用户名: 密码: 验证码:
同步辐射X射线原位研究拉伸诱导聚烯烃的相转变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构与性能的关系长期以来都是都是高分子材料科学领域的重要课题之一近半个世纪以来一直是材料学家关注的重点。材料的任何物理性能都是由其内部结构决定的,因此建立性能与结构的对应关系对于材料性能的优化具有非常重要的意义。由于高分子材料结构的复杂性以及检测手段的单一性,使得该课题的进步困难重重。解决此问题需要从两方面入手:一方面发展特殊的研究手段,另一方便选取合适的研究对象。
     本课题采用的研究手段主要基于单轴双向拉伸装置与同步辐射X射线散射装置联用,可以同时获得材料形变过程中结构变化与力学响应信号。研究对象主要选取具有多相态结构的高分子材料——聚(1-丁烯)(PB-1)和等规聚丙烯(iPP)。在受到外界刺激即拉伸外场时,材料的相态会发生一定的转变,例如PB-1发生晶型Ⅱ到晶型Ⅰ的转变,以及iPP的α晶转变为中间相(mesophase).通过原位检测装置追踪这种显著地结构变化,为建立微观结构与宏观性能之间的关系创造可能性。基于此,本论文主要对以下内容进行了探究:
     (一)利用同步辐射广角X射线散射(WAXS)原位跟踪了温度对拉伸诱导PB-1相转变的影响,证实了拉伸变形对晶型Ⅱ到晶型Ⅰ的转变有显著地促进作用。不同实验温度下拉伸诱导的相转变表现出两种路径,低温拉伸为直接转变,而高温拉伸时晶型Ⅱ先转变为无定型态然后进一步生成稳定的晶型Ⅰ,即熔融再结晶过程。在该工作中还发现了工程应力应变曲线的三个区域:弹性区、平台区以及应变硬化区正好与PB-1相转变过程中晶型Ⅰ的孕育、成核和凝胶网络形成三个阶段吻合,由此建立了相转变过程与力学性能的对应关系。
     (二)利用同步辐射X射线的时间分辨优势,检测了应变速率对拉伸诱导晶型Ⅱ到晶型Ⅰ相转变的影响。拉伸速率的增加可以加速相转变的发生。发现相转变的起点由应变控制而相转变程度由外场功的多少决定。高温高速拉伸结束后还发现了晶型Ⅱ的重结晶现象,说明高温转变符合拉伸熔融再结晶机理而低温拉伸则遵循Young提出的位错理论。
     (三)PB-1中晶型Ⅱ到晶型Ⅰ相转变的发生会导致片晶各方向尺寸不同程度的收缩,因此可以利用同步辐射小角X射线散射(SAXS)跟踪拉伸过程中片晶周期的变化。实验结果还表明在力学曲线上宏观屈服应变之前还存在一个微屈服点,这可能是晶体Ⅱ的破坏开始。
     (四)为了研究拉伸诱导α-iPP晶体向中间相的转变过程,在该部分工作中利用iPP的特征结构——交叉投影(cross-hatched structure)在流动场中会沿着不同方向取向的性质,提出了能够在原位环境中分辨子母晶的预取向方法。结合同步辐射广角x射线衍射原位跟踪了从不同角度拉伸子母晶时的结构演化过程。不论拉伸方向如何母晶都早于子晶被破坏,并且中间相出现在较小的应变,恰好紧接着子母晶的破坏。由此推测拉伸诱导的中间相可能是由子母晶演化来的小晶粒组成。
All of the material properties are determined by the intrinsic structure, so the relationship between structure and properties is very important for optimizing and tuning material properties. In the field of polymer science, the relationship between structure and mechanical properties occupies very important status, which has been drawing attentions of scientists since half a century before. Because of the complexity of polymer structure and oneness of detecting method, the development in this issue is very slow. To solve this problem we can strive from two aspects, which are developing suitable detecting techniques and choosing appropriate research objects.
     In our study, the uniaxial tensile apparatus was adopted in combination with synchrotron radiation X-ray scattering, which can provide information both of structural evolution and mechanical response. Polybutene-1(PB-1) and isotactic polypropylene (iPP) was studied due to their multiphase structures. Under external simulation which is drawing deformation in this research, there are phase transitions such as the phase transition from forms Ⅱ to Ⅰ in PB-1and from a crystal to mesophase in iPP. By means of in-situ testing method, the structural evolution can be tracked easily, which affords the possibilities to establish the relationship between micro-structure and mechanical properties. The research contents of this work are as follows:
     i. The effect of temperature on the deformation induced phase transition of PB-1is studied with in situ synchrotron radiation wide angle X-ray scattering (WAXS), which verify that tensile deformation can accelerate the transition from forms Ⅱ to Ⅰ. The phase transition at different temperatures is interpreted based on either a direct crystal-crystal transition at lower temperature or an indirect approach via an intermediate stage of melt at higher temperature, namely a melting recrystallization process. A three-stage mechanical deformation including linear deformation, stress plateau and strain hardening is observed in the engineering stress strain curves, which corresponds to a process of incubation, nucleation and gelation of form Ⅰ crystals. It establishes a nice correlation between phase transition and mechanical behavior in this study.
     ii. Taking advantage of the time resolution of synchrotron radiation X-ray scattering, the effect of strain rates on deformation induced phase transition from forms Ⅱ to Ⅰ is studied. The phase transition is faster under larger strain rates. In this work, the beginning of phase transition is found to be strain-controlled, while the transformation degree is related to the mechanical work. After deformation under higher strain rates at80℃, the recrystallization of form Ⅱ occurs, which verifies the transition at higher temperature accords with the mechanics of deformation induced melting-recrystallization, while the phase transition at lower temperature follows Young's dislocation model.
     iii. As we know, the phase transition from forms Ⅱ to Ⅰ will lead to shrinkage in different directions of lamellae, so in this work synchrotron radiation small angle X-ray is adopted to follow the change of long spacing. A micro-yield point on the engineering stress strain curve is found before macroscopic yielding, which may be the real beginning of form Ⅱ crystal's destruction.
     iv. To study deformation induced transition from α-iPP crystal to mesophase, the cross-hatched structure that is the characteristic feature of iPP can orient along with two directions in flow field which is utilized in this work. A method to distinguish the parent-daughter lamellae with in situ environment is developed. Combining with synchrotron radiation WAXS, the stretching induced structural evolution of parent and daughter lamellae is studied from different directions. No matter what the tensile direction is, parent lamellae are destroyed before daughter ones. Mesophase is observed at very small strain, immediately after the damage of parent lamellae. Deformation induced mesophase is proved to be small crystal cluster which is transformed from parent-daughter lamellae.
