用户名: 密码: 验证码:
生物可降解镁合金的制备、表征及体外生物活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们在日常生活中,经常会因为某些意外情况而发生不同程度、不同类型的骨折,以及各种疾病造成的局部或大范围的骨缺损。造成骨缺损的原因有很多,可能是长时间的废用性萎缩,也可能是肿瘤或者外伤,无论哪种原因都使得种植体无法获得良好的初期稳定性,这时就需要植骨来解决这一难题,无论哪种植骨材料应用后都需要骨固定材料将其固定于牙槽骨上,并且这种骨固定材料尤其适用于作为骨折时的内固定材料。目前,临床上常用的骨移植手术固定材料及植骨材料主要有不锈钢、钛合金、可吸收性高分子材料及人工合成材料等,但是,不锈钢和钛合金的弹性模量与骨皮质差异较大,易引起应力遮挡效应,而且,作为植骨材料,不锈钢、钛合金需要二次手术取出,这样就增加了患者的痛苦和费用;可吸收高分子材料如聚乳酸-聚羟基乙酸(PLGA)、聚甲基丙烯酸甲酯(PMMA)等已经应用于临床,但仍存在不足:生物活性较低,力学性能较差,可引起无菌性炎症及周围组织的纤维化等;人工合成材料有PRF、组织工程支架材料等。以上材料各有优缺点。因此,如何合成一种具有良好生物相容性,一定力学性能,可控降解性能的生物材料就成为医学界一项意义重大的任务。
     近年来,镁(Mg)及其合金作为一种金属基复合生物材料引起了人们广泛的关注。镁的化学性质极其活泼,在动物体内可短时间降解,镁与其他金属植入物相比,其弹性模量和力学性能更接近皮质骨,这样的物理特性使镁及其合金作为植骨及固定材料应用时能够有效地避免由植入材料引起的应力遮挡效应。因此,镁合金有望成为理想的新型可降解生物医用金属材料。但是,镁合金最大的缺点就是降解过快、产生大量氢气以及由此引起降解环境的碱性化。因此,如何改善镁合金的降解速度,使其与体内成骨的速度相匹配成为现在研究的重点所在。
     本研究从体外实验的角度探讨了富含Zn、HA元素的镁合金材料的机械性能和体外降解能力,以及对小鼠前成骨样细胞MC3T3-E1的增殖、黏附和分化的影响,Real time PCR探讨了镁合金材料对成骨相关基因的影响,Western Blot探讨了镁合金材料对RUNX2、FAK、p-FAK及整合素蛋白表达的影响,为其日后临床研究提供理论依据。
     通过粉末冶金法及热挤压法制备Mg-4Zn-3HA合金材料,应用扫描电镜表征材料的表面性能,通过压缩试验检测材料的机械性能,浸泡在模拟体液中,持续28天检测材料的降解及由此引起的pH值的变化,通过扫描电镜及能谱定量分析材料降解后的表面性能,及X射线衍射分析降解产物。结果显示:Mg-4Zn-3HA合金的内部疏松多孔,并且它的机械性能与其它植入材料相比更接近于天然骨,使得Mg-4Zn-3HA合金相较于其他金属更加的适合做植入材料。pH值在28天的降解时间内先升高后降低,最后稳定在8.3左右。其腐蚀率在开始的时候最高,随后降低,最后小幅度升高后稳定。降解产物X射线衍射结果分析显示较强的Mg(OH)2衍射峰,还有一定数量其它峰值,例如:HA和Mg-Zn化合物。材料降解后扫描电镜及能谱分析显示材料表面出现大量的裂痕和沉淀,降解产物表面粗糙多孔。能谱分析的结果显示材料的表面腐蚀产物中Mg、Ca、P和O含量丰富。
     根据ISO10993-5,制备材料的浸提液,与MC3T3-E1细胞共培养1d、2d、3d,通过CCK-8实验、流式细胞周期实验和碱性磷酸酶(ALP)实验检测细胞毒性、增殖、以及成骨分化能力,通过扫描电镜观察细胞与材料共培养,检测早期细胞的黏附能力。结果显示:三种不同温度处理制备的镁合金都是无毒性的,处理温度为300℃的镁合金与另外两组相比较,有着更好的生物相容性。不同浓度浸提液(100%、50%、10%)对MC3T3-E1细胞的增殖结果表明浓度为50%浸提液组的增殖能力更明显。流式细胞周期的检测结果也证实了镁合金对细胞增殖的促进作用。通过扫描电镜观察,细胞在材料表面没有明显的细胞形态的改变,细胞伸展良好,还可以看到细胞的丝状伪足有的已经伸展到周围的细胞上。通过碱性磷酸酶实验可看出镁合金材料良好的促成骨能力,其中250℃和300℃镁合金组细胞内ALP活力显著高于对照组,300℃处理组差异最明显。
     在分子生物学实验中,Real time PCR实验结果显示:BSP的相对表达量在第3天和第7天显著高于对照组,第14天低于对照组;OC的相对表达量在检测时间点低于对照组,但是呈现增长趋势;OPN的相对表达量在第3天显著高于对照组,在第7天和第14天与对照组无显著性差异。Western Blot实验结果显示:RUNX2蛋白的相对表达量在第3天和第14天高于对照组,其中第14天有显著性差异,在第7天,略低于对照组;FAK蛋白的相对表达量在第3天低于对照组,但是在第7天和第14天显著高于对照组;p-FAK蛋白的相对表达量在第3天和第7天显著高于对照组,第14天,略低于对照组;整合素蛋白的相对表达量在三个检测时间点均低于对照组,但是在第7天并无显著性差异。
     综上所述,Mg-4Zn-3HA合金的抗腐蚀性能有所提高,在促进细胞增殖和早期成骨分化方面表现良好,并具有良好的生物相容性。本实验为日后镁合金的临床应用提供了理论基础,我们有理由相信Mg-4Zn-3HA合金可以成为理想的医用生物可降解植入材料。
In daily life, because of some unexpected circumstances, people often sufferfrom different kinds of bone fractures, and bone defects. The reasons for bone defectscould be prolonged disuse atrophy, cancer or trauma. No matter what reason makesimplants unable to obtain good initial stability, bone graft are aimed to solve thisproblem. Any bone materials should be fixed on the alveolar bone after theapplication, and should be suitable for internal fixation material of bone fracture. Atpresent, the commonly used clinical bone transplant materials and bone graftmaterials are mainly stainless steel, titanium alloy and absorbable polymer materials,etc. However, elastic modulus of stainless steel and titanium is largely different fromthat of the bone cortex, which could easily cause stress shelter effect. And, as a bonegraft material, stainless steel, and titanium alloy need a second operation, whichincreases the patient's pain and costs. Absorbable polymer materials such aspoly(lactic-co-glycolic) acid (PLGA), poly (methyl methacrylate)(PMMA) has beenused in clinical, but there are still some shortcomings, such as bad biological activity,and poor mechanical performance, which can cause aseptic inflammation and fibrosisof the surrounding tissue. There are sone synthetic materials such as PRF, tissueengineering scaffold material, and so on. The materials above have their advantagesand disadvantages. Therefore, how to synthesize a kind of biological material withgood biocompatibility, certain mechanical properties, controllable degradationperformance has become a focus in the medical community.
