用户名: 密码: 验证码:
Clifford分析中几类函数的性质及其相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在H.Grassmann代数的基础上,W.K.Clifford推广了“四元数”的概念,创建了一种可结合不可交换的代数结构,称之为Clifford代数.实(或复)Clifford分析主要研究定义在实(或复)欧氏空间上取值于实(或复)Clifford代数空间中函数的性质及其相关理论.
     设Cln+1,0(R)(或Cln+1,0(C))是由{e0,e1,···,en}生成的2n+1维实(或复)Clifford代数空间,e(?)D=1是其单位元,且elej+ejel=2δlj(l,j=0,1,···,n),其中δlj是Kronecker符号.设Clo,n(C))是由{e1,e2,···,en}生成的2n维复Clifford代数空间,e(?)=1是其单位元,且elej+ejel=-2δlj(l,j=1,2,···,n).
     本文首先研究了定义在Rn+1上取值于Cln+1,0(R)中的k-hypergenic函数与Clifford Mobius变换复合后函数的性质以及hypergenic拟-Cauchy型积分的边界性质和对偶的hypergenic函数的Cauchy积分公式;其次,研究了定义在Cn+1上取值于Cln+1,0(C)中的复k-hypergenic函数的几种等价刻画和Cauchy积分定理以及复k-hypergenic函数与复k-hypergenic调和函数的关系;最后,研究了定义在Cn+1上取值于Cl0,n(C)中的复k-超单演函数的等价刻画和Cauchy积分定理以及复k-超单演函数与复k-双曲调和函数的关系.
     第一章简要介绍本文的研究背景和研究现状,给出重要的定义与符号,并且列出本文的主要结果.
     第二章首先研究了Cln+1,0(R)中的Clifford Mobius变换,得到了与Clifford Mobius变换相关的几个重要定理,并且证明了一个k-hypergenic函数与Clifford Mobius变换的复合可以得到一个加权的k-hypergenic函数;其次,借助于hyper-genic函数的Cauchy积分公式得到了hypergenic拟-Cauchy型积分的Plemelj公式,再利用Plemelj公式证明了hypergenic拟-Cauchy型积分的Privalov定理;最后,给出了对偶的hypergenic函数的Cauchy积分公式,利用其证明了(1—n)-hypergenic函数的Cauchy积分公式,并且讨论了对偶的hypergenic函数的Cauchy积分公式中右端积分的性质.
     第三章首先研究了复k-hypergenic函数的几种等价刻画;其次,利用Stokes-Green定理证明了复k-hypergenic函数的Cauchy积分定理,在此基础上给出了复k-hypergenic调和函数的Cauchy积分定理;最后,讨论了复k-hypergenic函数与复k-hypergenic调和函数的关系.
     第四章首先研究了复k-超单演函数的一种与Cauchy-Riemann方程类似的等价刻画,虽然复k-超单演函数的乘积未必是复k-超单演函数,但是利用上述定理可以得到与复k-超单演函数的乘积相关的几个重要定理;其次,利用Stokes-Green定理证明了复k-超单演函数的Cauchy积分定理,在此基础上给出了复k-双曲调和函数的Cauchy积分定理;最后,讨论了复k-超单演函数与复k-双曲调和函数的关系.
     本文的研究工作进一步丰富和完善了Clifford分析中的函数理论,深化了人们对Clifford分析的认识,在理论上和实际中都有一定的意义.
Based on H.Grassmann external algebra, W.K.Clifford generalized the concept of "quaternion" and established an associative and non-commutative algebra struc-ture named Clifford algebra. Real (or complex) Clifford analysis studies mainly the properties and the related theory of functions, which are defined in a real (or com-plex) Euclidean space and whose values are in an associative and non commutative real (or complex) Clifford algebra space.
