用户名: 密码: 验证码:
冻存人源永生化肝细胞微囊用于生物人工肝治疗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     每年因肝脏疾病死亡的人数呈现持续增加趋势。人工肝作为治疗肝衰竭的有效手段成为近些年的研究热点,其目标为帮助病患等待适宜的供体器官或自体肝再生。我国在非生物型人工肝支持系统领域已经取得较大进步,但生物型人工肝系统的研究与国外发达国家相比尚有差距。
     目的
     本课题组拟选择功能最佳的人源性永生化肝细胞制作微囊,以大规模于液氮中冻存后,在新型生物人工肝支持系统中检测肝衰竭病人血浆对肝细胞的毒性作用以及肝细胞对肝衰竭病人血浆的清除效果,为生物型人工肝的临床试验奠定基础。
     方法
     1.永生化人源肝细胞的功能评价。利用MTT、实时定量PCR、免疫荧光和Western blot及ELISA等检测增殖及功能。
     2.将反应器流化培养的永生化肝细胞系微囊与静态培养肝细胞系微囊、二维培养肝细胞作对比,比较细胞中与功能相关Ⅰ相酶、Ⅱ相酶和特异性核受体基因、CYP450蛋白表达的变化。检测肝细胞生存率及白蛋白分泌和尿素合成确定冻存条件、冻存时间以及复苏孵育条件并且评价微囊化肝细胞大规模冻存效果。
     3.体外初步评价生物人工肝的有效性。收集肝衰竭病人血浆,将复苏并孵育后的肝细胞微囊加入到肝衰竭病人血浆中培养24h,观察肝衰竭病人血浆对微囊内肝细胞活性和功能的影响以及肝衰竭病人血浆内重要物质成分的变化。
     结果
     1HepLi3细胞增殖能力最好,可以进行大规模的培养,获得高数量的细胞,而且其在功能上明显优于其他永生化肝细胞。
     2.微囊化和流化培养的肝细胞在培养过程中保持很好的活性;微囊化的培养方式可以促进肝细胞特异基因及蛋白的表达;此种培养方式可能是通过抑制细胞内磷酸激酶活性来提高肝细胞特异性功能的。
     3.确定微囊制作完成孵育2h后进行冻存操作;冻存复苏后孵育2h,其功能可恢复很好,且将体积扩大到50毫升不会影响肝细胞的冻存后的功能。
     4.肝衰竭病人血浆造成肝细胞活率下降12%,但不影响其作为种子细胞的应用。而且微囊化肝细胞系可以改变肝衰竭病人血浆中物质成分,促进其体内内环境的稳定,为其临床应用奠定基础。
     结论
     1.本实验室制作的HepLi3可作为生物人工肝的种子细胞有效发挥肝特异性功能。
     2.确定了微囊的制作,肝细胞冻存及复苏的条件,并探究蛋白激酶的抑制可能是微囊化促进肝细胞功能的原因。
     3.大规模冻存微囊化肝细胞后,细胞活性保持良好,可以为生物人工肝提供种子细胞库。
     4.利用肝衰竭病人血浆及生物反应器证明冻存后的微囊化肝细胞可降低重肝血浆中的谷丙转氨酶和直接胆红素。
Background
     The number of deaths caused by liver diseases, especially late stage liver failure, continues to an increasing trend annually. Artificial liver becomes a research hotspot in recent years, which is designed to "bridge" patients to liver transplantation or spontaneous recovery. Many non-bioartificial liver support systems have been investigated over the past30years, and recent developments appear promising, but there are still gaps compared with developed countries for bioartificial liver system research.
     Aim
     This study is to choose the immortalized hepatocytes with best functions, encapsulate them and culture these microspheres with patients'plasma in our bioartificial support system after cryopreservation in large scale.
     Methods
     1. The functional evaluation of immortalized human hepatocyte. Cell proliferation was detected by MTT and functions were extamined by Real-time quantitative PCR. immunofluoresence, Western blot, drug metabolizing capacity and ELISA.
     2. Fluidized microencapsulated hepatocyte cell lines were compared with the two-dimensional cultured hepatocytes and microencapsulated cells on the changes of gene and protein expression of phase I enzymes, II phase enzyme and specific nuclear receptors. Cryopreservation and recovery conditions of microencapsulated hepatocytes and the effection of large scale cryopreservation were optimized by the synthesis of ALB and urea.
     3. The evaluation of effectiveness of bioartificial liver. The patient's plasma was collected. Microencapsulated hepatocyte cells were recovered after crypopreservation and added in the optimized bioreactor to be cultured with the plasma for24h. The effect of plasma on activity and functions of cells and the changes of small molecules in the plasma were determined.
     Results
     1. HepLi3cells were better according to their better proliferation, available to large-scale cultivation and liver functions.
     2. The microencapsulated hepatocytes maintained high activity during the fluidization culture. And this condition could improve the expression of liver specific genes and protein, which may enhance cells'functions through suppressing kinases.
     3.2hours incubation before and after the cryopreservation were determined, during which the number of recovered alive cells was more than50%. Forethemore, the cryopreservation volume expansion did not affect the liver functions.