     In recent years, magnesium and its alloys as a kind of metal matrix compositebiomaterial has attracted much attention. Magnesium is a chemically active metal,which can degradate within a short period in animal. Compared with other metal,magnesium’s elastic modulus and mechanical property is closer to the cortical bone.These physical properties make magnesium and its alloys possible to avoid stress shelter effect as bone graft and fixed material. As a result, the magnesium alloy isexpected to become the ideal new degradable biomedical metal materials. However,the biggest drawback of magnesium alloy is it degrades too fast, and produces a largeamount of hydrogen gas, which causes alkalization of the surrounding environment.Therefore, how to improve the degradation rate of magnesium alloys, and make itmatch that of osteogenesis in vivo now becomes one of the research focuses.
     This research investigated mechanical properties and the degradation ability ofmagnesium alloy material rich in Zn and HA in vitro, the effect of the alloy onpreosteoblasts (mice MC3T3-E1) proliferation, adhesion and differentiation. Thisexperiment also studied the influence of magnesium alloy material on the expressionof osteogenesis related genes by Real time PCR, and tested is effect on the expressionof RUNX2, FAK, p-FAK and integrin protein by Western Blot, in order to providetheoretical basis for its clinical studies in the future.
     Mg-4Zn-3HA alloy was prepared by powder metallurgy and hot extrusionmethod. Scanning electron microscopy (SEM) was applied to study thecharacterization of the surface of the material. Compression test was used to testmechanical properties of the material. The material had been immersed in simulatedbody fluid, for28days to detect the degradation of it and the change of pH value inthe fluid. Scanning electron microscopy (SEM) and energy spectrum quantitativeanalysis were utilized analyze material surface after degradation. X-ray diffraction(XRD) was used to analye the degradation products. Results showed that theMg-4Zn-3HA was porous, and its mechanical properties is closer to natural bonecompared with other implant materials, making Mg-4Zn-3HA alloy more suitable forimplant materials. During the28days pH values increased first and then went down,finally stabilized at about8.3.The corrosion rates were at the peak in the beginning,then decreased, and remained, stable with a also rise. The results of X-ray diffractionanalysis of degradation products showed a strong diffraction peaks of the Mg(OH)2,there were a number of other peaks, such as HA and Mg-Zn compounds. Materialdegradation after the scanning electron microscopy (SEM) and energy spectrum analysis showed that the material surface appear a lot of cracks and precipitation,degradation product rough surface porous. Spectrum analysis results showed that thesurface of the material corrosion products were rich in Mg, Ca, P and O.
     According to the ISO10993-5, leaching solution of material was prepared, andco-cultured with MC3T3-E1for1d,2d,3d, CCK-8cell cycle analisis and alkalinephosphatase detection were used to test cell toxicity, proliferation, and osteogenesisability. Scanning electron microscope was used to observe cells co-cultured withmaterial and to detect cell adhesion ability. Results showed that three differenttemperature treatments of magnesium alloy were non-toxic, processing temperature of300℃of magnesium alloy, have better biocompatibility compared with other twogroups. Leaching solution with different concentrations (100%,50%,10%) haddifferent effects on MC3T3-E1proliferation. The results showed that theconcentration of50%group had the most significant effect on the proliferation abilityof the cells. Flow cytometry cycle test results also confirmed that the magnesiumalloy could promoted cell proliferation. Scanning electron microscope found that thecells in the material surface had no obvious changes in cell morphology, cell stretchwas good, and filiform pseudopodia of cells had been spread to the surrounding cells.Alkaline phosphatase experiment showed the magnesium alloy materials had goodcapability for osteogenesis.250℃and300℃magnesium alloy groups’ intracellularALP activity was significantly higher than that of control group, and300℃treatmentgroup’s difference was most obvious.