     Suppose Cln+1,0(R)(or Cln+1,0(C)) is a2n+1dimensional real (or complex) Clifford algebra space generated by{eo,e1,… en} and e?=1is its unit element and eiej+ejei=2δlj (l,j=0,1,…, n), where δlj is the Kronecker sign. Suppose Cl0,n(C) is a2n dimensional complex Clifford algebra space generated by{e1, e2,…, en} and e?=1is its unit element and elej+ejel=-2δlj (l,j=1,2,…,n).
     Firstly, this dissertation studies the properties of the composition functions of κ-hypergenic functions and Clifford Mobius transformations, where the κ-hypergenic functions are defined on Rn+1and their values are in Cln+1,0(R), and it also studies the boundary properties of hypergenic quasi-Cauchy integrals and the Cauchy in-tegral formula for dual hypergenic functions; secondly, it discusses several types of equivalent characterizations of complex κ-hypergenic functions, which are defined on Cn+1and whose values are in Cln+1,o(C), and it also explores the Cauchy inte-gral theorem for complex κ-hypergenic functions and discusses the relations between complex κ-hypergenic functions and complex κ-hypergenic harmonic functions; fi-nally, it analyzes some characterizations of complex κ-hypermonogenic functions, which are defined on Cn+1and whose values are in Cl0,n(C), and it also demon-strates the Cauchy integral theorem for complex κ-hypermonogenic functions and discusses the relations between complex κ-hypermonogenic functions and complex κ-hypermonogenic harmonic functions.
     Chapter1introduces briefly the research background and status quo of this dissertation and gives important definitions and notations as well as its main results.
     Chapter2firstly studies Clifford Mobius transformations in Cln+1,o(R) and obtains some important theorems related to Clifford Mobius transformations and proves that the composition of a κ-hypergenic function with a Clifford Mobius transformation leads to a κ-hypergenic function with weight; next, by virtue of the Cauchy integral formula for hypergenic functions it obtains the Plemelj formula for hypergenic quasi-Cauchy integrals and proves the Privalov theorem for hypergenic quasi-Cauchy integrals taking advantage of the Plemelj formula; finally, it gives the Cauchy integral formula for dual hypergenic functions and proves the Cauchy in-tegral formula for (1-n)-hypergenic functions making use of it and discusses the properties of the right integral of the Cauchy integral formula for dual hypergenic functions.
     Chapter3firstly studies some kinds of equivalent characterizations of com-plex κ-hypergenic functions; secondly, making use of the Stokes-Green theorem, it proves the Cauchy integral theorem for complex κ-hypergenic functions and based on this, it gives the Cauchy integral theorem for complex κ-hypergenic harmonic functions; finally, it discusses the relations between complex κ-hypergenic functions and complex κ-hypergenic harmonic functions.
     Chapter4firstly studies a kind of equivalent characterization of complex k-hypermonogenic functions, which is similar to the Cauchy-Riemann equations, al-though the products of complex κ-hypermonogenic functions are not sure complex κ-hypermonogenic functions, yet some important theorems related to the products of complex κ-hypermonogenic functions can be obtained, taking advantage of the above theorem; secondly, in accordance with the Stokes-Green theorem, the Cauchy integral theorem for complex κ-hypermonogenic functions is proved and based on this, the Cauchy integral theorem for complex κ-hypermonogenic harmonic functions is presented; finally, it discusses the relations between complex κ-hypermonogenic functions and complex κ-hyperbolic harmonic functions.
     In all, this research further enriches and perfects function theory of Clifford analysis, deepens the understanding of Clifford analysis, and naturally it is signifi-cant in both theory and practice.
引文
[Chen10]陈志华.2010.复流形[M].北京:科学出版社.
    [Hua58]华罗庚.1958.多复变数函数论中的典型域的调和分析[M].北京:科学出版社.
    [Huang96]黄沙.1996Clifford分析中双正则函数的非线性边值问题[J].中国科学,26A(3):227-236.
    [Huang98]黄沙.1998. Clifford分析中奇异积分的Poincare-Bertrand置换公式[J].数学学报,41(1):119-126.