     4. HepLi3cells as seeded cells after cryopreservation were used for treating plasma from liver failure patients. Microencapsulated cells could stable the environment of patients which may improve their conditions.
     Conclusion
     1. HepLi3was the better seeded cells for BAL.
     2. Optimized the production of microcapsules, liver cell cryopreservation and recovery conditions, protein kinases surpression may be the mechnism of promoting liver cell functions in microcapsulated culture.
     3. The microencapsulated hepatocytes maintained high activity after large scale cryopreservation. They could be offered as seeded cells resource for BAL system.
     4. BAL was proved to remove toxic substances, effectively improve the environment of patients by using microencapsulated HepLi3.
引文
[1]van de Kerkhove MP, Poyck PP. Deurholt T, Hoekstra R, Chamuleau RA, van Gulik TM. Liver support therapy:an overview of the AMC-bioartificial liver research. Dig Surg 2005;22:254.
    [2]Yuming W. enhancing the study of bioartificial liver in china., vol.25,2003. p.467.
    [3]Hongqin L. application and development of bioartificial liver support., vol.33, 2012.p.559.
    [4]Du WB, Li LJ, Huang JR, Yang Q, Liu XL, Li J, Chen YM, Cao HC, Xu W, Fu SZ. Chen YG. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc 2005;37:4359.
    [5]Chen YS, Wu ZW, He JQ, Yu J, Yang SG, Zhang YM, Du WB, Cao HC, Li LJ. The curative effect of ALSS on 1-month mortality in AoCLF patients after 72 to 120 hours. Int J Artif Organs 2007;30:906.
    [6]Li LJ, Liu XL, Xu XW, Sheng GP, Chen Y, Chen YM, Huang JR, Yang Q. Comparison of plasma exchange with different membrane pore sizes in the treatment of severe viral hepatitis. Ther Apher Dial 2005;9:396.
    [7]Kobayashi N, Fujiwara T, Westerman KA, Inoue Y, Sakaguchi M, Noguchi H, Miyazaki M, Cai J, Tanaka N, Fox IJ, Leboulch P. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000;287:1258.
    [8]Pan X, Du W, Yu X, Sheng G, Cao H, Yu C, Lv G, Huang H, Chen Y, Li J. Li LJ. Establishment and characterization of immortalized porcine hepatocytes for the study of hepatocyte xenotransplantation. Transplant Proc 2010:42:1899.
    [9]Li J LLCH. establishement of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy., vol.51,2005. p.262.
    [10]Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005;20:327.
    [11]高毅吴青松李治国刘广波.人源肝细胞系CL-1、HepFMMU、HepG2、C3A生物学特性与功能的比较.实用医学杂志2012;28:540.
    [12]Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez FJ, Satoh T. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s:role of CYP2B6,2C19 and the 3A subfamily. Xenobiotica 1996;26:1155.
    [13]Cassiman D, Denef C, Desmet VJ, Roskams T. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 2001;33:148.
    [14]Martinez-Hernandez A, Amenta PS. The extracellular matrix in hepatic regeneration. Faseb J 1995;9:1401.
    [15]Zakim D BTHA. hepatoloty:a textbook of liver disease. Philadelphia:W.B. Saunders,1996.
    [16]Enat R, Jefferson DM, Ruiz-Opazo N, Gatmaitan Z, Leinwand LA, Reid LM. Hepatocyte proliferation in vitro:its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. Proc Natl Acad Sci U S A 1984;81:1411.
    [17]Ben-Ze'Ev A, Robinson GS, Bucher NL, Farmer SR. Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci U S A 1988;85:2161.
    [18]Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 2003;116:1157.
    [19]Lelievre SA, Weaver VM, Nickerson JA, Larabell CA, Bhaumik A, Petersen OW, Bissell MJ. Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci U S A 1998;95:14711.
    [20]Gieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome:are the pieces now in place?J Cell Biochem 2008; 104:1964.
    [21]Brophy CM, Luebke-Wheeler JL, Amiot BP, Khan H, Remmel RP, Rinaldo P, Nyberg SL. Rat hepatocyte spheroids formed by rocked technique maintain differentiated hepatocyte gene expression and function. Hepatology 2009;49:578.
    [22]Abu-Absi SF, Friend JR. Hansen LK, Hu WS. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res 2002;274:56.
    [23]Mahler S, Desille M, Fremond B, Chesne C, Guillouzo A, Campion JP, Clement B. Hypothermic storage and cryopreservation of hepatocytes:the protective effect of alginate gel against cell damages. Cell Transplant 2003; 12:579.
    [24]Canaple L, Nurdin N, Angelova N, Saugy D, Hunkeler D, Desvergne B. Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules--in vitro cryopreservation studies. J Hepatol 2001;34:11.
    [25]Shi SY JKWY. Inhibitory effect of aconitum coadministration with ampelopsis on cytochrome P450 in rat livers., vol.26,2007. p.975.
    [26]Terry C, Hughes RD. An optimised method for cryopreservation of human hepatocytes. Methods Mol Biol 2009;481:25.