     In molecular biology experiments, Real time PCR experiment results showedthat the relative expression of BSP in3and7days was significantly higher than thecontrol group,14days was lower than the control group. The relative expression ofOC was lower than the control group at testing time points, but there was a trend ofgrowth. Relative expression of OPN was significantly higher than control group onday3. On day7and14there was no significant difference with control group.Western Blot experiments results showed that the relative expression of RUNX2protein on day3and day14was higher than the control group, and on day14there was a significant difference. On day7, it was slightly lower than the control group;Relative expression of FAK protein was lower than the control group on day3, but onday7and day14was significantly higher than control group; Relative expression ofp-FAK protein awas significantly higher on day3and day7, but on day14, it wasslightly lower than the control group; Relative expression of integrin protein in threetest points were lower than the control group, but there was no significant differenceon day7.
     To sum up, Mg-4Zn-3HA alloy’s corrosion resistance had been improved. It hadgood performance in promoting cell proliferation and early osteodifferentiation, andhad good biocompatibility. This experiment provided a theoretical basis for theclinical application of magnesium alloys in the future. We have reason to believe thatrecent Mg-4Zn-3HA alloy can be an ideal medical biodegradable implant material.
引文
[1] Messer RLW,Mickalonis J,Lewis JB,Omata Y,Davis CM,Adams Y,WatahaJC.Interactions between stainless steel,shear stress,and monocytes[J].J BiomedMater Res A2008;87:229-235.
    [2] Braceras I,Onate JI,Goikoetxea L.Bone cell adhesion on ion implanted titaniumalloy[J].Surface and Coatings Technology.2005;196(1):321-326.
    [3] N.A.Peppas,R.Langer.New challenges in biomaterials[J].Science.1994;263(5154):1715-1720.
    [4] Moursi AM,Winnard AV,Winnard PL,Lannutti JJ,Seghi RR.Enhanced osteobiastresponse to a polymethylmethacrylate-hydroxyapatite composite[J]. Biomaterials.2002;23(1):133-144.
    [5]李琦.Choukroun富血小板纤维蛋白修复兔颅骨骨缺损的实验研究[D].吉林大学口腔医院.2009.
    [6] Dunn CA,Jin QM,Taba M.BMP gene delivery for alveolar bone engineering atdental implant defects[J].Mol Ther.2005;11(2):294-299.
    [7]高英茂,宋天保.组织学与胚胎学[Z].北京:人民卫生出版社,2005.
    [8]崔福斋,冯庆玲.生物材料学[M].清华大学出版社,2003:31-235.
    [9] Takahashi H, Epker B, Frost H M. Resorption Precedes Formative Activity[J].Surg Forum.1964,15:437-438.
    [10]赵立臣.生物医用新型低弹性模量亚稳β钛合金的设计及性能研究[D].河北工业大学硕士学问论文,2006:2-25.
    [11]顾汉卿,徐国风.生物医学材料[Z].天津:天津科技翻译出版公司,1992.
    [12] L.L.Hench.Bioceramics[M].J.Am.Ceram.Soc.1998,81:1705-1728.
    [13] W.Bonfield,M.Wang,K.E.Tanner.Interfaces in Analogue Biomaterials[J] Acta.Mater.1998,46(7):2509-2518.
    [14]陈传宏,杨哲,王澎仁.中国生物医学工程科技产业[M].中国农业出版社,2000:39-40.
    [15]阮建明,邹建鹏,黄伯云.生物材料学[M].科学出版社,2004:2-35,98-149.
    [16]王迎军,刘康时.生物医学材料的研究与进展[J].中国陶瓷,1998;34(5):26-29.
    [17]蒋电明.生物活性骨科修复材料[J].科学中国人,2004;11:44-46.
    [18]魏大庆.Ti6Al4V表面微弧氧化生物涂层结构修饰与磷灰石形成动力学[D].哈尔滨工业大学博士学位论文,2008:3-6.
    [19] P.Pelissier,F.Villars,S.Mathoulin-Pelissier,et al.Infiuences of cascularization andosteogenic cells on heterotopic bone formation within a madreporic ceramic inrats[J].Plast Reconstr Surg,2003,111(6):1932-1941.
    [20] W.Sun,B.Starly,A.Darling,et al.Computer-aided tissue engineering:application tobiomimetic modeling and design of tissue scaffolds[J].Biotechnol ApplBiochem,2004,39(Pt1):49-58.
    [21] P.V.Giannoudis,H.Dinopoulos,E.Tsiridis.Bone substitutes:an update[J]. Injury,2005,36Suppl3(s20-27).
    [22] P.D.Costantino,C.D.Friedman.Synthetic bone graft substitutes[J].OtolaryngolClin North Am,1994,27(5):1037-1074.
    [23] Kohn DH. Metals in medical applications[J]. Current Opinion in Solid State&Materials Science.1998;3(3):309-316.
    [24] Staiger MP, Pietak AM, Huadmai J,et al. Magnesium and its alloys as orthopedicbiomaterials: a review[J]. Biomaterials.2006;27(9):1728-1734.
    [25] Hanawa T. In vivo metallic biomaterials and surface modification[J].Mater SciEng A Struct Mater.1999;267(2):260-266.
    [26] Hanawa T. Evaluation techniques of metallic biomaterials in vitro[J].Sci TechnolAdv Mater.2002;3(4):289-295.
    [27] Heublein B, Rohde R, Kaese V,et al. Biocorrosion of magnesium alloys: a newprinciple in cardiovascular implant technology?[J].Heart.2003;89(6):651-656.
    [28]朱振安,毛远青.骨科生物医用材料[J].生物骨科材料与临床研究,2005,2(3):21-23.
    [29]张保平.医用Mg-Zn-Ca合金的制备及其性能研究[D].哈尔滨工业大学博士学位论文,2010:8-10.
