thorgeirsson, S.S. (1993). Expression of hepatocyte growth factor and c-met genes during hepatic differentiation and liver development in the rat. American Journal of Pathology 142,1823-1830.
    Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., Hu, Y., Wang, X., and Hui, L. (2011). Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475,386-389.
    Huang, W.D., Ma, K., Zhang, J., Qatanani, M., Cuvillier, J., Liu, J., Dong, B.N., Huang, X.F., and Moore, D.D. (2006). Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312,233-236.
    Huch, M., Dorrell, C., Boj, S.F., van Es, J.H., Li, V.S., van de Wetering, M., Sato, T., Hamer, K., Sasaki, N., Finegold, M.J., et al. (2013). In vitro expansion of single Lgr5+liver stem cells induced by Wnt-driven regeneration. Nature 494,247-250.
    Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., and Srivastava, D. (2010). Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors. Cell 142,375-386.
    Ikeda, O., Ozaki, M., Murata, S., Matsuo, R., Nakano, Y., Watanabe, M., Hisakura, K., Myronovych, A., Kawasaki, T., Kohno, K., et al. (2009). Autonomic Regulation of Liver Regeneration After Partial Hepatectomy in Mice. Journal of Surgical Research 152,218-223.
    Inuzuka, H., Nanbu-Wakao, R., Masuho, Y., Muramatsu, M., Tojo, H., and Wakao, H. (1999). Differential regulation of immediate early gene expression in preadipocyte cells through multiple signaling pathways. Biochemical and Biophysical Research Communications 265,664-668.
    Iverson, S.V., Comstock, K.M., Kundert, J.A., and Schmidt, E.E. (2011). Contributions of new hepatocyte lineages to liver growth, maintenance, and regeneration in mice. Hepatology 54,655-663.
    Iyer, N.V., Kotch, L.E., Agani, F., Leung, S.W., Laughner, E., Wenger, R.H., Gassmann, M., Gearhart, J.D., Lawler, A.M., Yu, A.Y., et al. (1998). Cellular and developmental control of O-2 homeostasis by hypoxia-inducible factor 1 alpha. Genes & Development 12,149-162.
    Jacquier, A., and Dujon, B. (1985). An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41, 383-394.
    Jakubowski, A., Ambrose, C., Parr, M., Lincecum, J.M., Wang, M.Z., Zheng, T.S., Browning, B., Michaelson, J.S., Baestcher, M., Wang, B., et al. (2005). TWEAK induces liver progenitor cell proliferation. Journal of Clinical Investigation 115, 2330-2340.
    Jemal, A., Center, M.M., DeSantis, C., and Ward, E.M. (2010). Global patterns cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 79,1893-1907.
    Jiang, Y., Iakova, P., Jin, J., Sullivan, E., Sharin, V., Hong, I.H., Anakk, S., Mayor, A., Darlington, G., Finegold, M., et al. (2013). Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer. Hepatology 57, 1098-1106.
    Jin, J., Wang, G.L., Shi, X., Darlington, G.J., and Timchenko, N.A. (2009a). The age-associated decline of glycogen synthase kinase 3beta plays a critical role in the inhibition of liver regeneration. Mol Cell Biol 29,3867-3880.
    Jin, J.L., Wang, G.L., Shi, X.R., Darlington, G.J., and Timchenko, N.A. (2009b). The Age-Associated Decline of Glycogen Synthase Kinase 3 beta Plays a Critical Role in the Inhibition of Liver Regeneration. Molecular and Cellular Biology 29, 3867-3880.
    Jin, L., Ji, S., Tang, X., Guo, X., Lu, Y., Chen, H., Deng, H., Zhou, Q., and Ji, W. (2009c). Isolation and characterization of liver epithelial progenitor cells from normal adult rhesus monkeys (Macaca mulatta). Cell Res 19,268-270.
    Johnson, P.F. (2005). Molecular stop signs:regulation of cell-cycle arrest by C/EBP transcription factors. Journal of Cell Science 118,2545-2555.
    Johnson, S.L., and Weston, J.A. (1995). Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics 141,1583-1595.
    Jopling, C., Boue, S., and Izpisua Belmonte, J.C. (2011) Dedifferentiation, transdifferentiation and reprogramming:three routes to regeneration. Nat Rev Mol Cell Biol 12,79-89.
    Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., and Izpisua Belmonte, J.C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464,606-609.
    Jung, Y., Brown, K.D., Witek, R.P., Omenetti, A., Yang, L., Vandongen, M., Milton, R.J., Hines, I.N., Rippe, R.A., Spahr, L., et al. (2008). Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology 134,1532-1543.
    Jungermann, K., and Kietzmann, T. (1996). Zonation of parenchymal and nonparenchymal metabolism in liver. Annual review of nutrition 16,179-203.
    Kalinichenko, V.V., Bhattacharyya, D., Zhou, Y., Gusarova, G.A., Kim, W., Shin, B., and Costa, R.H. (2003). Foxfl+/-mice exhibit defective stellate cell activation and abnormal liver regeneration following CC14 injury. Hepatology 37,107-117.
    Kan, N.G., Junghans, D., and Izpisua Belmonte, J.C. (2009). Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB J 23,3516-3525.
    Kang, Y.B., Chen, C.R., and Massague, J. (2003). A self-enabling TGF beta response coupled to stress signaling:Smad engages stress response factor ATF3 for Idl repression in epithelial cells. Molecular Cell 11,915-926.
    Katayama, H., Sasai, K., Kawai, H., Yuan, Z.M., Bondaruk, J., Suzuki, F., Fujii, S.. Arlinghaus, R.B., Czerniak, B.A., and Sen, S. (2004). Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nature Genetics 36,55-62.
    Katayanagi, K., Kono, N., and Nakanuma, Y. (1998). Isolation, culture and characterization of biliary epithelial cells from different anatomical levels of the intrahepatic and extrahepatic biliary tree from a mouse. Liver 18,90-98.
    Kawaguchi, Y. (2013). Sox9 and programming of liver and pancreatic progenitors. J Clin Invest 123,1881-1886.
    Kennedy, S., Rettinger, S., Flye, M.W., and Ponder, K.P. (1995). Experiments in transgenic mice show that hepatocytes are the source for postnatal liver growth and do not stream. Hepatology 22,160-168.
    Kent, G., Gay, S., Inouye, T., Bahu, R., Minick, O.T., and Popper, H. (1976). Vitamin A-containing lipocytes and formation of type III collagen in liver injury. Proceedings of the National Academy of Sciences of the United States of America 75,3719-3722.
    Kikuchi, K., Holdway, J.E., Werdich, A.A., Anderson, R.M., Fang, Y., Egnaczyk, G.F., Evans, T., Macrae, C.A., Stainier, D.Y., and Poss, K.D. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464,601-605.
    Knight, B., Yeoh, G.C.T., Husk, K.L., Ly, T., Abraham, L.J., Yu, C.P., Rhim, J.A., and Fausto, N. (2000). Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. Journal of Experimental Medicine 192,1809-1818.
    Kobayashi, H., Butler, J.M., O'Donnell, R., Kobayashi, M., Ding, B.S., Bonner, B., Chiu, V.K., Nolan, D.J., Shido, K., Benjamin, L., et al. (2010). Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12,1046-1056.