引文
[1]马德柱,何平笙,徐种德,周漪琴.高聚物的结构与性能[M].1995.
    [2]何曼君,陈维孝,董西侠.高分子物理(修订版)[J].2000,
    [3]Keith HD, Padden FJ. The optical behavior of spherulites in crystalline polymers:2. The growth and structure of the spherulites [J]. J Polym Sci,1959,39(135):123-138.
    [4]Padden FJ, Keith HD. Spherulitic crystallization in polypropylene [J]. J Appl Phys,1959, 30(10):1479-1484.
    [5]Morse HW, Donnay JDH. Optics and structure of three-dimensional spherulites [J]. Am Mineral,1936,21(7):391-426.
    [6]Keller A, Waring JRS. The spherulitic structure of crystalline polymers.3. Geometrical factors in spherulitic growth and the fine-structure [J]. J Polym Sci,1955,17(86):447-472.
    [7]Keller A. A note on single crystals in polymers-evidence for a folded chain configuration [J]. Philos Mag,1957,2(21):1171-1175.
    [8]Hsiao BS, Somani RH, Ling Y, et al. Flow-induced shish-kebab precursor structures in entangled polymer melts [J]. Polymer,2005,46(20):8587-8623.
    [9]Jong Kahk K, Feng Z, Hsiao BS. Probing the flow-induced shish-kebab structure in entangled polyethylene melts by synchrotron x-ray scattering [J]. J Appl Crystallogr,2007, 40(sl):s48-51.
    [10]Hsiao BS. Role of chain entanglement network on formation of flow-induced crystallization precursor structure [M].2007.
    [11]Dikovsky D, Marom G, Avila-Orta CA, et al. Shear-induced crystallization in isotactic polypropylene containing ultra-high molecular weight polyethylene oriented precursor domains [J]. Polymer,2005,46(9):3096-3104.
    [12]Schultz JM, Hsiao BS, Samon JM. Structural development during the early stages of polymer melt spinning by in-situ synchrotron x-ray techniques [J]. Polymer,2000,41(25): 8887-8895.
    [13]Samon JM, Schultz JM, Hsiao BS, et al. Structure development during melt spinning and subsequent annealing of polybutene-1 fibers [J]. J Polym Sci, Part B:Polym Phys,2000, 38(14):1872-1882.
    [14]Hsiao BS, Ling Y, Somani RH, et al. Unexpected shish-kebab structure in a sheared polyethylene melt [J]. Physical Review Letters,2005,94(11):117802/117801-117804.
    [15]Fernandez-Ballester L, Thurman DW, Zhou W, et al. Effect of long chains on the threshold stresses for flow-induced crystallization in ipp:Shish kebabs vs sausages [J]. Macromolecules,2012,45(16):6557-6570.
    [16]Shen B, Liang Y, Kornfield JA, et al. Mechanism for shish formation under shear flow:An interpretation from an in situ morphological study [J]. Macromolecules,2013,46(4):1528-1542.
    [17]Kornfield J, Kimata S, Sakurai T, et al. Molecular aspects of flow-induced crystallization of polymers [J]. Progress of Theoretical Physics Supplement,2008,175):10-16.
    [18]Kimata S, Sakurai T, Nozue Y, et al. Molecular basis of the shish-kebab morphology in polymer crystallization [J]. Science,2007,316(5827):1014-1017.
    [19]Anderson FR. Morphology of isothermally bulk-crystallized linear polyethylene [J]. J Appl Phys,1964,35(1):64-70.
    [20]Geil PH, Arakawa T, Anderson FR, et al. Morphology of polyethylene crystallized from melt underpressure [J]. J Polym Sci Part a:General Papers,1964,2(8PA):3707-3720.
    [21]Wunderlich B, Shu TW, James EA. Crystallization of polyethylene from o-xylene [J]. J Polym Sci A,1964,2(6PA):2759-2769.
    [22]Ward I. Mechanical properties of solid polymers [J].1983,
    [23]Haward RN, Thackray G. Use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics [J]. Proc R Soc London Ser A 1968,302(1471):453-472.
    [24]Seguela R, Rietsch F. Double yield-point in polyethylene under tensile loading [J]. J Mater Sci Lett,1990,9(1):46-47.
    [25]Lin L, Argon AS. Structure and plastic-deformation of polyethylene [J]. J Mater Sci,1994, 29(2):294-323.
    [26]Peterlin A. Molecular model of drawing polyethylene and polypropylene [J]. J Mater Sci, 1971,6(6):490-508.
    [27]Peterlin A. Plastic-deformation of crystalline polymers [J]. Polym Eng Sci,1977,17(3): 183-193.
    [28]Kiho H, Geil PH, Peterlin A. Polymer deformation.6. Twinning + phase transformation of polyethylene single crystals as function of stretching direction [J]. J Appl Phys,1964,35(5): 1599-1605.
    [29]Peterlin A. Plastic-deformation of polymers with fibrous structure [J]. Colloid Polym Sci, 1975,253(10):809-823.
    [30]Meinel G, Morosoff N, Peterlin A. Plastic deformation of polyethylene.1. Change of morphology during drawing of polyethylene of high density [J]. J Polym Sci [A2],1970, 8(10):1723-1740.
    [31]Meinel G, Peterlin A. Plastic deformation of polyethylene.2. Change of mechanical properties during drawing [J]. J Polym Sci [A2],1971,9(1):67-83.