    [30]王桂生,朱明.外科植入物用钦合金研究进展和标准化现状[J].稀有金属,2003,27(l):43一48.
    [31] M.B.Gorbet,C.Broxup,L.H.Rivard.Biocompatibility Testing of NiTi ScrewsUsing Immunohistochcmistry on Sections Containing Metallic Implants[J].Journal of Biomedical Materials Research Part A.1996,32(2):243-248.
    [32] J.Ryh nen,E.Niemi,W.Serlo,E.Niemeld,P.Sandvik,H.Pernu,T. Salo. Biocom-atibility of Nickel-Titanium Shape Memory Metal and Its Corrosion Behavior inhuman Cell Cultures[J].Journal of Biomedical Materials Research PartA.1997,35:451-457.
    [33] J.Ryhanen,M.Kallioinen,J.Tuukkanen,P.Lehenkari,J.Junila,E.Niemela,P.Sandvik,W.Serlo.Bone Modeling and Cell–Material InterfaceResponsesInduced by Nickel–Titanium Shape Memory Alloy after PeriostealImplantation [J].Biomaterials.1999,20(14):1309-1317.
    [34] D.Bogdanski,M.Koller,D.Müller,G.Muhr,M.Bram,H.P.Buchkremer,D.Stover,J.Choi,M.Epple.Easy Assessment of the Biocompatibility of Ni–TiAlloys by in Vitro Cell Culture Experiments on a Functionally GradedNi–NiTi–Ti Material [J]. Biomaterials.2002,23:4549-2555.
    [35]李关芳.医用贵金属材料的研究与进展[J].贵金属,2004,25(3):54-60.
    [36] M.Geiger,R.H.Li,W.Friess.Collagen sponges for bone regeneration withrhBMP-2[J].Adv Drug Deliv Rev,2003,55(12):1613-1629.
    [37] B. S. Kim, C. E. Baez,A. Atala. Biomaterials for tissue engineering[J].World JUrol,2000,18(1):2-9.
    [38] R.Z.LeGeros.Properties of osteoconductive biomaterials: calcium phosphates[J].Clin Orthop Relat Res,2002;(395):81-98.
    [39] A.Ogose,N.Kondo,H.Umezu,et al.Histological assessment in grafts of highlypurified beta-tricalcium phosphate (OSferion) in human bones[J].Biomaterials,2006;27(8):1542-1549.
    [40] R.W.Bucholz.Nonallograft osteoconductive bone graft substitutes[J].Clin OrthopRelat Res,2002;(395):44-52.
    [41] J.C.Keller,J.G.Collins,G.G.Niederauer,et al.In vitro attachment of osteoblast-likecells to osteoceramic materials[J].Dent Mater.1997;13(1):62-68.
    [42] T.Yuasa,Y.Miyamoto,M.Kon,et al.Proliferation and differentiation of culturedMC3T3-E1osteoblasts on surface-layer modified hydroxyapatite ceramic withacid and heat treatments[J].Dent Mater J.2005;24(2):207-212.
    [43] M. Chazono, T. Tanaka, H. Komaki, et al. Bone formation and bioresorption afterimplantation of injectable beta-tricalcium phosphate granules-hyaluronatecomplex in rabbit bone defects[J].J Biomed Mater Res A.2004;70(4):542-549.
    [44] N. Kondo, A. Ogose, K. Tokunaga, et al. Bone formation and resorption ofhighly purified beta-tricalcium phosphate in the rat femoralcondyle[J].Biomaterials.2005;26(28):5600-5608.
    [45] Yu XZ Shu C, Xiao ZY. Synthesis and sintering of nanocrystallinehydroxyapatite powders by gelatin-based precipitation method [J].CeramicsInternational.2007;33(2):193-196.
    [46] C. Du, F. Z. Cui, Q. L. Feng, et al. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity[J].J Biomed MaterRes.1998;42(4):540-548.
    [47] Enneking WF, Burchardt H, Puhl JJ, et a1. Physical and biological aspects ofrepair in dog cortical-bone defect transplants[J].J Bone Joint Surg Am,1975;57(2):237-252.
    [48] Chapman MW, Bucholz R, Cornell CN. Treatment of acute fractures with acollagen-calcium phosphate graft material-A randomized clinical trial[J].J BoneJoint Surg Am,1997;79(4):495-502.
    [49] Greenwald AS, Boden SD, Goldberg VM. Bone-graft substitutes: Facts, fictions,and applications[J]. J Bone Joint Surg,2001,83A:98-103.
    [50] Den BFC, Wippermann BW, Blokhuis TJ. Healing of segmental bone defectswith granular porous hydroxyapatite augmented with recombinant humanosteogenic protein-1or autologous bone marrow[J]. J Orthopaed Res,2003,21:521-528.
    [51] Kim H. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatitebioceramics[J]. Journal of Biomedical Materials Research Part B: AppliedBiomaterials.2006;77B(2):323-328.
    [52] Fu S, Guo G, Wang X, et al. Preparation and characterization ofn-hydroxyapatite/PCL-pluronic-PCL nanocomposites for tissue engineering[J]. JNanosci Nanotechnol.2010;10(2):711-718.
    [53]蔡郑东,刘植珊,高建章,等.羟基磷灰石在胫骨平台骨折治疗中的应用[J].第二军医大学学报.1994;15:574-575.
    [54]孙吉林,王智勇,王学礼,等.多孔羟基磷灰石修复关节骨及软骨缺损的实验研究[J].河北医学院学报.1995;16:257-261.