    [27]Fleming KK, Hubel A. Cryopreservation of hematopoietic and non-hematopoietic stem cells. Transfus Apher Sci 2006;34:309.
    [28]Thirumala S, Zvonic S, Floyd E, Gimble JM, Devireddy RV. Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol Prog 2005;21:1511.
    [29]Wang Y ZYLJ. the protective effect of Astragalus membranaceus extraction on cryopreserved primary-cultured human fetal hepatocytes.. vol.30.2007. p.1551.
    [30]Canaple L, Nurdin N, Angelova N, Saugy D, Hunkeler D, Desvergne B. Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules--in vitro cryopreservation studies. J Hepatol 2001;34:11.
    [31]Gomez-Lechon MJ, Lahoz A, Jimenez N, Vicente CJ, Donato MT. Cryopreservation of rat, dog and human hepatocytes:influence of preculture and cryoprotectants on recovery, cytochrome P450 activities and induction upon thawing. Xenobiotica 2006;36:457.
    [32]Fu T, Blei AT, Takamura N, Lin T, Guo D, Li H, O'Gorman MR, Soriano HE. Hypothermia inhibits Fas-mediated apoptosis of primary mouse hepatocytes in culture. Cell Transplant 2004; 13:667.
    [33]Matsushita T, Yagi T, Hardin JA, Cragun JD, Crow FW, Bergen HR, Gores GJ, Nyberg SL. Apoptotic cell death and function of cryopreserved porcine hepatocytes in a bioartificial liver. Cell Transplant 2003;12:109.
    [34]Fujita R, Hui T, Chelly M, Demetriou AA. The effect of antioxidants and a caspase inhibitor on cryopreserved rat hepatocytes. Cell Transplant 2005;14:391.
    [35]John M MJKK. Activation of Mitochondrial-Associated Apoptosis Contributes to Cryopreservation Failure.,2007. p.155.
    [1]Butterworth RF. Role of circulating neurotoxins in the pathogenesis of hepatic encephalopathy:potential for improvement following their removal by liver assist devices. Liver Int 2003;23 Suppl 3:5.
    [2]Bantel H, Schulze-Osthoff K. Mechanisms of cell death in acute liver failure. Front Physiol 2012;3:79.
    [3]Feldmann G, Lamboley C, Moreau A, Bringuier A. Fas-mediated apoptosis of hepatic cells. Biomed Pharmacother 1998;52:378.
    [4]Los MWSA. The role of caspases in development, immunity and apoptotic signal transduction:lessons from knock-out mice.,1999. p.629.
    [5]Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin:a comprehensive update of caspase substrates. Cell Death Differ 2003;10:76.
    [6]Bantel H, Ruck P, Schulze-Osthoff K. In situ monitoring of caspase activation in hepatobiliary diseases. Cell Death Differ 2000;7:504.
    [7]Dreen DR RJ. Mitochondria and apoptosis.,1998. p.1309.
    [8]Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004;305:626.
    [9]Guicciardi ME, Gores GJ. Apoptosis:a mechanism of acute and chronic liver injury. Gut 2005;54:1024.
    [10]Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver:a tale of two deaths? Hepatology 2006;43:S31.
    [11]Ding WX, Yin XM. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med 2004;8:445.
    [12]Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727.
    [13]Shimizu S, Ide T, Yanagida T, Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 2000;275:12321.
    [14]Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000;7:1166.
    [15]Bradham CA, Qian T, Streetz K, Trautwein C, Brenner DA, Lemasters JJ. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 1998;18:6353.
    [16]Hatano E, Bradham CA, Stark A, Iimuro Y, Lemasters JJ, Brenner DA. The mitochondrial permeability transition augments Fas-induced apoptosis in mouse hepatocytes. J Biol Chem 2000;275:11814.
    [17]Crompton M, Virji S, Ward JM. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 1998;258:729.
    [18]Halestrap AP, Davidson AM. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 1990;268:153.
    [19]Connern CP, Halestrap AP. Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J 1994;302 (Pt 2):321.
    [20]Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP. MacGregor GR, Wallace DC. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004:427:461.
    [21]He L. Lemasters JJ. Regulated and unregulated mitochondrial permeability transition pores:a new paradigm of pore structure and function? Febs Lett 2002;512:1.
    [22]Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol 1990;258:C755.
    [23]Qian T, Herman B, Lemasters JJ. The mitochondrial permeability transition mediates both necrotic and apoptotic death of hepatocytes exposed to Br-A23187. Toxicol Appl Pharmacol 1999; 154:117.
    [24]Kim JS, Qian T, Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology 2003; 124:494.
    [25]Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am JPathol 1995;146:3.
    [26]Trump BF, Goldblatt PJ, Stowell RE. Studies of necrosis in vitro of mouse hepatic parenchymal cells. Ultrastructural alterations in endoplasmic reticulum, Golgi apparatus, plasma membrane, and lipid droplets. Lab Invest 1965;14:2000.
    [27]Lemasters JJ, Ji S, Thurman RG. Centrilobular injury following hypoxia in isolated, perfused rat liver. Science 1981;213:661.