    [32]Flory PJ, Yoon DY. Molecular morphology in semi-crystalline polymers [J]. Nature,1978, 272(5650):226-229.
    [33]Young RJ. Screw dislocation model for yield in polyethylene [J]. Materials Forum,1988, 11(210-216.
    [34]Galeski A. Strength and toughness of crystalline polymer systems [J]. Prog Polym Sci,2003, 28(12):1643-1699.
    [35]Strobl G. The physics of polymers [J].1997,
    [36]Meijer HEH, Govaert LE. Mechanical performance of polymer systems:The relation between structure and properties [J]. Prog Polym Sci,2005,30(8-9):915-938.
    [37]Schrauwen BaG, Janssen RPM, Govaert LE, et al. Intrinsic deformation behavior of semicrystalline polymers [J]. Macromolecules,2004,37(16):6069-6078.
    [38]Carswell TS, Nason HK. Properties and uses of pentachlorophenol [J]. Ind Eng Chem,1938, 30(622-626.
    [39]Cheng S. Phase transitions in polymers:The role of metastable states [M]. Elsevier,2008.
    [40]Ehrenfest P. Phase conversions in a general and enhanced sense, classified according to the specific singularities of the thermodynamic potential [J]. Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam,1933,36(1/5):153-157.
    [41]Cheng SZD, Keller A. The role of metastable states in polymer phase transitions:Concepts, principles, and experimental observations [J]. Annu Rev Mater Sci,1998,28(533-562.
    [42]Di Marzio EA. The ten classes of polymeric phase transitions:Their use as models for self-assembly [J]. Prog Polym Sci,1999,24(3):329-377.
    [43]Lovinger AJ. Crystallographic factors affecting structure of polymeric spherulites.1. Morphology of directionally solidified polyamides [J]. J Appl Phys,1978,49(10):5003-5013.
    [44]Lovinger AJ. Crystallographic factors affecting structure of polymeric spherulites.2. X-ray-diffraction analysis of directionally solidified polyamides and general conclusions [J]. J Appl Phys,1978,49(10):5014-5028.
    [45]Lovinger AJ, Chua JO, Gryte CC. Studies on alpha abd beta forms of isotactic polypropylene by crystallization in a temperaturw-gradient [J]. J Polym Sci, Part B:Polym Phys,1977,15(4):641-656.
    [46]Huo H, Jiang SC, An LJ, et al. Influence of shear on crystallization behavior of the beta phase in isotactic polypropylene with beta-nucleating agent [J]. Macromolecules,2004, 37(7):2478-2483.
    [47]Luciani L, Seppala J, Lofgren B. Poly-1-butene-its preparation, properties and challenges [J]. Prog Polym Sci,1988,13(1):37-62.
    [48]Natta GC, P.; Bassi, I. Crystal structure of isotactic poly-alpha-butene [J]. Ⅱ Nuovo Cimento series 10,1960,15(1 Supplement):52-67.
    [49]Holland VF, Miller RL. Isotactic polybutene-1 single crystals-morphology [J]. J Appl Phys, 1964,35(11):3241-3248.
    [50]Goldbach G, Peitsche.G. Infrared investigations of polymorphic modifications of polybutene-1 [J]. J Polym Sci [B],1968,6(11PB):783-788.
    [51]Nakafuku C, Miyaki T. Effect of pressure on the melting and crystallization behavior of isotactic polybutene-1 [J]. Polymer,1983,24(2):141-148.
    [52]Boor J, Mitchell JC. Kinetics of crystallization and a crystal-crystal transition in poly-1-butene [J]. J Polym Sci Part a:General Papers,1963,1(1):59-84.
    [53]Danusso F, Gianotti G. The 3 polymorphs of isotactic polybutene-1-dilatometric and thermodynamic fusion properties [J]. Makromol Chem,1963,61(139-156.
    [54]Azzurri F, Flores A, Alfonso GC, et al. Polymorphism of isotactic poly(1-butene) as revealed by microindentation hardness.1. Kinetics of the transformation [J]. Macromolecules,2002,35(24):9069-9073.
    [55]Azzurri F, Flores A, Alfonso GC, et al. Polymorphism of isotactic polybutene-1 as revealed by microindentation hardness. Part ii:Correlations to microstructure [J]. Polymer,2003, 44(5):1641-1645.
    [56]De Rosa C, Auriemma F, De Ballesteros OR, et al. Crystallization properties and polymorphic behavior of isotactic poly(1-butene) from metallocene catalysts:The crystallization of form i from the melt [J]. Macromolecules,2009,42(21):8286-8297.
    [57]Zhang B, Yang DC, Yan S. Direct formation of form i poly(1-butene) single crystals from melt crystallization in ultrathin films [J]. J Polym Sci, Part B:Polym Phys,2002,40(23): 2641-2645.
    [58]Yamashita M, Ueno S. Direct melt crystal growth of isotactic polybutene-1 trigonal phase [J]. Cryst Res Tech,2007,42(12):1222-1227.
    [59]Nakamura K, Aoike T, Usaka K, et al. Phase transformation in poly(1-butene) upon drawing [J]. Macromolecules,1999,32(15):4975-4982.
    [60]Miyoshi T, Hayashi S, Imashiro F, et al. Chain dynamics, conformations, and phase transformations for form iii polymorph of isotactic poly(1-butene) investigated by high-resolution solid-state c-13 nmr spectroscopy and molecular mechanics calculations [J]. Macromolecules,2002,35(7):2624-2632.
    [61]Jiang Z, Sun Y, Tang Y, et al. Polymorphic transformation of isotactic poly(1-butene) in form iii upon heating:In situ synchrotron small-and wide-angle x-ray scattering studies [J]. J Phys Chem B,2010,114(18):6001-6005.
    [62]Lotz B, Thierry A. Spherulite morphology of form iii isotactic poly(1-butene) [J]. Macromolecules,2003,36(2):286-290.