    Kohler, C., Bell, A.W., Bowen, W.C., Monga, S.P., Fleig, W., and Michalopoulos, G.K. (2004). Expression of Notch-1 and its ligand Jagged-1 in rat liver during liver regeneration. Hepatology 39,1056-1065.
    Kordes, C., Sawitza, I., Muller-Marbach, A., Ale-Agha, N., Keitel, V., Klonowski-Stumpe, H., and Haussinger, D. (2007). CD133(+) hepatic stellate cells are progenitor cells. Biochemical and Biophysical Research Communications 352,410-417.
    Krupczak-Hollis, K., Wang, X.H., Dennewitz, M.B., and Costa, R.H. (2003). Growth hormone stimulates proliferation of old-aged regenerating liver through Forkhead Box mlb. Hepatology 38,1552-1562.
    Kubo, A., Shinozaki, K., Shannon, J.M., Kouskoff, V., Kennedy, M., Woo, S., Fehling, H.J., and Keller, G. (2004). Development of definitive endoderm from embryonic stem cells in culture. Development 131,1651-1662.
    Kurinna, S., and Barton, M.C. (2011). Cascades of transcription regulation during liver regeneration. Int J Biochem Cell Biol 43,189-197.
    Kuver, R., Savard, C.E., Lee, S.K., Haigh, W.G., and Lee, S.P. (2007). Murine gallbladder epithelial cells can differentiate into hepatocyte-like cells in vitro. American Journal of Physiology-Gastrointestinal and Liver Physiology 293, G944-G955.
    Kuwahara, R., Kofman, A.V., Landis, C.S., Swenson, E.S., Barendswaard, E., and Theise, N.D. (2008). The hepatic stem cell niche:identification by label-retaining cell assay. Hepatology 47,1994-2002.
    Laconi, E., Oren, R., Mukhopadhyay, D.K., Hurston, E., Laconi, S., Pani, P., Dabeva, M.D., and Shafritz, D.A. (1998). Long-term, near-total liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine. American Journal of Pathology 153,319-329.
    Laconi, E., Sarma, D.S.R., and Pani, P. (1995). Transplantation of normal hepatocytes modulates the development of chronic liver lesions induced by a pyrrolizidine alkaloid, lasiocarpine. Carcinogenesis 16,139-142.
    Laoukili, J., Kooistra, M.R.H., Bras, A., Kauw, J., Kerkhoven, R.M., Morrison, A., Clevers, H., and Medema, R.H. (2005). FoxMl is required for execution of the mitotic programme and chromosome stability. Nature Cell Biology 7,126-U134.
    Lee, K.D., Kuo, T.K.C., Whang-Peng, J., Chung, Y.F., Lin, C.T., Chou, S.H., Chen, J.R., Chen, Y.P., and Lee, O.K.S. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40,1275-1284.
    Lemire, J.M., Shiojiri, N., and Fausto, N. (1991). Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. American Journal of Pathology 139,535-552.
    LeSage, G.D., Glaser, S.S., Marucci, L., Benedetti, A., Phinizy, J.L., Rodgers, R., Caligiuri, A., Papa, E., Tretjak, Z., Jezequel, A.M., et al. (1999). Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. American Journal of Physiology-Gastrointestinal and Liver Physiology 276, G1289-G1301.
    Levy, D.E., and Lee, C.K. (2002). What does Stat3 do? Journal of Clinical Investigation 109,1143-1148.
    Li, C.C., Chu, H.Y., Yang, C.W., Chou, C.K., and Tsai, T.F. (2009). Aurora-A Overexpression in Mouse Liver Causes p53-Dependent Premitotic Arrest during Liver Regeneration. Molecular Cancer Research 7,678-688.
    Li, W., Liang, X.P., Kellendonk, C., Poli, V., and Taub, R. (2002). STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration. Journal of Biological Chemistry 277,28411-28417.
    Liao, Y.J., Shikapwashya, O.N., Shteyer, E., Dieckgraefe, B.K., Hruz, P.W., and Rudnick, D.A. (2004). Delayed hepatocellular mitotic progression and impaired liver regeneration in early growth response-1-deficient mice. Journal of Biological Chemistry 279,43107-43116.
    Libbrecht, L., Cassiman, D., Desmet, V., and Roskams, T. (2002). The correlation between portal myofibroblasts and development of intrahepatic bile ducts and arterial branches in human liver. Liver 22,252-258.
    Limaye, P.B., Alarcon, G., Walls, A.L., Nalesnik, M.A., Michalopoulos, G.K., Demetris, A.J., and Ochoa, E.R. (2008a). Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development. Lab Invest 88,865-872.
    Limaye, P.B., Bowen, W.C., Orr, A., Apte, U.M., and Michalopoulos, G.K. (2010). Expression of hepatocytic-and biliary-specific transcription factors in regenerating bile ducts during hepatocyte-to-biliary epithelial cell transdifferentiation. Comp Hepatol 9,9.
    Limaye, P.B., Bowen, W.C., Orr, A.V., Luo, J., Tseng, G.C., and Michalopoulos, G.K. (2008b). Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium. Hepatology 47,1702-1713.
    Lin, S.L., Li, B., Rao, S., Yeo, E.J., Hudson, T.E., Nowlin, B.T., Pei, H., Chen, L., Zheng, J.J., Carroll, T.J., et al. (2010). Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A 107,4194-4199.
    Lindmark, D.G., and Muller, M. (1976). Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrobial agents and chemotherapy 10,476-482.
    Liu, H., Kim, Y., Sharkis, S., Marchionni, L., and Jang, Y.Y. (2011). In Vivo Liver Regeneration Potential of Human Induced Pluripotent Stem Cells from Diverse Origins. Science Translational Medicine 3.
    Liu, Q., Kaneko, S., Yang, L., Feldman, R.I., Nicosia, S.V., Chen, J., and Cheng, J.Q. (2004). Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279,52175-52182.
    Lorent, K., Moore, J.C., Siekmann, A.F., Lawson, N., and Pack, M. (2010). Reiterative use of the notch signal during zebrafish intrahepatic biliary development. Dev Dyn 239,855-864.
    Lorenzini, S., Bird, T.G., Boulter, L., Bellamy, C., Samuel, K., Aucott, R., Clayton, E., Andreone, P., Bernardi, M., Golding, M., et al. (2010). Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut 59,645-654.
    Lozier, J., McCright, B., and Gridley, T. (2008). Notch signaling regulates bile duct morphogenesis in mice. PLoS One 3, e1851.
    Lozoya, O.A., Wauthier, E., Turner, R.A., Barbier, C., Prestwich, G.D., Guilak, F., Superfine, R., Lubkin, S.R., and Reid, L.M. (2011). Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials 32,7389-7402.
    Lu, H., Ma, J., Yang, Y., Shi, W., and Luo, L. (2013). EpCAM is an endoderm-specific Wnt derepressor that licenses hepatic development. Dev Cell 24,543-553.
    Macias-Silva, M., Li, W., Leu, J.I., Crissey, M.A.S., and Taub, R. (2002). Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. Journal of Biological Chemistry 277,28483-28490.
    Mackey, S., Singh, P., and Darlington, G.J. (2003). Making the liver young again. Hepatology 38,1349-1352.
    Maeno, H., Ono, T., Dhar, D.K., Sato, T., Yamanoi, A., and Nagasue, N. (2005). Expression of hypoxia inducible factor-1 alpha during liver regeneration induced by partial hepatectomy in rats. Liver International 25,1002-1009.