    [Huang00]黄沙.2000.实Clifford分析中三类高阶奇异积分及其非线性微分积分方程[J].数学进展,29(3):253-268.
    [Huang-Qiao96]黄沙,乔玉英.1996.新超复结构和Clifford分析[J].系统科学与数学,16(4):367-371.
    [Huang-Qiao01]黄沙,乔玉英.2001.典型域的调和分析和复Clifford分析[J].数学学报,144(1):29-36.
    [Ku-Du-Wang11]库敏,杜金元,王道顺.2011Clifford分析中Isotonic柯西型积分的边界性质[J].数学学报,54(2):177-186.
    [Qiao02]乔玉英.2002Cliford分析中高阶奇异积分和边值问题[D].中国科学技术大学博士论文.
    [Shi96]史济怀.1996.多复变函数论基础[M].北京:高等教育出版社.
    [Tan10]谭小江.2010.多复分析与复流形引论[M].北京:北京大学出版社.
    [Yang09]杨丕文.2009.四元数分析与偏微分方程[M].北京:科学出版社.
    [Yang10]杨贺菊.2010.几类奇异积分算子的性质及应用[D].河北师范大学博士论文.
    [Yuan12]袁洪芬.2012.超空间上Dirac型方程的解[D].河北师范大学博士论文.
    [Yuan-Qiao09]袁洪芬,乔玉英.2009.k-超正则函数及其相关函数的性质[J].数学物理学报,29A(3):716-726.
    [Ah185]Ahlfors L V.1985. Mobius transformations and Clifford numbers[C]. In Differen-tial Geometry and Complex Analysis, Springer Berlin Heidelberg,65-73.
    [Ah186]Ahlfors L V.1986. Mobius transformations in expressed through 2x2 matrices of Clifford numbers [J]. Complex Variables and Elliptic Equations,5(2-4):215-224.
    [Bian-Erik-Li09] Bian X L, Eriksson S L, Li Junxia, et al.2009. Cauchy integral for-mula and Plemelj formula of bihypermonogenic functions in real Clifford analysis [J]. Complex Variables and Elliptic Equations,54(10):957-976.
    [Bian-Qiao-Xu08] Bian X L, Qiao Y Y, Xu Y Z.2008. Clifford analysis with higher order kernel over unbounded domains[J]. Complex Variables and Elliptic Equations,53(6): 585-605.
    [Bra-Del-Som82] Brackx F, Delanghe R, Sommen F.1982. Clifford analysis[M]. Boston: Pitman Books Limits.
    [Bra-Dek-Des09] Brackx F, De Knock B, De Schepper H, et al.2009. On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis [J]. Bulletin of the Brazilian Mathematical Society,40(3):395-416.
    [Bra-Pin84] Brackx F, Pincket W.1984. A Bochner-Martinelli formula for the biregular functions of Clifford analysis[J]. Complex Variables and Elliptic Equations,4(1):39-48.
    [Cer-Kah-Ren06] Cerejeiras P, Kahler U, Ren G B.2006. Clifford analysis for finite reflec-tion groups[J]. Complex Variables and Elliptic Equations,51(5-6):487-495.
    [Cli78]Clifford W K.1878. Applications of Grassman's extensive algebra[J]. American Journal of Mathematics,1(4):350-358.
    [Con-Kra-Rya07] Constales D, Krauβhar R S, Ryan J.2007. κ-hypermonogenic auto-morphic forms[J]. Journal of Number Theory,126(2):254-271.
    [De101]Delanghe R.2001. Clifford analysis:history and perspective[J]. Computational Methods and Function Theory,1(1):107-154.
    [Dir28]Dirac P A M.1928. The quantum theory of the electron[J]. Proceedings of the Royal Society of London,117A(778):610-624.
    [EriO3]Eriksson S L.2003. κ-hypermonogenic functions[C]. In Progress in Analysis I, Singapore:World Scientific Publishing,337-348.