    [63]Fujiwara Y. Ii-i-phase transformation of melt-crystallized oriented lamellae of polybutene-1 by shear deformation [J]. Polym Bull,1985,13(3):253-258.
    [64]Kopp S, Wittmann JC, Lotz B. Phase-ii to phase-i crystal transformation in polybutene-1 single-crystals-a reinvestigation [J]. J Mater Sci,1994,29(23):6159-6166.
    [65]Li L, Liu T, Zhao L, et al. Co2-induced crystal phase transition from form ii to i in isotactic poly-1-butene [J]. Macromolecules,2009,42(6):2286-2290.
    [66]Shi J, Wu P, Li L, et al. Crystalline transformation of isotactic polybutene-1 in supercritical co2 studied by in-situ fourier transform infrared spectroscopy [J]. Polymer,2009,50(23): 5598-5604.
    [67]Tanaka A, Sugimoto N, Asada T, et al. Orientation and crystal transformation in polybutene-1 under stress relaxation [J]. Polym J (Tokyo, Jpn),1975,7(5):529-537.
    [68]Sawai D, Anyashiki T, Nakamura K, et al. Ultradrawing above the static melting temperature of ultra-high molecular weight isotactic poly(1-butene) having low ductility in the crystalline state [J]. Polymer,2007,48(1):363-370.
    [69]Kaszonyiova M, Rybnikar F, Geil PH. Crystallization and transformation of polybutene-1 [J]. J Macromol Sci, Phys,2004, B43(5):1095-1114.
    [70]Schaffha.Rj. On nature of form 2 to form i transformation in isotactic polybutene-1 [J]. J Polym Sci [B],1967,5(9PB):839-841.
    [71]Goldbach G Conversion polymorphic structure of polybutene-1 under action of mechanical stress [J]. Angew Makromol Chem,1973,29-3(213-227.
    [72]Yang YC, Geil PH. Deformation mechanisms of isotactic poly(l-butene) [J]. Makromol Chem-Macromol Chem Phys,1985,186(9):1961-1978.
    [73]Liu YP, Cui KP, Tian N, et al. Stretch-induced crystal-crystal transition of polybutene-1:An in situ synchrotron radiation wide-angle x-ray scattering study [J]. Macromolecules,2012, 45(6):2764-2772.
    [74]Norton DR, Keller A. On the morphology of blends of linear and branched polyehtylene [J]. J Mater Sci,1984,19(2):447-456.
    [75]Natta GP, M; Corradini, P. Semectic mesomorphic form of isotactic polypropylene [J]. Rend Accad Naz Lincei,1959,26(14-17.
    [76]Corradini P, Petraccone V, Derosa C, et al. On the structure of the quenched mesomorphic phase of isotactic polypropylene [J]. Macromolecules,1986,19(11):2699-2703.
    [77]Samuels RJ, Yee RY. Characterization of structure and organization of beta-form crystals in type-iii and type-iv beta-isotactic propylene spherulites [J]. J Polym Sci Part a-2:Polym Phys,1972,10(3):385-432.
    [78]Bruckner S, Meille SV, Petraccone V, et al. Polymorphism in isotactic polypropylene [J]. Prog Polym Sci,1991,16(2-3):361-404.
    [79]Somani RH, Hsiao BS, Nogales A, et al. Structure development during shear flow-induced crystallization of i-pp:In-situ small-angle x-ray scattering study [J]. Macromolecules,2000, 33(25):9385-9394.
    [80]Lotz B, Wittmann JC. The molecular-origin of lamellar branching in the alpha-(monoclinic) form of isotactic polypropylene [J]. J Polym Sci, Part B:Polym Phys,1986,24(7):1541-1558.
    [81]Khoury F. Spherulitic crystallization of isotactic polypropylene from solution-on evolution of monoclinic spherulites from dendritic chain-folded crystal precursors [J]. J Res Natl Bur Std A,1966, A 70(1):29-61.
    [82]Padden FJ, Keith HD. Crystallization in thin films of isotactic polypropylene [J]. J Appl Phys,1966,37(11):4013-4020.
    [83]Clark ES, Spruiell JE. Unlimited flex life in molded-in hinge in polypropylene-structural hypothesis [J]. Polym Eng Sci,1976,16(3):176-181.
    [84]Phillips A, Zhu P-W, Edward G. Simple shear deformation of polypropylene via the equal channel angular extrusion process [J]. Macromolecules,2006,39(17):5796-5803.
    [85]Zhu P-W, Tung J, Edward G, et al. Effects of different colorants on morphological development of sheared isotactic polypropylene:A study using synchrotron wide-angle x-ray scattering [J]. J Appl Phys,2008,103(12):124906-124907.
    [86]Nozue Y, Shinohara Y, Ogawa Y, et al. Deformation behavior of isotactic polypropylene spherulite during hot drawing investigated by simultaneous microbeam saxs-waxs and pom measurement [J]. Macromolecules,2007,40(6):2036-2045.
    [87]柏莲桂,王道亮,李良彬,潘国强,李秀宏.等规聚丙烯子母晶结构引起的拉伸胀大[J].中国科学技术大学学报,2010,40(6):618-622.
    [88]Zhou JJ, Liu JG, Yan SK, et al. Atomic force microscopy study of the lamellar growth of isotactic polypropylene [J]. Polymer,2005,46(12):4077-4087.
    [89]莫志深,张宏放,张吉东.静态聚合物结构和x射线衍射[M].二ed.北京:科学出版社,2010.
    [90]Redouane Borsali RP. Soft matter characterization [M/OL].2008
    [91]Stribeck N. X-ray scattering of soft matter [M/OL].2007
    [92]Su FM, Li XY, Zhou WM, et al. Accelerating crystal-crystal transition in poly(1-butene) with two-step crystallization:An in-situ microscopic infrared imaging and microbeam x-ray diffraction study [J]. Polymer,2013,54(13):3408-3416.
    [1]Galeski A. Strength and toughness of crystalline polymer systems [J]. Prog Polym Sci,2003, 28(12):1643-1699.