    Maher, J.J., and McGuire, R.F. (1990). Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. Journal of Clinical Investigation 86,1641-1648.
    Malato, Y., Naqvi, S., Schurmann, N., Ng, R., Wang, B., Zape, J., Kay, M.A., Grimm, D., and Willenbring, H. (2011). Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 121,4850-4860.
    Malato, Y., Sander, L.E., Liedtke, C., Al-Masaoudi, M., Tacke, F., Trautwein, C., and Beraza, N. (2008). Hepatocyte-specific inhibitor-of-kappaB-kinase deletion triggers the innate immune response and promotes earlier cell proliferation during liver regeneration. Hepatology 47,2036-2050.
    Marchesini, G., Bua, V., Brunori, A., Bianchi, G., Pisi, P., Fabbri, A., Zoli, M., and Pisi, E. (1988). Galactose elimination capacity and liver volume in aging man. Hepatology 8,1079-1083.
    Martins, P.N.A., Theruvath, T.P., and Neuhaus, P. (2008). Rodent models of partial hepatectomies. Liver International 28,3-11.
    Marubashi, S., Sakon, M., Nagano, H., Gotoh, K., Hashimoto, K., Kubota, M., Kobayashi, S., Yamamoto, S., Miyamoto, A., Dono, K., et al. (2004). Effect of portal hemodynamics on liver regeneration studied in a novel portohepatic shunt rat model. Surgery 136,1028-1037.
    Marumoto, T., Zhang, D.W., and Saya, H. (2005). Aurora-A-A guardian of poles. Nature Reviews Cancer 5,42-50.
    Marzioni, M., Francis, H., Benedetti, A., Ueno, Y., Fava, G., Venter, J., Reichenbach, R., Mancino, M.G., Summers, R., Alpini, G., et al. (2006). Ca2+-dependent cytoprotective effects of ursodeoxycholic and tauroursodeoxycholic acid on the biliary epithelium in a rat model of cholestasis and loss of bile ducts. American Journal of Pathology 168,398-409.
    Matthews, V.B., Klinken, E., and Yeoh, G.C.T. (2004). Direct effects of interleukin-6 on liver progenitor oval cells in culture. Wound Repair and Regeneration 12,650-656.
    McClelland, R., Wauthier, E., Tallheden, T., Reid, L.M., and Hsu, E. (2011). In Situ Labeling and Magnetic Resonance Imaging of Transplanted Human Hepatic Stem Cells. Molecular Imaging and Biology 13,911-922.
    Metzger, D., Ali, S., Bornert, J.M., and Chambon, P. (1995). Characterization of the amino-terminal transcriptional activation function of the human estrogen receptor in animal and yeast cells. J Biol Chem 270,9535-9542.
    Meurer, S.K., Tihaa, L., Lahme, B., Gressner, A.M., and Weiskirchen, R. (2005). Identification of endoglin in rat hepatic stellate cells-New insights into transforming growth factor beta receptor signaling. Journal of Biological Chemistry 280,3078-3087.
    Michalopoulos, G.K. (2007a). Liver regeneration. J Cell Physiol 213,286-300.
    Michalopoulos, G.K. (2007b). Liver regeneration. Journal of Cellular Physiology 213,286-300.
    Michalopoulos, G.K. (2010). Liver regeneration after partial hepatectomy:critical analysis of mechanistic dilemmas. Am J Pathol 176,2-13.
    Michalopoulos, G.K. (2011). Liver regeneration: alternative epithelial pathways. Int J Biochem Cell Biol 43,173-179.
    Michalopoulos, G.K., Barua, L., and Bowen, W.C. (2005). Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41,535-544.
    Michalopoulos, G.K., and DeFrances, M.C. (1997). Liver regeneration. Science 276, 60-66.
    Mischoulon, D., Rana, B., Bucher, N.L.R., and Farmer, S.R. (1992). Growth-dependent inhibition of CCAAT enhancer-binding protein (C/EBP alpha) gene expression during hepatocyte proliferation in the regenerating liver and in culture. Molecular and Cellular Biology 12,2553-2560.
    Mitchell, C., and Willenbring, H. (2008). A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nature Protocols 3,1167-1170.
    Monga, S.P., Pediaditakis, P., Mule, K., Stolz, D.B., and Michalopoulos, G.K. (2001). Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33,1098-1109.
    Moorman, A.F., Vermeulen, J.L., Charles, R., and Lamers, W.H. (1989). Localization of ammonia-metabolizing enzymes in human liver:ontogenesis of heterogeneity. Hepatology 9,367-372.
    Muller, M., Schilling, T., Sayan, A.E., Kairat, A., Lorenz, K., Schulze-Bergkamen, H., Oren, M., Koch, A., Tannapfel, A., Stremmel, W., et al. (2005). TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death and Differentiation 12, 1564-1577.
    Nakanuma, Y., Hoso, M., Sanzen, T., and Sasaki, M. (1997). Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microscopy research and technique 38,552-570.
    Nakanuma, Y., Katayanagi, K., Terada, T., and Saito, K. (1994). Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. Journal of gastroenterology and hepatology 9,75-79.
    Navarro-Alvarez, N., Soto-Gutierrez, A., and Kobayashi, N. (2010). Hepatic stem cells and liver development. Methods Mol Biol 640,181-236.
    Neubauer, K., Knittel, T., Aurisch, S., Fellmer, P., and Ramadori, G. (1996). Glial fibrillary acidic protein-A cell type specific marker for Ito cells in vivo and in vitro. Journal of Hepatology 24,719-730.
    Niki, T., Pekny, M., Hellemans, K., De Bleser, P., Van den Berg, K., Vaeyens, F., Quartier, E., Schuit, F., and Geerts, A. (1999). Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology 29,520-527.
    Ninomiya, M., Shirabe, K., Terashi, T., Ijichi, H., Yonemura, Y., Harada, N., Soejima, Y., Taketomi, A., Shimada, M., and Maehara, Y. (2010). Deceleration of Regenerative Response Improves the Outcome of Rat with Massive Hepatectomy. American Journal of Transplantation 10,1580-1587.
    Nishikawa, Y., Doi, Y., Watanabe, H., Tokairin, T., Omori, Y., Su, M., Yoshioka, T., and Enomoto, K. (2005). Transdifferentiation of mature rat hepatocytes into bile duct-like cells in vitro. Am J Pathol 166,1077-1088.
    Nordenstedt, H., White, D.L., and El-Serag, H.B. (2010). The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis 42 Suppl 3, S206-214.
    North, T.E., Babu, I.R., Vedder, L.M., Lord, A.M., Wishnok, J.S., Tannenbaum, S.R., Zon, L.I., and Goessling, W. (2010). PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci U S A 107,17315-17320.
    Ochoa, B., Syn, W.K., Delgado, I., Karaca, G.F., Jung, Y., Wang, J.B., Zubiaga, A.M., Fresnedo, O., Omenetti, A., Zdanowicz, M., et al. (2010). Hedgehog Signaling Is Critical for Normal Liver Regeneration After Partial Hepatectomy in Mice. Hepatology 51,1712-1723.
    Oe, S., Lemmer, E.R., Conner, E.A., Factor, V.M., Leveen, P., Larsson, J., Karlsson, S., and Thorgeirsson, S.S. (2004). Intact signaling by transforming growth factor beta is not required for termination of liver regeneration in mice. Hepatology 40, 1098-1105.