    [55]刘渊,陈必胜,姜晓钟,等.羟基磷灰石烧结涂层陶瓷人工骨人体内种植29个月后的组织学界面观察[J].临床口腔医学杂志.1991;11:220-222.
    [56] Quinones, Carlos R, Hurzeler, et al. Maxillary sinus augmentation using differentgrafting materials and osseointegrated dental implants in monkeys: Part II.Evaluation of porous hydroxyapatite as a graftingmaterial[J]. Clinical OralImplants Research.1997;8(6):487-496.
    [57] J. O. Hollinger, J. Brekke, E. Gruskin, et al. Role of bone substitutes[J].ClinOrthop Relat Res.1996;324:55-65.
    [58] Sun Tiansheng,Guan Kai,Shi Shushan, et al. Effect of nano-hydroxyapatite/collagen composite and bone morphogenetic protein22on lumbarinter transversefusion rabbits[J]. Chinese Journal of Traumatology.2004;7(1):18-24.
    [59] A. Hartwig. Role of Magnesium in Genomic Stability[J]. Mutation Research.2001;475:113-121.
    [60] N.Saris,E.Mervaala,H.Karppanen,J.A.Khawaja,A.Lewenstam.Magnesium:AnUpdate on physiological, Clinical and Analytical Aspects[J].Clinica ChimicaActa.2000;294:1-26.
    [61] J.Vormann.Magnesium:Nutrition and Metabolism[J].Molecular Aspects ofMedicine.2003,;24:27-37.
    [62] H. Zreiqat, C. R. Howlett, A. Zannettino, P. Evans, G. S. Tanzil, C. Knabe, M.Shakibaei. Mechanisms of Magnesium-stimulated Adhesion of OsteoblasticCells to Commonly Used Orthopaedic Implants.[J] Journal of BiomedicalMaterials Research Part A.2002;62:175-184.
    [63]黄琴,梁惠,杜凤沛.镁的生理与临床应用[J].微量元素与健康研究.2005;22(2):61-63.
    [64] Witte F.The history of biodegradable magnesium implants:a review[J].ActaBiomater.2010;6(5):1680-1692.
    [65] G. L. Song. Control of biodegradation of biocompatable magnesium alloys[J].Corrosion Science2007,49:1696-1701.
    [66] Silver FH. Biomaterials, Medical Devices and Tissue Engineering: An IntegratedApporach[M].Chapman&Hall:1994.
    [67] V. V. Troitskii, D. N. Tsitrin. The resorbing metallic alloy ‘Osteosinthezit’ asmaterial for fastening broken bone. Khirurgiia.1944;8:41-44.
    [68] M. S. Znamenskii. Metallic osteosynthesis by means of an apparatus made ofresorbing metal. Khirurgiia.1945;12:60-63.
    [69] Kannan MB and Raman RK. In vitro degradation and mechanical integrity ofcalcium-containing magnesium alloys in modified-simulated body fluid[J].Biomaterials.2008;29:2306-2314.
    [70] Witte F, Feyerabend F, Maier P, Fischer J, Stormer M, Blawert C, Dietzel W andHort N. Biodegradable magnesium-hydroxyapatite metal matrix composites[J].Biomaterials.2007;28:2163-2174.
    [71] Zhang EL, He WW, Du H and Yang K. Microstructure,mechanical propertiesand corrosion properties of Mg-Zn-Y alloys with low Zn content[J].Mater SciEngin A.2008;488:102-111.
    [72] Song YW, Shan DY and Han EH. Electrodeposition of hydroxyapatite coatingon AZ91D magnesium alloy for biomaterial application[J]. Mater Let.2008;62:3276-3279.
    [73] Gray JE and Luan B. Protective coatings on magnesium and its alloys-a criticalreview[J]. J Alloy Comp.2002;336:88-113.
    [74] Gao JH,Guan SK,Chen J,et al.Fabrication and characterization of rod-likenano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy[J].AppliedSurface Science.2011;257:2231-2237.
    [75] Masato Tsujikawa,Shin-ichiro.et al.Corrosion Protection of Mg-Li Alloy byPlasma Thermal Spraying of Aluminum[J].Plasma Processes and Polymers.2007;4:s593-s596.
    [76]曾荣昌,兰自栋等.镁合金表面化学转化膜的研究进展[J].中国有色金属学报.2009;19(3):397-404.
    [77] Chong KZ,Shih TS.Conversion-coating treatment for magnesium alloys by apermanganate-phosphate solution[J].Materials Chemistry AndPhysics.2003;80(1):191-200.
    [78] Azkarate I,Cano A,Barrio AD,et al.Alternatives to Cr(VI) conversion coatings formagnesium alloys.International Congress Magnesium Alloys and theirApplications[C].2000;316-320.
    [79] Tomlinson CE.Conversion coating for metals using group IV-Z metals in thepresence of little or no fluoride and little or no chromium.US5952049[P].1999.
    [80] Gehmecker H.International Magnesium Association.1994.
    [81]张丽丽,王桂香,董国君,郭艳.镁合金双稀土转化膜及其耐腐蚀性能得研究[J].材料保护.2008;41(12):1-4.
    [82] Mansfeld F,Chen C,Breslin CB.Sealing of anodized aluminum alloys with rareearth metal salt solutions[J].J Electrochem Soc.1998;145(8):2792-2798.
    [83]易建龙,张新明,马光等. Mg-Gd-Y-Zr合金表面铈转化膜制备及腐蚀性能[J].稀有金属材料工程.2009;38(10):1852-1855.
    [84] Montemor MF,Simoes AM,Ferreira MGS,et al.Composition and corrosionresistance of cerium conversion films on the AZ31magnesium alloy and itsrelation to the anion[J].Surface Science.2008;254:1806-1814.