    [2]Meijer HEH, Govaert LE. Mechanical performance of polymer systems:The relation between structure and properties [J]. Prog Polym Sci,2005,30(8-9):915-938.
    [3]Men YF, Rieger J, Strobl G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers [J]. Physical Review Letters,2003,91(9):095502-1-4
    [4]Peterlin A. Molecular model of drawing polyethylene and polypropylene [J]. J Mater Sci, 1971,6(6):490-508.
    [5]Lin L, Argon AS. Structure and plastic-deformation of polyethylene [J]. J Mater Sci,1994, 29(2):294-323.
    [6]Kawakami D, Ran SF, Burger C, et al. Superstructure evolution in poly(ethylene terephthalate) during uniaxial deformation above glass transition temperature [J]. Macromolecules,2006,39(8):2909-2920.
    [7]Samon JM, Schultz JM, Wu J, et al. Study of the structure development during the melt spinning of nylon 6 fiber by on-line wide-angle synchrotron x-ray scattering techniques [J]. J Polym Sci, Part B:Polym Phys,1999,37(12):1277-1287.
    [8]Jiang Z, Tang Y, Men Y, et al. Structural evolution of tensile-deformed high-density polyethylene during annealing:Scanning synchrotron small-angle x-ray scattering study [J]. Macromolecules,2007,40(20):7263-7269.
    [9]Men YF, Rieger J, Lindner P, et al. Structural changes and chain radius of gyration in cold-drawn polyethylene after annealing:Small-and wide-angle x-ray scattering and small-angle neutron scattering studies [J]. J Phys Chem B,2005,109(35):16650-16657.
    [10]Kawakami D, Ran SF, Burger C, et al. Mechanism of structural formation by uniaxial deformation in amorphous poly(ethylene terephthalate) above the glass temperature [J]. Macromolecules,2003,36(25):9275-9280.
    [11]Kawakami D, Burger C, Ran S, et al. New insights into lamellar structure development and saxs/waxd sequence appearance during uniaxial stretching of amorphous poly(ethylene terephthalate) above glass transition temperature [J]. Macromolecules,2008,41(8):2859-2867.
    [12]Kawakami D, Hsiao BS, Ran SF, et al. Structural formation of amorphous poly(ethylene terephthalate) during uniaxial deformation above glass temperature [J]. Polymer,2004, 45(3):905-918.
    [13]Kakiage M, Yamanobe T, Komoto T, et al. Transient crystallization during drawing from ultra-high molecular weight polyethylene melts having different entanglement characteristics [J]. Polymer,2006,47(23):8053-8060.
    [14]Wang DL, Shao CG, Zhao BJ, et al. Deformation-induced phase transitions of polyamide 12 at different temperatures:An in situ wide-angle x-ray scattering study [J]. Macromolecules, 2010,43(5):2406-2412.
    [15]Bai L, Hong Z, Wang D, et al. Deformation-induced phase transitions of polyamide 12 in its elastomer segmented copolymers [J]. Polymer,2010,51(23):5604-5611.
    [16]Auriemma F, De Rosa C, Esposito S, et al. Polymorphic superelasticity in semicrystalline polymers [J]. Angew Chem, Int Ed,2007,46(23):4325-4328.
    [17]Auriemma F, De Rosa C. Time-resolved study of the martensitic phase transition in syndiotactic polypropylene [J]. Macromolecules,2003,36(25):9396-9410.
    [18]De Rosa C, Auriemma F. Stress-induced phase transitions in metallocene-made isotactic polypropylene [M].2007.
    [19]Auriemma F, De Rosa C. Stretching isotactic polypropylene:From "cross-ss" to crosshatches, from gamma form to alpha form [J]. Macromolecules,2006,39(22):7635-7647.
    [20]De Rosa C, Auriemma F. Structural-mechanical phase diagram of isotactic polypropylene [J]. J Am Chem Soc,2006,128(34):11024-11025.
    [21]De Rosa C, Auriemma F, Di Capua A, et al. Structure-property correlations in polypropylene from metallocene catalysts:Stereodefective, regioregular isotactic polypropylene [J]. J Am Chem Soc,2004,126(51):17040-17049.
    [22]Luciani L, Seppala J, Lofgren B. Poly-1-butene-its preparation, properties and challenges [J]. Prog Polym Sci,1988,13(1):37-62.
    [23]De Rosa C, Auriemma F, De Ballesteros OR, et al. Crystallization properties and polymorphic behavior of isotactic poly(1-butene) from metallocene catalysts:The crystallization of form i from the melt [J]. Macromolecules,2009,42(21):8286-8297.
    [24]Natta GC, P.; Bassi, I. Crystal structure of isotactic poly-alpha-butene [J]. Ⅱ Nuovo Cimento series 10,1960,15(1 Supplement):52-67.
    [25]Holland VF, Miller RL. Isotactic polybutene-1 single crystals-morphology [J]. J Appl Phys, 1964,35(11):3241-3248.
    [26]Goldbach G, Peitsche.G Infrared investigations of polymorphic modifications of polybutene-1 [J]. J Polym Sci [B],1968,6(11PB):783-788.
    [27]Nakafuku C, Miyaki T. Effect of pressure on the melting and crystallization behavior of isotactic polybutene-1 [J]. Polymer,1983,24(2):141-148.
    [28]Turner-Jones A. Cocrystallization in copolymers of a-olefins ii-butene-1 copolymers and polybutene type ii/i crystal phase transition [J]. Polymer,1966,7(1):23-59.
    [29]Danusso F, Gianotti G. The 3 polymorphs of isotactic polybutene-1-dilatometric and thermodynamic fusion properties [J]. Makromol Chem,1963,61:139-156.
    [30]Azzurri F, Flores A, Alfonso GC, et al. Polymorphism of isotactic poly(1-butene) as revealed by microindentation hardness.1. Kinetics of the transformation [J]. Macromolecules,2002,35(24):9069-9073.
    [31]Azzurri F, Flores A, Alfonso GC, et al. Polymorphism of isotactic polybutene-1 as revealed by microindentation hardness. Part ii:Correlations to microstructure [J]. Polymer,2003, 44(5):1641-1645.