    Oertel, M., Rosencrantz, R., Chen, Y.Q., Thota, P.N., Sandhu, J.S., Dabeva, M.D., Pacchia, A.L., Adelson, M.E., Dougherty, J.P., and Shafritz, D.A. (2003). Repopulation of rat liver by fetal hepatoblasts and adult hepatocytes transduced ex vivo with lentiviral vectors. Hepatology 37, 994-1005.
    Ogino, H., McConnell, W.B., and Grainger, R.M. (2006). Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev 123, 103-113.
    Omenetti, A., Yang, L., Li, Y.X., McCall, S.J., Jung, Y.M., Sicklick, J.K., Huang, J.W., Choi, S., Suzuki, A., and Diehl, A.M. (2007). Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. Laboratory Investigation 87,499-514.
    Overturf, K., Al-Dhalimy, M., Finegold, M., and Grompe, M. (1999). The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am J Pathol 155, 2135-2143.
    Overturf, K., al-Dhalimy, M., Ou, C.N., Finegold, M., and Grompe, M. (1997). Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 151,1273-1280.
    Pan, D.J. (2007). Hippo signaling in organ size control. Genes & Development 21, 886-897.
    Pan, F.C., Chen, Y., Loeber, J., Henningfeld, K., and Pieler, T. (2006). I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235,247-252.
    Pang, Z.P.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature 476,220-U122.
    Panigrahy, D., Kalish, B.T., Huang, S., Bielenberg, D.R., Le, H.D., Yang, J., Edin, M.L., Lee, C.R., Benny, O., Mudge, D.K., et al. (2013). Epoxyeicosanoids promote organ and tissue regeneration. Proc Natl Acad Sci U S A 110, 13528-13533.
    Paranjpe, S., Bowen, W.C., Bell, A. W., Nejak-Bowen, K., Luo, J.H., and Michalopoulos, G.K. (2007). Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-met in regenerating rat livers by RNA interference. Hepatology 45,1471-1477.
    Park, J.S., Qiao, L., Gilfor, D., Yang, M.Y., Hylemon, P.B., Benz, C., Darlington, G., Firestone, G., Fisher, P.B., and Dent, P. (2000). A role for both Ets and C/EBP transcription factors and mRNA stabilization in the MAPK-dependent increase in p21(Cipl/WAF1/mda6) protein levels in primary hepatocytes. Molecular Biology of the Cell 11;,2915-2932.
    Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA:a cancer journal for clinicians 55,74-108.
    Pasciu, D., Montisci, S., Greco, M., Doratiotto, S., Pitzalis, S., Pani, P., Laconi, S., and Laconi, E. (2006). Aging is associated with increased clonogenic potential in rat liver in vivo. Aging Cell 5,373-377.
    Passino, M.A., Adams, R.A., Sikorski, S.L., and Akassoglou, K. (2007). Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75(NTR). Science 315,1853-1856.
    Petersen, B.E., Goff, J.P., Greenberger, J.S., and Michalopoulos, G.K. (1998). Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology 27,433-445.
    Petersen, B.E., Grossbard, B., Hatch, H., Pi, L.Y., Deng, J., and Scott, E.W. (2003a). Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology 37,632-640.
    Petersen, K.F., Befroy, D., Dufour, S., Dziura, J., Ariyan, C., Rothman, D.L., DiPietro, L., Cline, G.W., and Shulman, G.I. (2003b). Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300,1140-1142.
    Pi, L., Ding, X.D., Jorgensen, M., Pan, J.J., Oh, S.H., Pintilie, D., Brown, A., Song, W.Y., and Petersen, B.E. (2008). Connective tissue growth factor with a novel fibronectin binding site promotes cell adhesion and migration during rat oval cell activation. Hepatology 47,996-1004.
    Pierre, K.B., Jones, C.M., Pierce, J.M., Nicoud, I.B., Earl, T.M., and Chari, R.S. (2009). NFAT4 Deficiency Results in Incomplete Liver Regeneration Following Partial Hepatectomy. Journal of Surgical Research 154,226-233.
    Pintilie, D.G., Shupe, T.D., Oh, S.H., Salganik, S.V., Darwiche, H., and Petersen, B.E. (2010). Hepatic stellate cells' involvement in progenitor-mediated liver regeneration. Lab Invest 90,1199-1208.
    Pinzani, M. (2011). Epithelial-mesenchymal transition in chronic liver disease: fibrogenesis or escape from death? J Hepatol 55,459-465.
    Pisharath, H., Rhee, J.M., Swanson, M.A., Leach, S.D., and Parsons, M.J. (2007). Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 124,218-229.
    Podrini, C., Borghesan, M., Greco, A., Pazienza, V., Mazzoccoli, G., and Vinciguerra, M. (2013). Redox homeostasis and epigenetics in non-alcoholic fatty liver disease (NAFLD). Curr Pharm Des 19,2737-2746.
    Popper, H. (1986). Aging and the liver. Prog Liver Dis 8, 659-683.
    Poss, K.D., Wilson, L.G., and Keating, M.T. (2002). Heart regeneration in zebrafish. Science 298,2188-2190.
    Preisegger, K.H., Factor, V.M., Fuchsbichler, A., Stumptner, C., Denk, H., and Thorgeirsson, S.S. (1999). Atypical ductular proliferation and its inhibition by transforming growth factor beta 1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Laboratory Investigation 79, 103-109.
    Puche, J.E., Lee, Y.M.A., Jiao, J.J., Aloman, C., Fiel, M.I., Munoz, U., Kraus, T., Lee, T.F., Yee, H.F., and Friedman, S.L. (2013). A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 57,340-350.
    Putzer, B., Tuve, S., Tannapfel, A., and Stiewe, T. (2003). Increased Delta N-p73 expression in tumors by upregulation of the E2F1-regulated, TA-promoter-derived Delta N'-p73 transcript. Cell Death and Differentiation 10, 612-614.
    Qin, S.W., Zhao, L.F., Chen, X.G., and Xu, C.S. (2006). Expression pattern and action analysis of genes associated with the responses to chemical stimuli during rat liver regeneration. World Journal of Gastroenterology 12,7285-7291.
    Rabes, H.M. (1977). Kinetics of hepatocellular proliferation as a function of the micro vascular structure and functional state of the liver. Ciba Found Symp,31-53.
    Rahman, T.M., and Hodgson, H.J. (2000). Animal models of acute hepatic failure. Int J Exp Pathol 81,145-157.
    Reddy, S.M., Hsiao, K.H., Abernethy, V.E., Fan, H., Longacre, A., Lieberthal, W., Rauch, J., Koh, J.S., and Levine, J.S. (2002). Phagocytosis of apoptotic cells by macrophages induces novel signaling events leading to cytokine-independent survival and inhibition of proliferation: activation of Akt and inhibition of extracellular signal-regulated kinases 1 and 2. J Immunol 169,702-713.
    Reeves, H.L., and Friedman, S.L. (2002). Activation of hepatic stellate cells-A key issue in liver fibrosis. Frontiers in Bioscience-Landmark 7, D808-D826.
    Regev, A., and Schiff, E.R. (2001). Liver disease in the elderly. Gastroenterology clinics of North America 30,547-563, x-xi.