    [28]Lemasters JJ, Stemkowski CJ, Ji S, Thurman RG. Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver. J Cell Biol1983;97:778.
    [29]Gores GJ, Herman B, Lemasters JJ. Plasma membrane bleb formation and rupture: a common feature of hepatocellular injury. Hepatology 1990;11:690.
    [30]Nishimura Y, Romer LH, Lemasters JJ. Mitochondrial dysfunction and cytoskeletal disruption during chemical hypoxia to cultured rat hepatic sinusoidal endothelial cells:the pH paradox and cytoprotection by glucose, acidotic pH, and glycine. Hepatology 1998;27:1039.
    [31]Gores GJ, Nieminen AL, Wray BE, Herman B, Lemasters JJ. Intracellular pH during "chemical hypoxia" in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death. J Clin Invest 1989;83:386.
    [32]Zahrebelski G, Nieminen AL, Al-Ghoul K, Qian T, Herman B, Lemasters JJ. Progression of subcellular changes during chemical hypoxia to cultured rat hepatocytes:a laser scanning confocal microscopic study. Hepatology 1995;21:1361.
    [33]Herman B, Nieminen AL, Gores GJ, Lemasters JJ. Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability. Faseb J 1988:2:146.
    [34]Nieminen AL, Gores GJ, Wray BE, Tanaka Y, Herman B, Lemasters JJ. Calcium dependence of bleb formation and cell death in hepatocytes. Cell Calcium 1988;9:237.
    [35]Dong Z, Patel Y, Saikumar P, Weinberg JM, Venkatachalam MA. Development of porous defects in plasma membranes of adenosine triphosphate-depleted Madin-Darby canine kidney cells and its inhibition by glycine. Lab Invest 1998;78:657.
    [36]Nishimura Y, Lemasters JJ. Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. Cell Death Differ 2001;8:850.
    [37]Weinberg JM, Davis JA, Abarzua M, Raj an T. Cytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules. J Clin Invest 1987;80:1446.
    [38]Dickson RC, Bronk SF, Gores GJ. Glycine cytoprotection during lethal hepatocellular injury from adenosine triphosphate depletion. Gastroenterology 1992:102:2098.
    [39]Marsh DC, Vreugdenhil PK, Mack VE, Belzer FO, Southard JH. Glycine protects hepatocytes from injury caused by anoxia, cold ischemia and mitochondrial inhibitors, but not injury caused by calcium ionophores or oxidative stress. Hepatology 1993;17:91.
    [40]Schulte-Hermann R, Bursch W, Marian B, Grasl-Kraupp B. Active cell death (apoptosis) and cellular proliferation as indicators of exposure to carcinogens. IARC Sci Publ 1999:273.
    [41]Kasahara I, Saitoh K, Nakamura K. Apoptosis in acute hepatic failure: histopathological study of human liver tissue using the tunel method and immunohistochemistry. J Med Dent Sci 2000;47:167.
    [42]Ziol M, Tepper M, Lohez M, Arcangeli G, Ganne N, Christidis C, Trinchet JC, Beaugrand M, Guillet JG, Guettier C. Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis. J Hepatol 2001;34:254.
    [43]Rivero M, Crespo J, Fabrega E, Casafont F, Mayorga M, Gomez-Fleitas M, Pons-Romero F. Apoptosis mediated by the Fas system in the fulminant hepatitis by hepatitis B virus. J Viral Hepat 2002;9:107.
    [44]Nasir A, Arora HS, Kaiser HE. Apoptosis and pathogenesis of viral hepatitis C--an update. In Vivo 2000; 14:297.
    [45]Masuichi H, Seki S, Kitada T, Kawada N, Sakaguchi H, Nakatani K, Monna T, Kuroki T. Significant role of apoptosis in type-1 autoimmune hepatitis. Osaka City Med J 1999;45:61.
    [46]Sakamoto Y, Nakajima T, Misawa S, Ishikawa H, Itoh Y, Nakashima T, Okanoue T, Kashima K, Tsuji T. Acute liver damage with characteristic apoptotic hepatocytes by ingestion of Aplysia kurodai, a sea hare. Intern Med 1998;37:927.
    [47]Hayashi N, Mita E. Involvement of Fas system-mediated apoptosis in pathogenesis of viral hepatitis. J Viral Hepat 1999;6:357.
    [48]Rivero M, Crespo J, Mayorga M, Fabrega E, Casafont F, Pons-Romero F. Involvement of the Fas system in liver allograft rejection. Am J Gastroenterol 2002;97:1501.
    [49]Tagami A, Ohnishi H, Hughes RD. Increased serum soluble Fas in patients with acute liver failure due to paracetamol overdose. Hepatogastroenterology 2003;50:742.
    [50]Mundt B, Kuhnel F, Zender L, Paul Y, Tillmann H, Trautwein C, Manns MP, Kubicka S. Involvement of TRAIL and its receptors in viral hepatitis. Faseb J 2003;17:94.
    [51]Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 2003; 125:1246.
    [52]Lemasters JJ, Qian T, He L, Kim JS, Elmore SP, Cascio WE, Brenner DA. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 2002;4:769.