    [32]Jiang Z, Sun Y, Tang Y, et al. Polymorphic transformation of isotactic poly(1-butene) in form iii upon heating:In situ synchrotron small-and wide-angle x-ray scattering studies [J]. J Phys Chem B,2010,114(18):6001-6005.
    [33]Miyoshi T, Hayashi S, Imashiro F, et al. Chain dynamics, conformations, and phase transformations for form iii polymorph of isotactic poly(l-butene) investigated by high-resolution solid-state c-13 nmr spectroscopy and molecular mechanics calculations [J]. Macromolecules,2002,35(7):2624-2632.
    [34]Nakamura K, Aoike T, Usaka K, et al. Phase transformation in poly(1-butene) upon drawing [J]. Macromolecules,1999,32(15):4975-4982.
    [35]Maruyama M, Sakamoto Y, Nozaki K, et al. Kinetic study of the ii-i phase transition of isotactic polybutene-1 [J]. Polymer,2010,51(23):5532-5538.
    [36]Acierno S, Grizzuti N, Winter HH. Effects of molecular weight on the isothermal crystallization of poly(1-butene) [J]. Macromolecules,2002,35(13):5043-5048.
    [37]Fu Q, Heck B, Strobl G, et al. A temperature-and molar mass-dependent change in the crystallization mechanism of poly(1-butene):Transition from chain-folded to chain-extended crystallization? [J]. Macromolecules,2001,34(8):2502-2511.
    [38]Men YF, Rieger J, Homeyer J. Synchrotron ultrasmall-angle x-ray scattering studies on tensile deformation of poly(1-butene) [J]. Macromolecules,2004,37(25):9481-9488.
    [39]Chau KW, Yang YC, Geil PH. Tetragonal-twinned hexagonal crystal phase-transformation in polybutene-1 [J]. J Mater Sci,1986,21(9):3002-3014.
    [40]Al-Hussein M, Strobl G. Strain-controlled tensile deformation behavior and relaxation properties of isotactic poly(1-butene) and its ethylene copolymers [J]. Macromol Symp, 2004,214:231-240.
    [41]Jiang SD, Duan YX, Li L, et al. An afm study on the structure and melting behavior of melt- crystallized isotactic poly(1-butene) [J]. Polymer,2004,45(18):6365-6374.
    [42]Marigo A, Marega C, Zannetti R, et al. Small-and wide-angle x-ray scattering analysis of ziegler-natta catalysts:Structural disorder, surface area and activity [J]. Eur Polym J,2000, 36(9):1921-1926.
    [1]Gorlier E, Haudin JM, Billon N. Strain-induced crystallisation in bulk amorphous pet under uni-axial loading [J]. Polymer,2001,42(23):9541-9549.
    [2]Tanaka A, Sugimoto N, Asada T, et al. Orientation and crystal transformation in polybutene-1 under stress relaxation [J]. Polym J (Tokyo, Jpn),1975,7(5):529-537.
    [3]Chandran P, Jabarin S. Biaxial orientation of poly(ethylene-terephthalate).1. Nature of the stress-strain curves [J].Adv Polym Technol,1993,12(2):119-132.
    [4]Zaroulis JS, Boyce MC. Temperature, strain rate, and strain state dependence of the evolution in mechanical behaviour and structure of poly(ethylene terephthalate) with finite strain deformation [J]. Polymer,1997,38(6):1303-1315.
    [5]Mahendrasingam A, Blundell DJ, Parton M, et al. Time resolved study of oriented crystallisation of poly(lactic acid) during rapid tensile deformation [J]. Polymer,2005, 46(16):6009-6015.
    [6]Fukushima H, Ogino Y, Matsuba G, et al. Crystallization of polyethylene under shear flow as studied by time resolved depolarized light scattering. Effects of shear rate and shear strain [J]. Polymer,2005,46(6):1878-1885.
    [7]Franco-Urquiza EA, Gamez-Perez J, Velazquez-Infante JC, et al. Effect of the strain rate and drawing temperature on the mechanical behavior of evoh and evoh composites [J]. Adv Polym Technol,2013,32(E287-E296.
    [8]Jabarin SA. Strain-induced crystallization of poly(ethylene-terephthalate) [J]. Polym Eng Sci,1992,32(18):1341-1349.
    [9]Rao IJ. Effect of the rate of deformation on the crystallization behavior of polymers [J]. Int J Nonlinear Mech,2003,38(5):663-676.
    [10]Jabbarzadeh A, Tanner RI. Flow-induced crystallization:Unravelling the effects of shear rate and strain [J]. Macromolecules,2010,43(19):8136-8142.
    [11]Bao SP, Tjong SC. Temperature and strain rate dependences of yield stress of polypropylene composites reinforced with carbon nanofibers [J]. Polym Compos,2009,30(12):1749-1760.
    [12]Blundell DJ, Mackerron DH, Fuller W, et al. Characterization of strain-induced crystallization of poly(ethylene terephthalate) at fast draw rates using synchrotron radiation [J]. Polymer,1996,37(15):3303-3311.
    [13]Mahendrasingam A, Blundell DJ, Martin C, et al. Influence of temperature and chain orientation on the crystallization of poly(ethylene terephthalate) during fast drawing [J]. Polymer,2000,41(21):7803-7814.
    [14]Takahashi K, Sawai D, Yokoyama T, et al. Crystal transformation from the alpha-to the beta-form upon tensile drawing of poly(1-lactic acid) [J]. Polymer,2004,45(14):4969-4976.
    [15]Zhang XQ, Schneider K, Liu GM, et al. Structure variation of tensile-deformed amorphous poly(1-lactic acid):Effects of deformation rate and strain [J]. Polymer,2011,52(18):4141-4149.
    [16]Richeton J, Ahzi S, Vecchio KS, et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers:Characterization and modeling of the compressive yield stress [J]. Int J Solids Struct,2006,43(7-8):2318-2335.