    Rembold, M., Lahiri, K., Foulkes, N.S., and Wittbrodt, J. (2006). Transgenesis in fish:efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 1,1133-1139.
    Rockey, D.C., and Weisiger, R.A. (1996). Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: Implications for regulation of portal pressure and resistance. Hepatology 24, 233-240.
    Rodriguez, J.L., Sandoval, J., Serviddio, G., Sastre, J., Morante, M., Perrell, M.G., Martinez-Chantar, M. L., Vina, J., Vina, J.R., Mato, J.M., et al. (2006). Id2 leaves the chromatin of the E2F4-p130-controlled c-myc promoter during hepatocyte priming for liver regeneration. Biochemical Journal 398, 431-437.
    Rosenberg, D., Ilic, Z., Yin, L., and Sell, S. (2000). Proliferation of hepatic lineage cells of normal C57BL and interleukin-6 knockout mice after cocaine-induced periportal injury. Hepatology 31,948-955.
    Roskams, T. (2006). Different types of liver progenitor cells and their niches. J Hepatol 45,1-4.
    Roskams, T., Yang, S.Q., Koteish, A., Durnez, A., DeVos, R., Huang, X.W., Achten, R., Verslype, C., and Diehl, A.M. (2003). Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease. American Journal of Pathology 163,1301-1311.
    Roskams, T.A., Theise, N.D., Balabaud, C., Bhagat, G., Bhathal, P.S., Bioulac-Sage, P., Brunt, E.M., Crawford, J.M., Crosby, H.A., Desmet, V., et al. (2004). Nomenclature of the finer branches of the biliary tree:Canals, ductules, and ductular reactions in human livers. Hepatology 39,1739-1745.
    Sackett, S.D., Li, Z.D., Hurtt, R., Gao, Y., Wells, R.G., Brondell, K., Kaestner, K.H., and Greenbaum, L.E. (2009). Foxll Is a Marker of Bipotential Hepatic Progenitor Cells in Mice. Hepatology 49,920-929.
    Sadler, K.C., Krahn, K.N., Gaur, N.A., and Ukomadu, C. (2007). Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrfl. Proc Natl Acad Sci U S A 104,1570-1575.
    Sakaguchi, T.F., Sadler, K.C., Crosnier, C., and Stainier, D.Y. (2008). Endothelial signals modulate hepatocyte apicobasal polarization in zebrafish. Curr Biol 18, 1565-1571.
    Sakamoto, T., Liu, Z., Murase, N., Ezure, T., Yokomuro, S., Poli, V., and Demetris, A.J. (1999). Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. Hepatology 29,403-411.
    Sanchez, A., Factor, V.M., Schroeder, I.S., Nagy, P., and Thorgeirsson, S.S. (2004). Activation of NF-kappa B and STAT3 in rat oval cells during 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Hepatology 39,376-385.
    Sancho-Bru, P., Roelandt, P., Narain, N., Pauwelyn, K., Notelaers, T., Shimizu, T., Ott, M., and Verfaillie, C. (2011). Directed differentiation of murine-induced pluripotent stem cells to functional hepatocyte-like cells. Journal of Hepatology 54,98-107.
    Santa Cruz, V., Liu, H., Kaphalia, L., and Kanz, M.F. (2007). Effects of methylenedianiline on tight junction permeability of biliary epithelial cells in vivo and in vitro. Toxicol Lett 169,13-25.
    Saxena, R., and Theise, N. (2004). Canals of Hering:Recent insights and current knowledge. Seminars in Liver Disease 24, 43-48.
    Saxena, R., Theise, N.D., and Crawford, J.M. (1999). Microanatomy of the human liver-Exploring the hidden interfaces. Hepatology 30,1339-1346.
    Schaub, M., Nussbaum, J., Verkade, H., Ober, E.A., Stainier, D.Y., and Sakaguchi, T.F. (2012). Mutation of zebrafish Snapc4 is associated with loss of the intrahepatic biliary network. Dev Biol 363,128-137.
    Scheid, A., Wenger, R.H., Christina, H., Camenisch, I., Ferenc, A., Stauffer, U.G., Gassmann, M., and Meuli, M. (2000). Hypoxia-regulated gene expression in fetal wound regeneration and adult wound repair. Pediatric Surgery International 16, 232-236.
    Schmelzer, E., and Reid, L.M. (2009). Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors. European journal of gastroenterology & hepatology 21, 1191-1198.
    Schmelzer, E., Wauthier, E., and Reid, L.M. (2006). The phenotypes of pluripotent human hepatic progenitors. Stem Cells 24,1852-1858.
    Schmelzer, E., Zhang, L., Bruce, A., Wauthier, E., Ludlow, J., Yao, H.L., Moss, N., Melhem, A., McClelland, R., Turner, W., et al. (2007). Human hepatic stem cells from fetal and postnatal donors. Journal of Experimental Medicine 204, 1973-1987.
    Schrem, H., Klempnauer, J., and Borlak, J. (2004). Liver-enriched transcription factors in liver function and development. Part II:the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacological Reviews 56, 291-330.
    Schuppan, D., Schmid, M., Somasundaram, R., Ackermann, R., Ruehl, M., Nakamura, T., and Riecken, E.O. (1998). Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology 114,139-152.
    Schwartz, R.E., Reyes, M., Koodie, L., Jiang, Y.H., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W.S., and Verfaillie, C.M. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. Journal of Clinical Investigation 109,1291-1302.
    Schwarze, P.E., Pettersen, E.O., Shoaib, M.C., and Seglen, P.O. (1984). Emergence of a population of small, diploid hepatocytes during hepatocarcinogenesis. Carcinogenesis 5,1267-1275.
    Seeliger, C., Culmes, M., Schyschka, L., Yan, X., Damm, G., Wang, Z., Kleeff, J., Thasler, W.E., Hengstler, J., Stockle, U., et al. (2013). Decrease of global methylation improves significantly hepatic differentiation of Ad-MSCs:possible future application for urea detoxification. Cell Transplant 22,119-131.
    Seidel, H.M., Milocco, L.H., Lamb, P., Darnell, J.E., Stein, R.B., and Rosen, J. (1995). Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America 92,3041-3045.
    Sekiya, S., and Suzuki, A. (2011). Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475,390-393.
    Sekiya, S., and Suzuki, A. (2012). Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest 122,3914-3918.
    Sell, S. (2001). Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 33,738-750.
    Semenza, G.L., Roth, P.H., Fang, H.M., and Wang, G.L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry 269,23757-23763.
    Shafiei, M.S., and Rockey, D.C. (2006). The role of integrin-linked kinase in liver wound healing. Journal of Biological Chemistry 281,24863-24872.
    Sheedfar, F., Di Biase, S., Koonen, D., and Vinciguerra, M. (2013). Liver diseases and aging:friends or foes? Aging Cell 12,950-954.
    Shen, K., Chang, W., Gao, X., Wang, H., Niu, W., Song, L., and Qin, X. (2011). Depletion of activated hepatic stellate cell correlates with severe liver damage and abnormal liver regeneration in acetaminophen-induced liver injury. Acta Biochim Biophys Sin (Shanghai) 43,307-315.