    [Eri04]Eriksson S L.2004. Mobius transformations in several function classes[R]. In Clif-ford Algebras and Potential Theory, University of Joensuu, Rep. Ser7,213-226.
    [EriO5]Eriksson S L.2005. Integral formulas for hypermonogenic functions[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin,11(5):705-718.
    [EriO9]Eriksson S L.2009. Hypermonogenic functions and their dual functions[C]. In Hypercomplex Analysis, Birkhauser Verlag Basel/Switzerland,137-149.
    [Eri10]Eriksson S L.2010. Hyperbolic extensions of integral formulas[J]. Advances in Applied Clifford Algebras,20(3-4):575-586.
    [Eri-Leu00] Eriksson S L, Leutwiler H.2000. Hypermonogenic functions in Clifford al-gebras and their applications in Mathematical physics[C]. In Clifford Analysis,2: 287-302.
    [Eri-Leu01] Eriksson S L, Leutwiler H.2001. Hypermonogenic functions and Mobius trans-formations[J]. Advances in Applied Clifford Algebras,11(2):67-76.
    [Eri-Leu04] Eriksson S L, Leutwiler H.2004. Hypermonogenic functions and their Cauchy-type theorems[C]. In Advances in Analysis and Geometry, Birkhauser Basel,97-112.
    [Eri-Leu07] Eriksson S L, Leutwiler H.2007. Hyperbolic function theory[J]. Advances in Applied Clifford Algebras,17(3):437-450.
    [Eri-Leu08] Eriksson S L, Leutwiler H.2008. On hyperbolic function theory [J]. Advances in Applied Clifford Algebras,18(3-4):587-598.
    [Eri-Leu09] Eriksson S L, Leutwiler H.2009. An improved Cauchy formula for hypermono-genic functions[J]. Advances in Applied Clifford Algebras,19(2):269-282.
    [Eri-Ore09] Eriksson S L, Orelma H.2009. Hyperbolic function theory in the Clifford algebra Cln+i,o [J]. Advances in Applied Clifford Algebras,19(2):283-301.
    [Eri-Ore10] Eriksson S L, Orelma H.2010. Topics on hyperbolic function theory in geo-metric algebra with a positive signature [J]. Computational Methods and Function Theory,10(1):249-263.
    [Fer-Renll] Ferreira M, Ren G B.2011. Mobius gyrogroups:a Clifford algebra ap-proach[J]. Journal of Algebra,328(1):230-253.
    [Gar81]Garnett J B.1981. Bounded analytic functions[M]. New York:Academic Press.
    [Gil-Buc83] Gilbert R P, Buchanan J L.1983. First order elleptic systems:a function theoretic approach[M]. New York:Academic Press.
    [Gil-Mur91] Gilbert R, Murray M A.1991. Clifford algebra and Dirac operators in har-monic analysis [M]. Cambridge University Press.
    [Gul-Spr97] Gurlebeck K, Sprossig W.1997. Quaternionic and Clifford calculus for physi-cists and engineers[M]. John Wiley.
    [Hen-Leu01] Hengartner W, Leutwiler H.2001. Hyperholomorphic functions in R3[J]. Ad-vances in Applied Clifford Algebras,11(1):247-259.
    [Hes68]Hestenes D.1968. Multivector functions[J]. Journal of Mathematical Analysis and Applications,24(3):467-473.
    [Huang-Qiao-Wen06] Huang S, Qiao Y Y, Wen G C.2006. Real and complex Clifford analysis [M]. New York:Springer Press.
    [Kra01]Krantz S G.2001. Function theory of several complex variables[M]. Reprint of the 1992 Edition, AMS Chelsea Publishing.
    [Kra-Li95]Krantz S G, Li S Y.1995. On decomposition theorems for Hardy spaces on domains in Cn and applications[J]. Journal of Fourier Analysis and Applications,2(1): 65-107.