    [53]Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009;325:332.
    [54]Liedtke C, Bangen JM, Freimuth J, Beraza N, Lambertz D, Cubero FJ, Hatting M, Karlmark KR, Streetz KL, Krombach GA, Tacke F, Gassler N, Riethmacher D, Trautwein C. Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury. Gastroenterology 2011;141:2176.
    [55]Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994;265:528.
    [56]Hiramatsu N, Hayashi N, Katayama K, Mochizuki K, Kawanishi Y, Kasahara A, Fusamoto H, Kamada T. Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 1994;19:1354.
    [57]Mita E, Hayashi N, Iio S, Takehara T, Hijioka T, Kasahara A, Fusamoto H, Kamada T. Role of Fas ligand in apoptosis induced by hepatitis C virus infection. Biochem Biophys Res Commun 1994;204:468.
    [58]Yoneyama K, Goto T, Miura K, Mikami K, Ohshima S, Nakane K, Lin JG, Sugawara M, Nakamura N, Shirakawa K, Komatsu M, Watanabe S. The expression of Fas and Fas ligand, and the effects of interferon in chronic liver diseases with hepatitis C virus. Hepatol Res 2002;24:327.
    [59]Mochizuki K, Hayashi N, Hiramatsu N, Katayama K, Kawanishi Y, Kasahara A, Fusamoto H, Kamada T. Fas antigen expression in liver tissues of patients with chronic hepatitis B. J Hepatol 1996;24:1.
    [60]Luo KX, Zhu YF, Zhang LX, He HT, Wang XS, Zhang L. In situ investigation of Fas/FasL expression in chronic hepatitis B infection and related liver diseases. J Viral Hepat 1997;4:303.
    [61]Galle PR, Hofmann WJ, Walczak H, Schaller H, Otto G, Stremmel W, Krammer PH, Runkel L. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 1995;182:1223.
    [62]Takaku S, Nakagawa Y, Shimizu M, Norose Y, Maruyama I, Wakita T, Takano T, Kohara M, Takahashi H. Induction of hepatic injury by hepatitis C virus-specific CD8+murine cytotoxic T lymphocytes in transgenic mice expressing the viral structural genes. Biochem Biophys Res Commun 2003;301:330.
    [63]Kondo T, Suda T, Fukuyama H, Adachi M, Nagata S. Essential roles of the Fas ligand in the development of hepatitis. Nat Med 1997;3:409.
    [64]Lowin B HMMC. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathyways.,1994. p.650.
    [65]Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994;265:528.
    [66]Bantel H, Lugering A, Heidemann J, Volkmann X, Poremba C, Strassburg CP, Manns MP, Schulze-Osthoff K. Detection of apoptotic caspase activation in sera from patients with chronic HCV infection is associated with fibrotic liver injury. Hepatology 2004;40:1078.
    [67]Terradillos O, de La Coste A, Pollicino T, Neuveut C, Sitterlin D, Lecoeur H, Gougeon ML, Kahn A, Buendia MA. The hepatitis B virus X protein abrogates Bcl-2-mediated protection against Fas apoptosis in the liver. Oncogene 2002;21:377.
    [68]Pan J, Duan LX, Sun BS, Feitelson MA. Hepatitis B virus X protein protects against anti-Fas-mediated apoptosis in human liver cells by inducing NF-kappa B. J Gen Virol 2001;82:171.
    [69]Diao J KASF. X protein of hepatitis B virus inhibits Fasmediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway.,2001. p.8328.
    [70]Ruggieri A, Harada T, Matsuura Y, Miyamura T. Sensitization to Fas-mediated apoptosis by hepatitis C virus core protein. Virology 1997;229:68.
    [71]Machida K, Tsukiyama-Kohara K, Seike E, Tone S, Shibasaki F, Shimizu M, Takahashi H, Hayashi Y, Funata N, Taya C, Yonekawa H, Kohara M. Inhibition of cytochrome c release in Fas-mediated signaling pathway in transgenic mice induced to express hepatitis C viral proteins. J Biol Chem 2001;276:12140.
    [72]Christian Trautwein MD AKM. Mechanisms of Acute Liver Failure.,2007. p.349.
    [73]Bradham CA, Plumpe J, Manns MP, Brenner DA, Trautwein C. Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol 1998;275:G387.
    [74]Essani NA, Bajt ML, Farhood A, Vonderfecht SL, Jaeschke H. Transcriptional activation of vascular cell adhesion molecule-1 gene in vivo and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock. J Immunol 1997:158:5941.
    [75]Jaeschke H, Smith CW, Clemens MG, Ganey PE, Roth RA. Mechanisms of inflammatory liver injury:adhesion molecules and cytotoxicity of neutrophils. Toxicol Appl Pharmacol 1996; 139:213.
    [76]Xu H, Gonzalo JA, St PY, Williams IR, Kupper TS, Cotran RS, Springer TA, Gutierrez-Ramos JC. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 1994; 180:95.
    [77]Streetz K, Leifeld L, Grundmann D, Ramakers J, Eckert K, Spengler U, Brenner D, Manns M, Trautwein C. Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology 2000; 119:446.