    Shimizu, H., Miyazaki, M., Wakabayashi, Y., Mitsuhashi, N., Kato, A., Ito, H., Nakagawa, K., Yoshidome, H., Kataoka, M., and Nakajima, N. (2001). Vascular endothelial growth factor secreted by replicating hepatocytes induces sinusoidal endothelial cell proliferation during regeneration after partial hepatectomy in rats. J Hepatol 34,683-689.
    Shin, S., Walton, G., Aoki, R., Brondell, K., Schug, J., Fox, A., Smirnova, O., Dorrell, C., Erker, L., Chu, A.S., et al. (2011). Foxll-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev 25, 1185-1192.
    Shinozuka, H., Lombardi, B., Sell, S., and Iammarino, R.M. (1978). Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet. Cancer Research 38,1092-1098.
    Shiraki, N., Umeda, K., Sakashita, N., Takeya, M., Kume, K., and Kume, S. (2008). Differentiation of mouse and human embryonic stem cells into hepatic lineages. Genes to Cells 13,731-746.
    Shiratori, Y., Hongo, S., Hikiba, Y., Ohmura, K., Nagura, T., Okano, K., Kamii, K., Tanaka, T., Komatsu, Y., Ochiai, T., et al. (1996). Role of macrophages in regeneration of liver. Digestive Diseases and Sciences 41,1939-1946.
    Si-Tayeb, K., Noto, F.K., Nagaoka, M., Li, J.X., Battle, M.A., Duris, C., North, P.E., Dalton, S., and Duncan, S.A. (2010). Highly Efficient Generation of Human Hepatocyte-Like Cells from Induced Pluripotent Stem Cells. Hepatology 51, 297-305.
    Sicklick, J.K., Choi, S.S., Bustamante, M., McCall, S.J., Perez, E.H., Huang, J.W., Li, Y.X., Rojkind, M., and Diehl, A.M. (2006). Evidence for epithelial-mesenchymal transitions in adult liver cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 291, G575-G583.
    Slawik, M., and Vidal-Puig, A.J. (2006). Lipotoxicity, overnutrition and energy metabolism in aging. Ageing research reviews 5,144-164.
    Snykers, S., De Kock, J., Rogiers, V., and Vanhaecke, T. (2009). In Vitro Differentiation of Embryonic and Adult Stem Cells into Hepatocytes:State of the Art. Stem Cells 27,577-605.
    Snykers, S., Vanhaecke, T., De Becker, A., Papeleu, P., Vinken, M., Van Riet, I., and Rogiers, V. (2007). Chromatin remodeling agent trichostatin A:a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow. Bmc Developmental Biology 7.
    Solt, D.B., Medline, A., and Farber, E. (1977). Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. American Journal of Pathology 88,595-618.
    Son, S.H., Yu, E., Choi, E.K., Lee, H., and Choi, J. (2005). Promyelocytic leukemia protein-induced growth suppression and cell death in liver cancer cells. Cancer Gene Therapy 12,1-11.
    Song, S.Y., Gannon, M., Washington, M.K., Scoggins, C.R., Meszoely, I.M., Goldenring, J.R., Marino, C.R., Sandgren, E.P., Coffey, R.J., Wright, C.V.E., et al. (1999). Expansion of Pdxl-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology 117,1416-1426.
    Song, Z.H., Cai, J., Liu, Y.X., Zhao, D.X., Yong, J., Duo, S.G., Song, X.J., Guo, Y.S., Zhao, Y., Qin, H., et al. (2009). Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Research 19,1233-1242.
    Spagnoli, F.M., Amicone, L., Tripodi, M., and Weiss, M.C. (1998). Identification of a bipotential precursor cell in hepatic cell lines derived from transgenic mice expressing cyto-Met in the liver. Journal of Cell Biology 143,1101-1112.
    Spangrude, G.J., Heimfeld, S., and Weissman, I.L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science 241,58-62.
    Spee, B., Carpino, G., Schotanus, B.A., Katoonizadeh, A., Vander Borght, S., Gaudio, E., and Roskams, T. (2010). Characterisation of the liver progenitor cell niche in liver diseases:potential involvement of Wnt and Notch signalling. Gut 59, 247-257.
    Spence, J.R., Lange, A.W., Lin, S.C.J., Kaestner, K.H., Lowy, A.M., Kim, I., Whitsett, J.A., and Wells, J.M. (2009). Sox17 Regulates Organ Lineage Segregation of Ventral Foregut Progenitor Cells. Developmental Cell 17,62-74.
    Spitz, L. (1978). Choledochal cyst. Surgery Gynecology & Obstetrics 147,444-452.
    Stepniak, E., Ricci, R., Eferl, R., Sumara, G., Sumara, I., Rath, M., Hui, L.J., and Wagner, E.F. (2006). c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes & Development 20, 2306-2314.
    Stiewe, T., Theseling, C.C., and Putzer, B.M. (2002). Transactivation-deficient triangle TA-p73 inhibits p53 by direct competition for DNA binding Implications for tumorigenesis. Journal of Biological Chemistry 277, 14177-14185.
    Stiewe, T., Tuve, S., Peter, M., Tannapfel, A., Elmaagacli, A.H., and Putzer, B.M. (2004). Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clinical Cancer Research 10,626-633.
    Stocker, E., and Heine, W.D. (1971). Regeneration of liver parenchyma under normal and pathological conditions. Beitr Pathol 144,400-408.
    Strey, C.W., Markiewski, M., Mastellos, D., Tudoran, R., Spruce, L.A., Greenbaum, L.E., and Lambris, J.D. (2003). The proinflammatory mediators C3a and C5a are essential for liver regeneration. Journal of Experimental Medicine 198,913-923.
    Strick-Marchand, H., Morosan, S., Charneau, P., Kremsdorf, D., and Weiss, M.C. (2004). Bipotential mouse embryonic liver stem cell lines contribute to liver regeneration and differentiate as bile ducts and hepatocytes. Proc Natl Acad Sci U S A 101,8360-8365.
    Su, A.J., Guidotti, L.G., Pezacki, J.P., Chisari, F.V., and Schultz, P.G. (2002). Gene expression during the priming phase of liver regeneration after partial hepatectomy in mice. Proceedings of the National Academy of Sciences of the United States of America 99,11181-11186.
    Sugimoto, K., Gordon, S.P., and Meyerowitz, E.M. (2011). Regeneration in plants and animals:dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21,212-218.
    Sullivan, G.J., Hay, D.C., Park, I.H.. Fletcher, J., Hannoun, Z., Payne, C.M., Dalgetty, D., Black, J.R., Ross, J.A., Samuel, K., et al (2010). Generation of Functional Human Hepatic Endoderm from Human Induced Pluripotent Stem Cells. Hepatology 51,329-335.
    Sun, R., and Gao, B. (2004). Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-gamma). Gastroenterology 127, 1525-1539.
    Szabo, E., Rampalli, S., Risueno, R.M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., Levadoux-Martin, M., and Bhatia, M. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468, 521-U191.
    Tajima, T., Goda, N., Fujiki, N., Hishiki, T., Nishiyama, Y., Senoo-Matsuda, N., Shimazu, M., Soga, T., Yoshimura, Y., Johnson, R.S., et al. (2009). HIF-lalpha is necessary to support gluconeogenesis during liver regeneration. Biochem Biophys Res Commun 387,789-794.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131,861-872.
    Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
    Talarmin, H., Rescan, C., Cariou, S., Glaise, D., Zanninelli, G., Bilodeau, M., Loyer, P., Guguen-Guillouzo, C., and Baffet, G. (1999). The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G(1) phase progression in proliferating hepatocytes. Molecular and Cellular Biology 19,6003-6011.
    Tanimizu, N., and Miyajima, A. (2004). Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci 117,3165-3174.
    Tanimizu, N., Nishikawa, M., Saito, H., Tsujimura, T., and Miyajima, A. (2003). Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J Cell Sci 116, 1775-1786.
    Tannapfel, A., John, K., Mise, N., Schmidt, A., Buhlmann, S., Ibrahim, S.M., and Putzer, B.M. (2008). Autonomous growth and hepatocarcinogenesis in transgenic mice expressing the p53 family inhibitor DNp73. Carcinogenesis 29,211-218.
    Taub, R. (2004). Liver regeneration:From myth to mechanism. Nature Reviews Molecular Cell Biology 5,836-847.
    Taylor, W.R., and Stark, G.R. (2001). Regulation of the G2/M transition by p53. Oncogene 20,1803-1815.
    Teebor, G.W., and Becker, F.F. (1971). Regression and persistence of hyperplastic hepatic nodules induced by N-2-Fluorenylacetamide and their relationship to hepatocarcinogenesis. Cancer Research 31,1-&.
    Terada, T., Kida, T., and Nakanuma, Y. (1993). Extrahepatic peribiliary glands express alpha-amylase isozymes, trypsin and pancreatic lipase:an immunohistochemical analysis. Hepatology 18,803-808.
    Terada, T., and Nakanuma, Y. (1993). Development of human intrahepatic peribiliary glands. Histological, keratin immunohistochemical, and mucus histochemical analyses. Laboratory Investigation 68,261-269.
    Terada, T., and Nakanuma, Y. (1995). Expression of pancreatic enzymes (alpha-amylase, trypsinogen, and lipase) during human liver development and maturation. Gastroenterology 108,1236-1245.
    Terasaki, H., Murakami, R., Yasuhiko, Y., Shin, I.T., Kohara, Y., Saga, Y., and Takeda, H. (2006). Transgenic analysis of the medaka mesp-b enhancer in somitogenesis. Dev Growth Differ 48,153-168.
    Terris, B., Baldin, V., Dubois, S., Degott, C., Flejou, J.F., Henin, D., and Dejean, A. (1995). PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Research 55,1590-1597.
    Theise, N.D., Saxena, R., Portmann, B.C., Thung, S.N., Yee, H., Chiriboga, L., Kumar, A., and Crawford, J.M. (1999). The canals of Hering and hepatic stem cells in humans. Hepatology 30,1425-1433.
    Thermes, V., Grabher, C., Ristoratore, F., Bourrat, F., Choulika, A., Wittbrodt, J., and Joly, J.S. (2002). I-Scel meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118,91-98.
    Thorel, F., Nepote, V., Avril, I., Kohno, K., Desgraz, R., Chera, S., and Herrera, P.L. (2010). Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464,1149-1154.
    Timchenko, N.A. (2009). Aging and liver regeneration. Trends Endocrinol Metab 20, 171-176.
    Trim, N., Morgan, S., Evans, M., Issa, R., Fine, D., Afford, S., Wilkins, B., and Iredale, J. (2000). Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. American Journal of Pathology 156,1235-1243.
    Tsai, W.W., Nguyen, T.T., Shi, Y., and Barton, M.C. (2008). P53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo. Molecular and Cellular Biology 28,5139-5146.
    Tsonis, P.A., Madhavan, M., Tancous, E.E., and Del Rio-Tsonis, K. (2004). A newt's eye view of lens regeneration. Int J Dev Biol 48,975-980.
    Tsuzuki, Y., Fukumura, D., Oosthuyse, B., Koike, C., Carmeliet, P., and Jain, R.K. (2000). Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1 alpha-> hypoxia response element-> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Research 60,6248-6252.
    Turner, R., Lozoya, O., Wang, Y.F., Cardinale, V., Gaudio, E., Alpini, G., Mendel, G., Wauthier, E., Barbier, C., Alvaro, D., et al. (2011). Human Hepatic Stem Cell and Maturational Liver Lineage Biology. Hepatology 53,1035-1045.
    Turner, W.S., Schmelzer, E., McClelland, R., Wauthier, E., Chen, W., and Reid, L.M. (2007). Human hepatoblast phenotype maintained by hyaluronan hydrogels. Journal of Biomedical Materials Research Part B-Applied Biomaterials 82B, 156-168.
    Turner, W.S., Seagle, C., Galanko, J.A., Favorov, O., Prestwich, G.D., Macdonald, J.M., and Reid, L.M. (2008). Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells 26,1547-1555.
    Ueno, Y., Alpini, G., Yahagi, K., Kanno, N., Moritoki, Y., Fukushima, K., Glaser. S., LeSage, G., and Shimosegawa, T. (2003). Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver International 23,449-459.
    Van Hul, N., Lanthier, N., Espanol Suner, R., Abarca Quinones, J., van Rooijen, N.. and Leclercq, I. (2011). Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury. Am J Pathol 179,1839-1850.
    Van Hul, N.K., Abarca-Quinones, J., Sempoux, C., Horsmans, Y., and Leclercq, I.A. (2009). Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology 49, 1625-1635.
    Venook, A.P., Papandreou, C., Furuse, J., and de Guevara, L.L. (2010). The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. The oncologist 15 Suppl 4,5-13.
    Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463,1035-U1050.
    Wang, G.L., Salisbury, E., Shi, X.R., Timchenko, L., Medrano, E.E., and Timchenko, N.A. (2008a). HDAC1 cooperates with C/EBP alpha in the inhibition of liver proliferation in old mice. Journal of Biological Chemistry 283,26169-26178.
    Wang, H., Peiris, T.H., Mowery, A., Le Lay, J., Gao, Y., and Greenbaum, L.E. (2008b). CCAAT/enhancer binding protein-beta is a transcriptional regulator of peroxisome-proliferator-activated receptor-gamma coactivator-1 alpha in the regenerating liver. Molecular Endocrinology 22,1596-1605.
    Wang, H.T., Larris, B., Peiris, T.H., Zhang, L.P., Le Lay, J., Gao, Y., and Greenbaum, L.E. (2007). C/EBP beta activates E2F-regulated genes in vivo via recruitment of the coactivator CREB-binding protein/p300. Journal of Biological Chemistry 282,24679-24688.
    Wang, L., Wang, C.M., Hou, L.H., Dou, G.R., Wang, Y.C., Hu, X.B., He, F., Feng, F., Zhang, H.W., Liang, Y.M., et al. (2009). Disruption of the Transcription Factor Recombination Signal-binding Protein-J kappa (RBP-J) Leads to Veno-Occlusive Disease and Interfered Liver Regeneration in Mice. Hepatology 49,268-277.
    Wang, X., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2003). The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A 100 Suppl 1,11881-11888.
    Wang, X.H., Kiyokawa, H., Dennewitz, M.B., and Costa, R.H. (2002a). The Forkhead Box mlb transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proceedings of the National Academy of Sciences of the United States of America 99,16881-16886.
    Wang, X.H., Krupczak-Hollis, K., Tan, Y.J., Dennewitz, M.B., Adami, G.R., and Costa, R.H. (2002b). Increased hepatic forkhead box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27(KiPl) protein levels and increased Cdc25B expression. Journal of Biological Chemistry 277, 44310-44316.