    [Kra-Mal01] Krauβhar R S, Malonek H R.2001. A characterization of conformal mappings in R4 by a formal differentiability condition[J]. Bulletin-Societe Royale Des Sciences De Liege,70(1):35-49.
    [Ku-Du-wang10] Ku M, Du J Y, Wang D S.2010. Some properties of holomorphic Clif-fordian functions in complex Clifford analysis[J]. Acta Mathematica Scientia,30B(3): 747-768.
    [Ku-Du-wang10] Ku M, Du J Y, Wang D S.2010. On generalization of Martinelli-Bochner integral formula using Clifford analysis[J]. Advances in Applied Clifford Algebras, 20(2):351-366.
    [Li-Mci-Qian94] Li C, Mcintosh A, Qian T.1994. Clifford algebra, Fourier transforms, and singular convolution operators on Lipschitz surfaces[J]. Revista Mathematica Beroamericana,10(3):665-721.
    [Li-Qiao-Xu08] Li X L, Qiao Y Y, Xu Y Z.2008. Clifford analysis with higher order kernel over unbounded domains[J]. Complex Variables and Elliptic Equations,53(6): 585-605.
    [Liu-Liu04] Liu T S, Liu X S.2004. On the precise growth, covering, and distortion the-orems for normalized biholomorphic mappings [J]. Journal of Mathematical Analysis and Applications,295(2):404-417.
    [Liu-Ren98] Liu T S, Ren G B.1998. Growth theorem of convex mappings on bounded convex circular domains[J]. Science in China,41A(2):123-130.
    [Liu-Ren98] Liu T S, Ren G B.1998. Decomposition theorem of normalized biholomorphic convex mappings[J]. Journal fur Die Reine und Angewandte Mathematik,1998(496): 1-13.
    [Liu-Wang07] Liu T S, Wang J F.2007. An absolute estimate of the homogeneous expan-sions of holomorphic mappings[J]. Pacific Journal of Mathematics,231(1):155-166.
    [Liu-Xu06]Liu T S, Xu Q H.2006. Loewner chains associated with the generalized Roper-Suffridge extension operator[J]. Journal of Mathematical Analysis and Applications, 322(1):107-120.
    [Lou01]Lounesto P.2001. Clifford algebras and spinors[M]. Cambridge University Press.
    [Lou-Lat80] Lounesto P, Latvamaa E.1980. Conformal transformations and Clifford al-gebras[J]. Proceedings of the American Mathematical Society,79(4):533-538.
    [Lun-Shall] Luna-Elizarraras M E, Shapiro M.2011. A survey on the (hyper-) deriva-tives in complex, quaternionic and Clifford analysis[J]. Milan Journal of Mathematics, 79(2):521-542.
    [Lun-Sha-Str13] Luna-Elizarraras M E, Shapiro M, Struppa D C, et al.2013. Complex Laplacian and derivatives of bicomplex functions[J]. Complex Analysis and Operator Theory,7(5):1675-1711.
    [Mal-Ren02] Malonek H R, Ren G B.2002. Almansi-type theorems in Clifford analysis[J]. Mathematical Methods in the Applied Sciences,25(16-18):1541-1552.
    [Qian-Rya96] Qian T, Ryan J.1996. Conformal transformations and Hardy spaces arising in Clifford analysis[J]. Journal of Operator Theory,35(2):349-372.
    [Qiao05]Qiao Y Y.2005. A boundary value problem for hypermonogenic functions in Clifford analysis [J]. Science in China,48A:324-332.
    [Qiao-Ber-Eri06] Qiao Y Y, Bernstein S, Eriksson S L, et al.2006. Function theory for Laplace and Dirac-Hodge operators in hyperbolic space[J]. Journal D'Analyse Mathematique,98(1):43-64.