    [78]Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 1992;90:196.
    [79]Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci U S A 2000;97:5498.
    [80]Kaneko Y HMKT. Augmentation of Valpha14 NKT cellmediated cytotoxicity by interleukiri 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis.,2000. p.105.
    [81]Trautwein C, Rakemann T, Malek NP, Plumpe J, Tiegs G, Manns MP. Concanavalin A-induced liver injury triggers hepatocyte proliferation. J Clin Invest 1998;101:1960.
    [82]Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G. Concanavalin A-induced T-cell-mediated hepatic injury in mice:the role of tumor necrosis factor. Hepatology 1995;21:190.
    [83]Kusters S, Gantner F, Kunstle G, Tiegs G. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 1996;111:462.
    [84]Heinrich PC BIMG. Interleukin6-type cytokine signalling through the gp130/Jak/STAT pathway.,1998. p.297.
    [85]Streetz K, Fregien B, Plumpe J, Korber K, Kubicka S, Sass G, Bischoff SC, Manns MP, Tiegs G, Trautwein C. Dissection of the intracellular pathways in hepatocytes suggests a role for Jun kinase and IFN regulatory factor-1 in Con A-induced liver failure. J Immunol 2001;167:514.
    [86]Streetz KL, Wustefeld T, Klein C, Manns MP, Trautwein C. Mediators of inflammation and acute phase response in the liver. Cell Mol Biol (Noisy-le-grand) 2001;47:661.
    [87]Streetz K, Leifeld L, Grundmann D, Ramakers J, Eckert K, Spengler U, Brenner D, Manns M, Trautwein C. Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology 2000; 119:446.
    [88]Hecht N, Pappo O, Shouval D, Rose-John S, Galun E, Axelrod JH. Hyper-IL-6 gene therapy reverses fulminant hepatic failure. Mol Ther 2001;3:683.
    [89]Galun E, Zeira E, Pappo O, Peters M, Rose-John S. Liver regeneration induced by a designer human IL-6/sIL-6R fusion protein reverses severe hepatocellular injury. Faseb J 2000; 14:1979.
    [90]Kovalovich K LWDR. Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2, and BclxL.,2001.p.26,605,613.
    [91]Li W, Liang X, Leu JI, Kovalovich K, Ciliberto G, Taub R. Global changes in interleukin-6-dependent gene expression patterns in mouse livers after partial hepatectomy. Hepatology 2001;33:1377.
    [92]Zender L, Hutker S, Liedtke C, Tillmann HL, Zender S, Mundt B, Waltemathe M, Gosling T, Flemming P, Malek NP, Trautwein C, Manns MP, Kuhnel F, Kubicka S. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci U S A 2003;100:7797.
    [93]Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9:347.
    [94]Fiorucci S, Mencarelli A. Palazzetti B, Del SP. Morelli A, Ignarro LJ. An NO derivative of ursodeoxycholic acid protects against Fas-mediated liver injury by inhibiting caspase activity. Proc Natl Acad Sci U S A 2001;98:2652.
    [95]Kountouras J, Zavos C, Chatzopoulos D. Apoptosis in hepatitis C. J Viral Hepat 2003;10:335.
    [96]Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol 2010:369.
    [97]Cohen SD, Khairallah EA. Selective protein arylation and acetaminophen-induced hepatotoxicity. Drug Metab Rev 1997;29:59.
    [98]Nelson SD. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin Liver Dis 1990;10:267.
    [99]Ray SD, Mumaw VR, Raje RR, Fariss MW. Protection of acetaminophen-induced hepatocellular apoptosis and necrosis by cholesteryl hemisuccinate pretreatment. J Pharmacol Exp Ther 1996;279:1470.
    [100]Knight TR, Jaeschke H. Acetaminophen-induced inhibition of Fas receptor-mediated liver cell apoptosis:mitochondrial dysfunction versus glutathione depletion. Toxicol Appl Pharmacol 2002;181:133.
    [101]Adams ML, Pierce RH, Vail ME, White CC, Tonge RP, Kavanagh TJ, Fausto N, Nelson SD, Bruschi SA. Enhanced acetaminophen hepatotoxicity in transgenic mice overexpressing BCL-2. Mol Pharmacol 2001;60:907.
    [102]El-Hassan H, Anwar K, Macanas-Pirard P, Crabtree M, Chow SC, Johnson VL, Lee PC, Hinton RH, Price SC, Kass GE. Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury:roles of cytochrome c, Bax, Bid, and caspases. Toxicol Appl Pharmacol 2003; 191:118.
    [103]Gujral J S KTRF. Mode of cell death after acetaminophen over dose in mice: apoptosis or oncotic necrosis.,2002. p.322.
    [104]Tagami A, Ohnishi H, Hughes RD. Increased serum soluble Fas in patients with acute liver failure due to paracetamol overdose. Hepatogastroenterology 2003;50:742.
    [105]Hu B, Colletti LM. CXC receptor-2 knockout genotype increases X-linked inhibitor of apoptosis protein and protects mice from acetaminophen hepatotoxicity. Hepatology 2010;52:691.