    [85] Rudd AL,et al.The corrosion protection afforded by rare earth conversion coatingapplied to magnesium[J].Corrosion Science.2000;42:275-288.
    [86]付涛.仿生法沉积磷灰石层的研究进展[J].生物医学工程学杂志.2001;18(1):116-118.
    [87] Al-Abdullat Y,Tsutsumi S,Nakajima N,et al.Surface modification of magnesiumby NaHCO3and corrosion behavior in Hank's solution for new biomaterialapplications[J].Materials Transactions.2001;42(8):1777-1780.
    [88] Kuwahara H, Al-Abdullat Y,Mazaki N,et al.Precipitation of magnesium apatiteon pure magnesium surface during immersing in Hank's solution[J]. MaterialsTransactions.2001;42(7):1317-1321.
    [89] Duan HP,Du KQ,Yan CW et al.Electrochemical corrosion behavior of compositecoating of sealed MAO film on magnesium alloy AZ91D[J].Electrochimicaacta.2006;51(14):2898-2908.
    [90] Zhang XP,Zhao ZP,Wu FM et al.Corrosion and wear resistance of AZ91Dmagnesium alloy with and without microare oxidation coating in Hank'ssolution[J].Journal of materials science.2007;42(20):8523-8528.
    [91] W. Du, Y. Wu, Z. Nie, X. Su, T. Zuo. Effects of Rare Earth and Alkaline Earthon Magnesium Alloys and Their Applications Status[J]. Rare Metal Materialsand Engineering.2006;35(9):1345-1349.
    [92] M. Bamberger. Structural Refinement of Cast Magnesium Alloys[J]. MaterialsScience and Technology.2001;17(1):15-24.
    [93] Gu XN,Zheng YF,Cheng Y et al.In vitro corrosion and biocompatibility of binarymagnesium alloys[J].Biomaterials.2009;30(4):484-498.
    [94] EI-Rahman SSA. Neuropathology of aluminum toxicity in rats(glutamate andGABA impairment)[J].Pharmacological research2003;47:189-94.
    [95] Nakamura Y, Tsumura Y, Tonogai Y, Shibata T, Ito Y. Differences in behavioramong the chlorides of seven rare earth elements administered intravenously torats[J].Fundament ApplToxicol.1997;37:106-16.
    [96] Wong, M., et al., Effect of surface topology on the osseointegration of implantmaterials in trabecular bone[J]. J Biomed Mater Res,1995;29(12):p.1567-75.
    [97]杨赵海等.硒、锌对索曼神经毒剂诱导大鼠过氧化损伤的保护机制[J].2004;1792-1793.
    [98] Mordike BL and Lukac P. Physical metallurgy. In: Friedrich HE and MordikeBL ed. Magnesium technology: Metallurgy,Design Data, Applications[C].Springer, Berlin,2006.p76-77.
    [99]布鲁克斯CR,丁夫译.有色金属的热处理组织与性能[Z].北京:冶金工业出版社,1988.
    [100]Song,Guangling.Control of biodegradation of biocompatible magnesiumalloy[J].Corrosion Science.2007;49(4):1696-1701
    [101]Zhang SX,Zhang XN,Zhao CL,et al.Research on an Mg-Zn alloy as adegradable biomaterial[J].Acta Biomaterialia.2010;6(2):626-640.
    [102]T.Hassel,F.W.Bach,A,Golovko,C.Krause.Magnesium technology in the grobalage,in:45th Annual Conference of Metallurgists ofCIM[C].Montreal,Quebec,Canada,2006;pp.359-370.
    [103]Zhang EL,Yang L.Microstructure,mechanical properties and bio-corrosionproperties of Mg-Zn-Mn-Ca alloy for biomedical application[J]. Materialsscience and engineering A-structural materials properties microstructure andprocessing.2008;497(1-2):111-118.
    [104]Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B. Preliminary results afterapplication of absorbable metal stents in patients with critical limb ischemia[J]. JEndovasc Ther,2005;12:1–5.
    [105]Anja C. H nzi, Isabel Gerber, Michael Schinhammer, J rg F. L ffler, Peter J.Uggowitzer. On the in vitro and in vivo degradation performance and biologicalresponse of new biodegradable Mg–Y–Zn alloys[J]. Acta Biomater,2010;6:1824-1833.
    [106]Walter R, Bobby Kannan M.. In-vitro degradation behaviour of WE54magnesium alloy in simulated body fluid[J]. Materials Letters,2011;65:748–750.
    [107]He WW, Zhang EL, Yang K. Effect of Y on the bio-corrosion behavior ofextruded Mg-Zn-Mn alloy in Hank’s solution[J]. Mater Sci Eng C,2010;30:167–174.
    [108]颜廷亭,谭丽丽,熊党生,等.医用镁金属材料的研究进展[J].材料导报.2008;22(1):110–129.
    [109]F. Witte. The History of Biodegradable Magnesium Implants: A Review[J].Acta Biomaterialia.2010;6:1680-1692.
    [110]E. D. McBride. Magnesium Screw and Nail Transfixion in Fractures[J]. SouthMedical Journal1938;31(5):508-515.
    [111]E. D. McBride. Absorbable Metal in Bone Surgery[J].Journal of the AmericanMedical Association.1938;111(27):2464-2467.
    [112]F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. M. Lindenberg, C. J. Wirth. InVivo Corrosion of Four Magnesium Alloys and the Associated BoneResponse[J].Biomaterials.2005;26:3557-3563.