    [Qiao-Xu-Yangl2] Qiao Y Y, Xu Y Z, Yang H J.2012. Poincare-Bertrand transformation formula of Cauchy-type singular integrals in Clifford analysis[J]. Complex Variables and Elliptic Equations,57(2-4):197-217.
    [Qiao-Yang-Li12] Qiao Y Y, Yang H J, Li X L.2012. Some properties for κ-biregular function in Clifford analysis[J]. Advance in Mathematics,41(2):187-198.
    [Qiao-Yuan-Yang12] Qiao Y Y, Yuan H F, Yang H J.2012. Normalized system for the super Laplace operator[J]. Advances in Applied Clifford Algebras,22(4):1109-1128.
    [Ren-Che08] Ren G B, Chen Y W.2008. Gradient estimates and Jackson's theorem in Qμ spaces related to measures[J]. Journal of Approximation Theory,155(2):97-110.
    [Ren-Kah06] Ren G B, Kahler U.2006. Almansi decompositions for polyharmonic, poly-heat, and polywave functions[J]. Studia Math,172(1):91-100.
    [Ren-Wang05] Ren G B, Wang M Z.2005. Holomorphic Jackson's theorems in polydiscs[J]. Journal of Approximation Theory,134(2):175-198.
    [Rud80]Rudin W.1980. Function theory in the unit ball of Cn[M]. New York:Springer-Verlag.
    [Rya82]Ryan J.1982. Complexified Clifford analysis[J]. Complex Variables and Elliptic Equations,1(1):119-149.
    [Rya83]Ryan J.1983. Special functions and relations within complex Clifford analysis[J]. Complex Variables and Elliptic Equations,2(2):177-198.
    [Rya90]Ryan J.1990. Cells of harmonicity and generalized Cauchy integral formulae[J]. Proceedings of the London Mathematical Society,3(2):295-318.
    [Rya96]Ryan J.1996. Intrinsic Dirac operators in Cn[J]. Advances in Mathematics,118: 99-133.
    [Shi87]Shi J H.1987. On the rate of growth of the means of Mp of holomorphic and pluri-harmonic functions on bounded symmetric domain of Cn[J]. Journal of Mathematical Analysis and Applications,126(1):161-175.
    [Som82]Sommen F.1982. Some connections between Clifford analysis and complex anal-ysis[J]. Complex Variables and Elliptic Equations,1(1):97-118.
    [Som-Pen07] Sommen F, Pena D P.2007. Martinelli-Bochner formula using Clifford anal-ysis[J]. Archiv Der Mathematik,88(4):358-363.
    [Ste72]Stein E M.1972. Boundary behavior of holomorphic functions of several complex variables[M]. Princeton(New Jersey):Princeton University Press.
    [Vah02]Vahlen K T.1902. Uber bewegung und komplexe zahlen[J]. Mathematische An-nalen,55:585-593.
    [Wang10]Wang W.2010. The k-Cauchy-Fueter complex, Penrose transformation and Har-togs phenomenon for quaternionic κ-regular functions[J]. Journal of Geometry and Physics,60(3):513-530.
    [Wat93]Waterman P L.1993. Mobius transformations in several dimensions [J]. Advances in Mathematics,101(1):87-113.
    [Yang-Xie10] Yang H J, Xie Y H.2010. Boundary properties for several singular inte-gral operators in real Clifford analysis [J]. Applied Mathematics A Journal of Chinese Universities,25B(3):349-358.
    [Yang-Xie11] Yang H J, Xie Y H.2011. The Privalov theorem of some singular integral op-erators in real Clifford analysis[J]. Numerical Functional Analysis and Optimization, 32(2):189-211.
    [Yuan-Qiao-Yang13] Yuang H F, Qiao Y Y, Yang H J.2013. Decomposition of κ-monogenic functions in superspace[J]. Complex Variables and Elliptic Equations, 58(8):1109-1124.
    [Zhu04]Zhu K H.2004. Spaces of holomorphic functions in the unit ball[M]. New York: Springer-Verlag.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700