    Wang, Y., Rovira, M., Yusuff, S., and Parsons, M.J. (2011a). Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing beta-cells. Development 138,609-617.
    Wang, Y.F., Cui, C.B., Yamauchi, M., Miguez, P., Roach, M., Malavarca, R., Costello, M.J., Cardinale, V., Wauthier, E., Barbier, C., et al. (2011b). Lineage Restriction of Human Hepatic Stem Cells to Mature Fates Is Made Efficient by Tissue-Specific Biomatrix Scaffolds. Hepatology 53,293-305.
    Wang, Y.F., Yao, H.L., Cui, C.B., Wauthier, E., Barbier, C., Costello, M.J., Moss, N., Yamauchi, M., Sricholpech, M., Gerber, D., et al. (2010). Paracrine Signals from Mesenchymal Cell Populations Govern the Expansion and Differentiation of Human Hepatic Stem Cells to Adult Liver Fates. Hepatology 52,1443-1454.
    Wege, H., Chui, M.S., Le, H.T., Strom, S.C., and Zern, M.A. (2003). In vitro expansion of human hepatocytes is restricted by telomere-dependent replicative aging. Cell Transplant 12,897-906.
    White, P., Brestelli, J.E., Kaestner, K.H., and Greenbaum, L.E. (2005). Identification of transcriptional networks during liver regeneration. Journal of Biological Chemistry 280,3715-3722.
    Wilkinson, D.S., Tsai, W.W., Schumacher, M.A., and Barton, M.C. (2008). Chromatin-bound p53 anchors activated smads and the mSin3A corepressor to confer transforming growth factor beta-mediated transcription repression. Molecular and Cellular Biology 28,1988-1998.
    Wilson, J.W., and Leduc, E.H. (1958). Role of cholangioles in restoration of the liver of the mouse after dietary injury. Journal of Pathology and Bacteriology 76, 441-&.
    Wisse, E. (1970). An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 31,125-150.
    Wuestefeld, T., Klein, C., Streetz, K.L., Betz, U., Lauber, J., Buer, J., Manns, M.P., Muller, W., and Trautwein, C. (2003). Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration. Journal of Biological Chemistry 278,11281-11288.
    Xia, X.F., Francis, H., Glaser, S., Alpini. G., and LeSage, G. (2006). Bile acid interactions with cholangiocytes. World Journal of Gastroenterology 12, 3553-3563.
    Xie, H.F., Ye, M., Feng, R., and Graf, T. (2004). Stepwise reprogramming of B cells into macrophages. Cell 117,663-676.
    Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445,656-660.
    Yamada, Y., Kirillova, I., Peschon, J.J., and Fausto, N. (1997). Initiation of liver growth by tumor necrosis factor:Deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proceedings of the National Academy of Sciences of the United States of America 94,1441-1446.
    Yan, S.F., Fujita, T., Lu, J.S., Okada, K., Zou, Y.S., Mackman, N., Pinsky, D.J., and Stern, D.M. (2000). Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nature Medicine 6,1355-1361.
    Yang, A., Walker, N., Bronson, R., Kaghad, M., Oosterwegel, M., Bonnin, J., Vagner, C., Bonnet, H., Dikkes, P., Sharpe, A., et al. (2000). p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404,99-103.
    Yang, C.T., Sengelmann, R.D., and Johnson, S.L. (2004a). Larval melanocyte regeneration following laser ablation in zebrafish. J Invest Dermatol 123, 924-929.
    Yang, L., Jung, Y., Omenetti, A., Witek, R.P., Choi, S., Vandongen, H.M., Huang, J., Alpini, G.D., and Diehl, A.M. (2008a). Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 26, 2104-2113.
    Yang, L., Wang, Y., Mao, H., Fleig, S., Omenetti, A., Brown, K.D., Sicklick, J.K., Li, Y.X., and Diehl, A.M. (2008b). Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. Journal of Hepatology 48,98-106.
    Yang, L.J., Li, S.W., Hatch, H., Ahrens, K., Cornelius, J.G., Petersen, B.E., and Peck, A.B. (2002). In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proceedings of the National Academy of Sciences of the United States of America 99,8078-8083.
    Yang, S.Q., Koteish, A., Lin, H.Z., Huang, J.W., Roskams, T., Dawson, V., and Diehl, A.M. (2004b). Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver disease. Hepatology 39, 403-411.
    Yang, W., Yan, H.X., Chen, L., Liu, Q., He, Y.Q., Yu, L.X., Zhang, S.H., Huang, D.D., Tang, L., Kong, X.N., et al. (2008c). Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 68, 4287-4295.
    Yanger, K., Zong, Y., Maggs, L.R., Shapira, S.N., Maddipati, R., Aiello, N.M., Thung, S.N., Wells, R.G., Greenbaum, L.E., and Stanger, B.Z. (2013). Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27.719-724.
    Yin, C., Evason, K.J., Maher, J.J., and Stainier, D.Y. (2012). The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish:analysis of stellate cell entry into the developing liver. Hepatology 56,1958-1970.
    Yin, L., Lynch, D., Ilic, Z., and Sell, S. (2002). Proliferation and differentiation of ductular progenitor cells and littoral cells during the regeneration of them rat liver to CC14/2-AAF injury. Histology and Histopathology 17,65-81.
    Yin, L., Lynch, D., and Sell, S. (1999). Participation of different cell types in the restitutive response of the rat liver to periportal injury induced by allyl alcohol. Journal of Hepatology 31,497-507.
    Yokoi, Y., Namihisa, T., Kuroda, H., Komatsu, I., Miyazaki, A., Watanabe, S., and Usui, K. (1984). Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology 4,709-714.
    Yoshino, R., Miura, K., Segawa, D., Hirai, Y., Goto, T., Ohshima, S., Mikami, K., Yoneyama, K., Shibuya, T., Watanabe, D., et al. (2006). Epimorphin expression and stellate cell status in mouse liver injury. Hepatology Research 34,238-249.
    Zajicek, G., Oren, R., and Weinreb, M., Jr. (1985). The streaming liver. Liver 5, 293-300.
    Zhang, L.L., Theise, N., Chua, M., and Reid, L.M. (2008). The Stem Cell Niche of Human Livers:Symmetry Between Development and Regeneration. Hepatology 48,1598-1607.
    Zhang, R., Han, P., Yang, H., Ouyang, K., Lee, D., Lin, Y.F., Ocorr, K., Kang, G., Chen, J., Stainier, D.Y., et al. (2013). In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498,497-501.
    Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & Development 21,2747-2761.
    Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., and Melton, D.A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627-U630.
    Zimmermann, W.H., Melnychenko, I., and Eschenhagen, T. (2004). Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25,1639-1647.
    Zong, Y., Panikkar, A., Xu, J., Antoniou, A., Raynaud, P., Lemaigre, F., and Stanger, B.Z. (2009a). Notch signaling controls liver development by regulating biliary differentiation. Development 136,1727-1739.
    Zong, Y.W., Panikkar, A., Xu, J., Antoniou, A., Raynaud, P., Lemaigre, F., and Stanger, B.Z. (2009b). Notch signaling controls liver development by regulating biliary differentiation. Development 136,1727-1739.
    Zorn, A.M. (2008). Liver development. In StemBook (Cambridge (MA)).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700