    [17]Richeton J, Ahzi S, Daridon L, et al. Modeling of strain rates and temperature effects on the yield behavior of amorphous polymers [J]. J Phys Ⅳ,2003,110(39-44.
    [18]Su FM, Li XY, Zhou WM, et al. Accelerating crystal-crystal transition in poly(1-butene) with two-step crystallization:An in-situ microscopic infrared imaging and microbeam x-ray diffraction study [J]. Polymer,2013,54(13):3408-3416.
    [19]Asada T, Sasada J, Onogi S. Rheo-optical studies of high polymers.21. Deformation process and crystal transformation in polybutene-1 [J]. Polym J (Tokyo, Jpn),1972,3(3): 350-356.
    [20]Liu YP, Cui KP, Tian N, et al. Stretch-induced crystal-crystal transition of polybutene-1:An in situ synchrotron radiation wide-angle x-ray scattering study [J]. Macromolecules,2012, 45(6):2764-2772.
    [21]Goldbach G. Conversion polymorphic structure of polybutene-1 under action of mechanical stress [J]. Angew Makromol Chem,1973,29-3(213-227.
    [22]Yang YC, Geil PH. Deformation mechanisms of isotactic poly(1-butene) [J]. Makromol Chem -Macromol Chem Phys,1985,186(9):1961-1978.
    [1]Meijer HEH, Govaert LE. Mechanical performance of polymer systems:The relation between structure and properties [J]. Prog Polym Sci,2005,30(8-9):915-938.
    [2]Galeski A. Strength and toughness of crystalline polymer systems [J]. Prog Polym Sci,2003, 28(12):1643-1699.
    [3]Men YF, Rieger J, Strobl G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers [J]. Physical Review Letters,2003,91(9):095502-1-4.
    [4]Butler MF, Donald AM, Ryan AJ. Time resolved simultaneous small-and wide-angle x-ray scattering during polyethylene deformation.1. Cold drawing of ethylene-alpha-olefin copolymers [J]. Polymer,1997,38(22):5521-5538.
    [5]Luyten MC, Bogels EJF, Vanekenstein GORA, et al. Morphology in binary blends of poly(vinyl methyl ether) and epsilon-caprolactone-trimethylene carbonate diblock copolymer [J]. Polymer,1997,38(3):509-519.
    [6]Ryan AJ, Bras W, Mant GR, et al. A direct method to determine the degree of crystallinity and lamellar thickness of polymers-application to polyethylene [J]. Polymer,1994,35(21): 4537-4544.
    [7]Ryan AJ, Stanford JL, Bras W, et al. A synchrotron x-ray study of melting and recrystallization in isotactic polypropylene [J]. Polymer,1997,38(4):759-768.
    [8]Wilkinson AN, Tattum SB, Ryan AJ. Melting, reaction and recrystallization in a reactive pc-pbt blend [J]. Polymer,1997,38(8):1923-1928.
    [9]Yu GE, Sun T, Yan ZG, et al. Low-molar-mass cyclic poly(oxyethylene)s studied by raman spectroscopy, x-ray scattering and differential scanning calorimetry [J]. Polymer,1997, 38(1):35-42.
    [10]Immergut E. Polymer handbook [M]. New York:John Wiley & Sons,1989.
    [11]Ruland W. X-ray determination of crystallinity and diffuse disorder scattering [J]. Acta Crystallogr,1961,14(11):1180-1185.
    [12]Balta-Calleja FJV, C. J. X-ray scattering of polymers [M/OL].1989[
    [13]Tsuji M. Comprehensive polymer science [M]. Oxford:1 Pergamon Press,1988.
    [14]Meinel G, Peterlin A. Plastic deformation of polyethylene.2. Change of mechanical properties during drawing [J]. J Polym Sci [A2],1971,9(1):67-83.
    [15]Peterlin A. Plastic-deformation of crystalline polymers [J]. Polym Eng Sci,1977,17(3): 183-193.
    [16]Peterlin A. Plastic-deformation of polymers with fibrous structure [J]. Colloid Polym Sci, 1975,253(10):809-823.
    [17]Peterlin A. Molecular model of drawing polyethylene and polypropylene [J]. J Mater Sci, 1971,6(6):490-508.
    [18]Weynant E, Haudin JM, Gsell C. Plastic-deformation and solid-phase transformation in polybutene.1. [J]. J Mater Sci,1982,17(4):1017-1035.
    [19]Boor J, Mitchell JC. Apparent nucleation of a crystal-crystal transition in poly-1-butene [J]. J Polym Sci,1962,62(174):S70-S73.
    [20]Boor J, Mitchell JC. Kinetics of crystallization and a crystal-crystal transition in poly-1- butene [J]. J Polym Sci Part a:General Papers,1963,1(1):59-84.
    [21]Luongo JP, Salovey R. Infrared characterization of polymorphism in polybutene-1 [J]. J Polym Sci [A2],1966,4(6pa2):997-1008.
    [22]Luongo JP, Salovey R. Infrared spectra of polybutene-1 polymorphs [J]. J Polym Sci [B], 1965,3(6pb):513-515.
    [23]Gohil RM, Miles MJ, Petermann J. On the molecular mechanism of the crystal transformation (tetragonal-hexagonal) in polybutene-1 [J]. Journal of Macromolecular Science-Physics,1982,B21(2):189-201.
    [24]Petermann J, Gohil RM, Schultz JM, et al. Small-angle x-ray-scattering from polybutene-1 films crystallized from a highly extended melt [J]. J Mater Sci,1981,16(1):265-268.
    [25]Wang YT, Jiang ZY, Fu LL, et al. Stretching temperature dependency of lamellar thickness in stress-induced localized melting and recrystallized polybutene-1 [J]. Macromolecules, 2013,46(19):7874-7879.
    [26]Wang YT, Jiang ZY, Wu ZH, et al. Tensile deformation of polybutene-1 with stable form i at elevated temperature [J]. Macromolecules,2013,46(2):518-522.