    [113]F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. St rmer, C. Blawert, W.Dietzel,N. Hort. Biodegradable Magnesium-Hydroxyapatite Metal MatrixComposites[J]. Biomaterials.2007;28:2163-2174.
    [114]张广道,黄晶晶,杨柯等.动物体内植人镁合金的早期实验研究[J].金属学报.2007;43(11):1187-1188.
    [115]于国宁,张二林,徐丽萍.骨组织对镁合金植入材料的骨反应[C].中国材料研究学会2006年会论文集.北京,2006:331-332.
    [116]徐丽萍,张二林,杨柯.医用可降解镁合金体外体内的降解[C].中国材料研究学会2006年会论文集.北京,2006:345-346.
    [117]C. E. Wen, Y. Yamada, K. Shimojima. Compressibility of Porous MagnesiumFoam:Dependency on Porosity and Pore size[J]. Materials Letters.2004;58:357-358.
    [118]C. E. Wen, Y. Yamada. Porous Bioresorbable Magnesium as BoneSubstitue[J].Materials Science Froum.2003;419(422):1001-1006.
    [119]C. E. Wen, M. Mabuchi. Processing of Biocompatible Porous Ti andMg[J].Scripta Materiala.2001;45:1147-1153.
    [120]F. Witte, J. Reifenrath, P. P. Müller, H. A. Crostack, J. Nellesen, F. W. Bach,D.Bormann, M. Rudert. Cartilage Repair on Magnesium Scaffolds Used as aSubchondral Bone Replacement[J]. Materials Science and EngineeringTechnology.2006;37(6):504-508.
    [121]F. Witte, H. Ulrich, M. Rudert, E. Willbold. Biodegradable MagnesiumScaff-olds Part I: Appropriate Inflammatory Response[J]. Journal of BiomedicalMater-ials Research Part A.2007;81(3):748-756.
    [122]F. Witte, H. Ulrich, C. Palm, E. Willbold. Biodegradable Magnesium ScaffoldsPart II:Peri-implant Bone Remodeling[J]. Journal of Biomedical MaterialsResearch Part A.2007;81(A):757-765.
    [123]张佳,宗阳,付彭怀,等.镁合金在生物医用材料领域的应用及发展前景[J].稀有金属材料与工程,2007;36(6):1102–1105.
    [124]Waksman R.,Pakala R.,Wittchow E.,et al.Safety and efficacy of bioabsorbablemagnesium-alloy stent in porcine coronary arteries: morphometric analysis of along-term study[J].Cardiovascular Revascularization Medicine,2006;(7):81–126.
    [125]American Society for Testing and Materials.ASTM-G31-72: standard practicefor laboratory immersion corrosion testing of metals. In: Annual Book of ASTMStandards. Philadelphia, PA: American Society for Testing and Materials;2004.
    [126]Kokubo T, Takadama H. How useful is SBF in Predicting in vivo bonebioactivity?[J].Biomaterials.2006;27:2907-2915,.
    [127]Yu K, Chen LJ, Zhao J, Li SJ, Dai YL, Huang Q and Yu ZM.In vitro corrosionbehavior and in vivo biodegradation of biomedical-Ca3(PO4)2/Mg-Zncomposites. Acta Biomaterialia.2012;8:2845-2855.
    [128]GaoJC,QiaoLY,LiLC,et al.Hemolysis effect and calcium-phosphateprecipitation of heat-organic-film treated magnesium[J]. Trans Nonferrous MetSoc China;16(3):539-544.
    [129]陈振华.变形镁合金[M].化学工业出版社.2005:66-67,114-115,215-217,149-15.
    [130]Song G, Atrens A, StJohn D, Nairn J and Li Y. The electrochemical corrosion ofpure magnesium in1N NaCl. Corros Sci.1997;3:855-875.
    [131]Li ZJ, Gu XN and Lou SQ. The development of binary Mg-Ca alloys for use asbiodegradable materials within bone[J].Biomaterials.2008;29:1329-1344.
    [132]Witte F, Kaese V and Haferkamp H. In vivo corrosion of four magnesium alloysand the associated bone response.Biomaterials.2005;26:3557-3563.
    [133]孙宇.医用Mg-4.0Zn-0.2Ca合金的性能研究[D].哈尔滨医科大学博士学位论文,2011:23-24.
    [134]S.Kleiner,P.J.Uggowitzer.Mechanical Anistropoy of Extruded Mg-6%Al-1%ZnAlloy[J].Materials Science and Techonly A.2004;379:258-263.
    [135]黎小坚, Frost HM,朱绍舜,柯华珠.基础骨生物学新观[J].中国骨质疏松杂志,2001;7(2):152-174.
    [136]Anselme K. Osteoblast adhesion on biomaterials [J]. Biomaterials.2000;21(7):667-681.
    [137]Sudo, H., Kodama, H.A., Amagai, Y., Yamamoto, S., and Kasai, S. In vitrodifferentiation and calcification in a new clonal osteogenic cell line derived fromnewborn mousecalvaria[J]. J Cell Biol.1983;96:191.
    [138]Owen, T.A., Aronow, M., Shalhoub, V., Barone, L.M.,ilming, L., Tassinari,M.S., et al. Progressive development of the rat osteoblast phenotype in vitro:reciprocal relationships in expression of genes associated with osteoblastproliferation and differentiation during formation of the bone extracellularmatrix[J]. J Cell physiol.1990;143,420.
    [139]Genge BR, Sauer GR, Wu LN, McleanFM, WuthierRE. Correlation betweenloss of alkaline phosphatase activity and accumulation of calcium during matrixvesicle-mediated mineralization[J].J Biol. Chem.1988;263(34):18513-18519.