    [106]Zhang H, Cook J, Nickel J, Yu R, Stecker K, Myers K, Dean NM. Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 2000; 18:862.
    [107]Lawson JA, Fisher MA, Simmons CA, Farhood A, Jaeschke H. Inhibition of Fas receptor (CD95)-induced hepatic caspase activation and apoptosis by acetaminophen in mice. Toxicol Appl Pharmacol 1999; 156:179.
    [108]Knight TR, Jaeschke H. Acetaminophen-induced inhibition of Fas receptor-mediated liver cell apoptosis:mitochondrial dysfunction versus glutathione depletion. Toxicol Appl Pharmacol 2002;181:133.
    [109]Tinel M, Berson A, Vadrot N, Descatoire V, Grodet A, Feldmann G, Thenot JP, Pessayre D. Subliminal Fas stimulation increases the hepatotoxicity of acetaminophen and bromobenzene in mice. Hepatology 2004;39:655.
    [110]Boess F, Bopst M, Althaus R, Polsky S, Cohen SD, Eugster HP, Boelsterli UA. Acetaminophen hepatotoxicity in tumor necrosis factor/lymphotoxin-alpha gene knockout mice. Hepatology 1998;27:1021.
    [111]Henderson NC, Pollock KJ, Frew J, Mackinnon AC, Flavell RA, Davis RJ, Sethi T, Simpson KJ. Critical role of c-jun (NH2) terminal kinase in paracetamol-induced acute liver failure. Gut 2007;56:982.
    [112]Badmann A KAKT. Role of TRAIL and pro-apoptotic Bcl2 homolog Bim in acetaminophen induced liver damage.,2011. p.e171.
    [113]Bajt ML, Cover C, Lemasters JJ, Jaeschke H. Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci 2006;94:217.
    [114]Bajt ML, Ramachandran A, Yan HM, Lebofsky M, Farhood A, Lemasters JJ, Jaeschke H. Apoptosis-inducing factor modulates mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol Sci 2011;122:598.
    [115]Ramachandran A, Lebofsky M, Weinman SA, Jaeschke H. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 2011;251:226.
    [116]Liang YL, Zhang ZH, Liu XJ, Liu XQ, Tao L, Zhang YF, Wang H, Zhang C, Chen X, Xu DX. Melatonin protects against apoptosis-inducing factor (AIF)-dependent cell death during acetaminophen-induced acute liver failure. PLoS One 2012;7:e51911.
    [117]Bantel H, Schulze-Osthoff K. Mechanisms of cell death in acute liver failure. Front Physiol 2012;3:79.
    [118]Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 2012;55:222.
    [119]Zhao M, Laissue JA, Zimmermann A. TUNEL-positive hepatocytes in alcoholic liver disease. A retrospective biopsy study using DNA nick end-labelling. Virchows Arch 1997;431:337.
    [120]Bird GL, Sheron N, Goka AK, Alexander GJ, Williams RS. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann Intern Med 1990; 112:917.
    [121]Spahr L, Giostra E, Frossard JL, Bresson-Hadni S, Rubbia-Brandt L, Hadengue A. Soluble TNF-R1, but not tumor necrosis factor alpha, predicts the 3-month mortality in patients with alcoholic hepatitis. J Hepatol 2004;41:229.
    [122]Taieb J, Mathurin P, Poynard T, Gougerot-Pocidalo MA, Chollet-Martin S. Raised plasma soluble Fas and Fas-ligand in alcoholic liver disease. Lancet 1998;351:1930.
    [123]Hug H, Strand S, Grambihler A, Galle J, Hack V, Stremmel W, Krammer PH, Galle PR. Reactive oxygen intermediates are involved in the induction of CD95 ligand mRNA expression by cytostatic drugs in hepatoma cells. J Biol Chem 1997;272:28191.
    [124]Chan H, Bartos DP, Owen-Schaub LB. Activation-dependent transcriptional regulation of the human Fas promoter requires NF-kappaB p50-p65 recruitment. Mol Cell Biol 1999;19:2098.
    [125]Deaciuc IV, D'Souza NB, Spitzer JJ. Tumor necrosis factor-alpha cell-surface receptors of liver parenchymal and nonparenchymal cells during acute and chronic alcohol administration to rats. Alcohol Clin Exp Res 1995; 19:332.
    [126]Costelli P, Aoki P, Zingaro B, Carbo N, Reffo P, Lopez-Soriano FJ, Bonelli G, Argiles JM, Baccino FM. Mice lacking TNFalpha receptors 1 and 2 are resistant to death and fulminant liver injury induced by agonistic anti-Fas antibody. Cell Death Differ 2003;10:997.
    [127]Ziol M, Tepper M, Lohez M, Arcangeli G, Ganne N, Christidis C, Trinchet JC, Beaugrand M, Guillet JG, Guettier C. Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis. J Hepatol 2001;34:254.
    [128]Jaeschke H. Neutrophil-mediated tissue injury in alcoholic hepatitis. Alcohol 2002;27:23.
    [129]Jaeschke H. Inflammation in response to hepatocellular apoptosis. Hepatology 2002;35:964.