    [1]Norton DR, Keller A. On the morphology of blends of linear and branched polyehtylene [J]. J Mater Sci,1984,19(2):447-456.
    [2]Padden FJ, Keith HD. Spherulitic crystallization in polypropylene [J]. J Appl Phys,1959, 30(10):1479-1484.
    [3]Keith HD, Padden FJ, Walter NM, et al. Evidence for a second crystal form of polypropylene [J]. J Appl Phys,1959,30(10):1485-1488.
    [4]Keith HD, Padden FJ. The optical behavior of spherulites in crystalline polymers:2. The growth and structure of the spherulites [J]. J Polym Sci,1959,39(135):123-138.
    [5]Natta GP, M; Corradini, P. Semectic mesomorphic form of isotactic polypropylene [J]. Rend Accad Naz Lincei,1959,26:14-17.
    [6]Corradini P, Petraccone V, Derosa C, et al. On the structure of the quenched mesomorphic phase of isotactic polypropylene [J]. Macromolecules,1986,19(11):2699-2703.
    [7]Samuels RJ, Yee RY. Characterization of structure and organization of beta-form crystals in type-iii and type-iv beta-isotactic propylene spherulites [J]. J Polym Sci Part a-2:Polym Phys,1972,10(3):385-432.
    [8]Natta G, Corradini P, Ganis P. Chain conformation of polypropylene having a regular structure [J]. Makromol Chem,1960,39(2):238-242.
    [9]Bruckner S, Meille SV, Petraccone V, et al. Polymorphism in isotactic polypropylene [J]. Prog Polym Sci,1991,16(2-3):361-404.
    [10]Bruckner S, Meille SV. Non-parallel chains in crystalline gamma-isotactic polypropylene [J]. Nature,1989,340(6233):455-457.
    [11]Somani RH, Hsiao BS, Nogales A, et al. Structure development during shear flow-induced crystallization of i-pp:In-situ small-angle x-ray scattering study [J]. Macromolecules,2000, 33(25):9385-9394.
    [12]Schneider K. Investigation of structural changes in semi-crystalline polymers during deformation by synchrotron x-ray scattering [J]. J Polym Sci, Part B:Polym Phys,2010, 48(14):1574-1586.
    [13]Somani RH, Hsiao BS, Nogales A, et al. Structure development during shear flow induced crystallization of i-pp:In situ wide-angle x-ray diffraction study [J]. Macromolecules,2001, 34(17):5902-5909.
    [14]Lotz B, Wittmann JC. The molecular-origin of lamellar branching in the alpha-(monoclinic) form of isotactic polypropylene [J]. J Polym Sci, Part B:Polym Phys,1986,24(7):1541-1558.
    [15]Khoury F. Spherulitic crystallization of isotactic polypropylene from solution-on evolution of monoclinic spherulites from dendritic chain-folded crystal precursors [J]. J Res Natl Bur Std A,1966, A 70(1):29-61.
    [16]Padden FJ, Keith HD. Crystallization in thin films of isotactic polypropylene [J]. J Appl Phys,1966,37(11):4013-4020.
    [17]Lovinger AJ. Microstructure and unit-cell orientation in alpha-polypropylene [J]. J Polym Sci, Part B:Polym Phys,1983,21(1):97-110.
    [18]Binsberg FI, Delange BGM. Morphology of polypropylene crystallized from melt [J]. Polymer,1968,9(1):23-40.
    [19]Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylenes):A molecular analysis [J]. Polymer,1996,37(22):4979-4992.
    [20]Clark ES, Spruiell JE. Unlimited flex life in molded-in hinge in polypropylene-structural hypothesis [J]. Polym Eng Sci,1976,16(3):176-181.
    [21]Phillips A, Zhu P-W, Edward G. Simple shear deformation of polypropylene via the equal channel angular extrusion process [J]. Macromolecules,2006,39(17):5796-5803.
    [22]Zhu P-W, Tung J, Edward G, et al. Effects of different colorants on morphological development of sheared isotactic polypropylene:A study using synchrotron wide-angle x-ray scattering [J]. J Appl Phys,2008,103(12):124906-124907.
    [23]Pang Y, Dong X, Liu K, et al. Ductile-brittle transition controlled by isothermal crystallization of isotactic polypropylene and its blend with poly(ethylene-co-octene) [J]. Polymer,2008,49(19):4259-4270.
    [24]Aboulfaraj M, Gsell C, Ulrich B, et al. In-situ observation of the plastic-deformation of polypropylene sphrulites under uniaxial tension and simple shear in the scanning electron-microscope [J]. Polymer,1995,36(4):731-742.
    [25]Peterlin A. Molecular model of drawing polyethylene and polypropylene [J]. J Mater Sci, 1971,6(6):490-508.
    [26]Bowden PB, Young RJ. Deformation mechanisms in crystalline polymers [J]. J Mater Sci, 1974,9(12):2034-2051.
    [27]Wignall GD, Wu W. A sans investigation into the plastic-deformation mechanisms of polyethylene [J]. Polym Comm,1983,24(AUG):354-359.
    [28]Zia Q, Radusch H-J, Androsch R. Deformation behavior of isotactic polypropylene crystallized via a mesophase [J]. Polym Bull,2009,63(5):755-771.
    [29]Ran SF, Zong XH, Fang DF, et al. Structural and morphological studies of isotactic polypropylene fibers during heat/draw deformation by in-situ synchrotron saxs/waxd [J]. Macromolecules,2001,34(8):2569-2578.
    [30]Hay IL, Keller A. Polymer deformation in terms of spherulites [J]. Kolloid-Zeitschrift and Zeitschrift Fur Polymere,1965,204(1-2):43-74.
    [31]Zuo F, Keum JK, Chen X, et al. The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene [J]. Polymer,2007,48(23):6867-6880.
    [32]Nozue Y, Shinohara Y, Ogawa Y, et al. Deformation behavior of isotactic polypropylene spherulite during hot drawing investigated by simultaneous microbeam saxs-waxs and pom measurement [J]. Macromolecules,2007,40(6):2036-2045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700