    [140]Martin JY, Schwartz Z, Hummert TW,et al. Effect of titaniumsurface roughnesson proliferation, differentiation, and protein synthesis of human osteoblast-likecells (MG63)[J]. J Biomed Mater Res.1995;29(3):389-401.
    [141]Jayaraman, M., et al., Influence of titanium surfaces on attachment ofosteoblast-like cells in vitro[J]. Biomaterials.2004;25(4):p.625-31.
    [142]Liu Y, Yu T, Wang Y, et al. Preparation and Bioactivity of the Composite ofPLGA and Hydroxyapatite Nanocrystals Surface-grafted with L-lactic AcidOligomer[J]. Chem. J. Chinese Universities,2009;30(7):1439-1444.
    [143]Schwartz, Z., et al., Effect of titanium surface roughness on chondrocyteproliferation,matrix production, and differentiation depends on the state of cellmaturation[J]. J BiomedMater Res.1996;30(2):p.145-55.
    [144]Matsuzaka, K., et al., The attachment and growth behavior of osteoblast-likecells on microtextured surfaces[J]. Biomaterials.2003;24(16):p.2711-9.
    [145]Ratner, B.D., A.B. Johnston and T.J. Lenk, Biomaterial surfaces[J]. J BiomedMater Res.1987;21(A1Suppl):p.59-89.
    [146]Fukuchi, N., M. Akao and A. Sato, Effect of hydroxyapatite microcrystals onmacrophage activity[J]. Biomed Mater Eng.1995;5(4):p.219-31.
    [147]K. J. Livak,T. D. Schmittgen. Analysis of relative gene expression data usingreal-time quantitative PCR and the2(-Delta Delta C(T)) Method[J].Methods.2001;25(4):402-408.
    [148]Beck GR Jr.Inorganic phosphate as a signaling molecule in osteoblastdifferentiation[J]. J Cell Biochem,.2003;90(2):234-243.
    [149]K. Miyazono, S. Maeda,T. Imamura. Coordinate regulation of cell growth anddifferentiation by TGF-beta superfamily and Runx proteins[J].Oncogene.2004;23(24):4232-4237.
    [150]M. H. Lee, Y. J. Kim, W. J. Yoon, et al. Dlx5specifically regulates Runx2type IIexpression by binding to homeodomain-response elements in the Runx2distalpromoter[J].J Biol Chem.2005;280(42):35579-35587.
    [151]Franceschi RT. The developmental control of Osteoblast specific geneexpression: role of specific transcriptionfactors and the extracellular matrixenvironment [J]. Crit Rev Oral Biol Med.1999;10(1):40-57.
    [152]Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty GFourier.Transform infrared micro spectroscopic analysis of bones ofosteocalcin-deficient mice provides insight into the function of osteocalcin[J].Bone.1998;23(3):187-196.
    [153]Wang JG, Miyazu M, Matsushita E, et al. Uniaxial cyclic stretch induces focaladhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activaedprotein kinase (MAPK) activation[J]. Biochem Biophys Res Commun.2001;288:365.
    [154]A. Bondarenko, N. Angrisani, A. Meyer-Lindenberg et al. Magnesium-basedbone implants: Immunohistochemical analysis of peri-implant osteogenesis byevaluation of osteopontin and osteocalcin expression[J]. J Biomed Mater ResA,2014;102(5):1449-57.
    [155]Xu G, Sun W, He D, Wang L, Zheng W, Nie H, Ni L, Zhang D, Li N, Zhang J.Overexpression of osteopontin in rheumatoid synovial mononuclear cells isassociated with joint inflammation,not with genetic polymorphism[J]. JRheumatol2005;32:410–416.
    [156]McKee MD, Pedraza CE, Kaartinen MT. Osteopontin and wound healing inbone. Cells Tiss Organs (Print)2011;194:313–319.
    [157]Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, MeePJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P,Karsenty G. Endocrine regulation of energy metabolism by the skeleton[J]. Cell2007;130:456–469.
    [158]Nakamura A, Dohi Y, Akahane M, Ohgushi H, Nakajima H,Funaoka H,Takakura Y. Osteocalcin secretion as an early marker of in vitro osteogenicdifferentiation of rat mesenchymal stem cells[J]. Tissue Eng Part C Methods2009;15:169–180.
    [159]李从华.骨涎蛋白在组织矿化中的作用[J].国外医学口腔医学分册.2005;11(32):6.
    [160]Siebers M.C, Brugge P.J, Walboomers X.F, et al. Integrins as linker proteinsbetween osteoblasts and bone replacing materials[J]. J Biomaterials.2005;(26):137-146.
    [161]Hynes RO. Integrins:versatility, modulation, and signaling in cell adhesion [J].Cell.1992;69(1):11-25.
    [162]Carvalho RS, Kostenuik PJ, Salih E, et al. Selective adhesion of osteoblasticcells to different integrin ligands induces osteopontin gene expression.[J].Matrix Biol2003;22(3):241-249.
    [163]Bennett JH, Carter DH, Alave AL, et al. Patterns of integrin expression in ahuman mandibular explant model of osteoblast differentiation[J]. Arch Oral Biol2001;46(3):229-238.
    [164]Lawence T, Kenneth M. The regulation of expression of integrin receptors.[J].PSEBM.1997;214(3):123.
    [165]余小冬,杨瑞森,于金明.整合素与肿瘤侵袭及转移的关系[J].肿瘤防治杂志.2004;3(11):317-320.
    [166]Kim M, Carman C V, Springer T A, et al. Bidirectional transmembrane signalingby cytoplasmic domain separation in integrins[J]. Science.2003;301(5640):1720-1725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700