    [130]Kurose I, Higuchi H, Miura S, Saito H, Watanabe N, Hokari R, Hirokawa M, Takaishi M, Zeki S, Nakamura T, Ebinuma H, Kato S, Ishii H. Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology 1997;25:368.
    [131]French SW, Wong K, Jui L, Albano E, Hagbjork AL, Ingelman-Sundberg M. Effect of ethanol on cytochrome P4502E1 (CYP2E1), lipid peroxidation, and serum protein adduct formation in relation to liver pathology pathogenesis. Exp Mol Pathol l993;58:61.
    [132]Bradford BU, Marotto M, Lemasters JJ, Thurman RG. New, simple models to evaluate zone-specific damage due to hypoxia in the perfused rat liver:time course and effect of nutritional state. J Pharmacol Exp Ther 1986;236:263.
    [133]Lemasters JJ, Ji S, Thurman RG. Centrilobular injury following hypoxia in isolated, perfused rat liver. Science 1981;213:661.
    [134]Lemasters JJ, Stemkowski CJ, Ji S, Thurman RG. Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver. J Cell Biol 1983;97:778.
    [135]de la Monte SM, Arcidi JM, Moore GW, Hutchins GM. Midzonal necrosis as a pattern of hepatocellular injury after shock. Gastroenterology 1984;86:627.
    [136]Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003;284:G15.
    [137]Anundi I, King J, Owen DA, Schneider H, Lemasters JJ, Thurman RG. Fructose prevents hypoxic cell death in liver. Am J Physiol 1987;253:G390.
    [138]Gores GJ, Nieminen AL, Fleishman KE, Dawson TL, Herman B, Lemasters JJ. Extracellular acidosis delays onset of cell death in ATP-depleted hepatocytes. Am J Physiol 1988;255:C315.
    [139]Harper IS, Bond JM, Chacon E, Reece JM, Herman B, Lemasters JJ. Inhibition of Na+/H+exchange preserves viability, restores mechanical function, and prevents the pH paradox in reperfusion injury to rat neonatal myocytes. Basic Res Cardiol 1993;88:430.
    [140]Bond JM, Chacon E, Herman B, Lemasters JJ. Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes. Am J Physiol 1993;265:C129.
    [141]Caldwell-Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ. Kupffer cell activation and endothelial cell damage after storage of rat livers: effects of reperfusion. Hepatology 1991; 13:83.
    [142]Qian T, Nieminen AL, Herman B, Lemasters JJ. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol 1997;273:C1783.
    [143]Gujral JS, Bucci TJ, Farhood A, Jaeschke H. Mechanism of cell death during warm hepatic ischemia-reperfusion in rats:apoptosis or necrosis? Hepatology 2001;33:397.
    [144]Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 2003; 125:1246.
    [145]Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol 1991;260:G355.
    [146]Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci 2002;65:166.
    [147]Zwacka RM, Zhang Y, Halldorson J, Schlossberg H, Dudus L, Engelhardt JF. CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J Clin Invest 1997; 100:279.
    [148]Caldwell CC, Okaya T, Martignoni A, Husted T, Schuster R, Lentsch AB. Divergent functions of CD4+T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2005;289:G969.
    [149]Caldwell-Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ. Reperfusion injury to endothelial cells following cold ischemic storage of rat livers Hepatology 1989; 10:292.
    [150]Huet PM, Nagaoka MR, Desbiens G, Tarrab E. Brault A, Bralet MP, Bilodeau M. Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver. Hepatology 2004;39:1110.
    [151]Takei Y, Marzi I, Gao WS, Gores GJ, Lemasters JJ, Thurman RG. Leukocyte adhesion and cell death following orthotopic liver transplantation in the rat. Transplantation 1991;51:959.
    [152]Bachmann S, Caldwell-Kenkel JC, Oleksy I, Steffen R, Thurman RG, Lemasters JJ. Warm Carolina rinse solution prevents graft failure from storage injury after orthotopic rat liver transplantation with arterialization. Transpl Int 1992;5:108.
    [153]Bachmann S, Peng XX, Currin RT, Thurman RG, Lemasters JJ. Glycine in Carolina rinse solution reduces reperfusion injury, improves graft function, and increases graft survival after rat liver transplantation. Transplant Proc 1995;27:741.
    [154]Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol 1997;37:327.
    [155]Kim J-S CXSL. Mitochondrial permeability transition-mediated apoptosis after ischemia/reperfusion of cultured mouse hepatocytes:role of X-linked inhibitor of apoptosis protein (XIAP).,2005. p.A708.
    [156]Salvesen GS, Duckett CS. IAP proteins:blocking the road to death's door. Nat Rev Mol Cell Biol 2002;3:401.
    [157]Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 2003;304:499.
    [158]Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002;7:d793.
    [159]An J, Mehrhof F, Harms C, Lattig-Tunnemann G, Lee SL, Endres M, Li M, Sellge G, Mandic AD, Trautwein C, Donath S. ARC is a novel therapeutic approach against acetaminophen-induced hepatocellular necrosis. J Hepatol 2013;58:297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700