用户名: 密码: 验证码:
GaAs/A1GaAs材料V型腔可调谐激光器的设计制作及在生物检测上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现今的社会中,由于人们生活习惯和饮食问题,心脑血管疾病的患者人数逐年增长,已经极大地影响到了人类的健康和生存情况,对心血管疾病的预防和诊治成为人们亟需解决的重要问题之一。在众多解决措施之中,如何在早期准确的预测和预防是最具成本效益的方案,基于GaAs/AlGaAs材料的可调谐激光器凭借其对应于生命检测波段的出光波长、优秀的单纵模和波长可变的性能,半导体器件易于集成的特性,可以随时随地有效的监测人体血液各项重要参数,成为对抗心血管疾病的关键。本文主要研究基于GaAs/AlGaAs材料的V型腔可调谐激光器的结构设计、工艺制作、性能测试和在人体血液检测中的应用。
     本文首先介绍了V型腔激光器的基本结构组成和工作原理,推导了V型腔激光器的阈值条件。根据激光器的需求,设计了量子阱结构和晶片层状结构,优化了激光器的波导结构和V型腔结构,得到最大的波长可调谐范围,对应激光器结构优化了半波耦合器的尺寸,得到激光器输出最佳的边模抑制比。
     之后我们详细介绍了在GaAs/AlGaAs材料上,V型腔激光器的工艺制作流程。针对光刻工艺、波导/反射面深刻蚀区刻蚀工艺、平坦化工艺、正N/背面电极工艺和晶片背面减薄抛光工艺都作了分析,特别针对刻蚀工艺,针对其掩模的选择、干湿法工艺的选择、干法刻蚀配方的选择和优化做了详细的分析。最后我们成功制作出了基于GaAs/AlGaAs材料的V型腔激光器。
     然后我们详述了激光器的性能测试。介绍了激光器测试的系统结构和设备组成。通过对F-P激光器的测试,了解GaAs/AlGaAs材料上激光器的IV、IP特性和腔镜面损伤的现象,分析了干湿法刻蚀工艺对腔镜面损伤闽限的影响。介绍了V型腔激光器调谐过程的载流子注入效应和热效应的作用机理,测试了两种效应下V型腔激光器的调谐性能,在载流子注入效应作用下,激光器输出边模抑制比31dB,配合温度控制,激光器可调谐27个信道,调谐范围8.2nm,在热效应的作用下,激光器输出边模抑制比36dB,单个温度下,激光器可调谐31个信道,配合温度控制,可调谐60个信道,调谐范围22.4nm。
     我们提出了一个反射式人体血液检测系统,介绍了在这个系统中测试血氧饱和度和血流速度的原理,将V型腔激光器用于这个系统之中,并测得了实验结果。提出了调频连续波技术检测人体血糖浓度的方案,搭建了原理性检测实验系统,测得了一些实验结果并做了分析。
     最后是对激光器设计制作和在生物检测上的应用进行下一步工作的展望。
In the modern society, high-fat, high-calorie and high-salt eating habits and sedentary life style contribute a lot to the increasing rate of cardiovascular and cerebrovascular diseases. Prevention, diagnosis and treatment of those diseases impose a heavy burden on both individuals and goverment. Early and accurate prediction and prevention is the most cost-effective solution to these problems. Tunable laser based on GaAs/AlGaAs material system, with its output wavelength corresponding to the life-detection optical band, excellent single longitudinal mode and wavelength tunable performance, ease of integration, can be used to monitor some important parameters in human blood regardless of place and time, which is a key components against those disease. This paper studied the structure design, fabrication, testing and blood parameters detection of the V-coupled-cavity laser based on GaAs/AlGaAs material system.
     We first introduced the basic structure and the working principle of the V-coupled cavity laser, derived the threshold condition of the laser. Designed a quantum well structure and the wafer layer structure for the V-coupled cavity laser based on GaAs/AlGaAs material system.Optimized the waveguide structure and the V cavity structure to obtain the maximum wavelength tuning range, optimized the size of the coupler to obtain the best performance of output side mode suppression ratio (SMSR).
     After that we described the fabrication processes of the V cavity laser based on GaAs/AlGaAs material system in detail. The step such as photolithography process, etching process for waveguide and deep etching aera, the planarization process, the front and back electrode, wafer backside thinning and polishing process are analyzed, in particular for the etching process, for which the choice of the mask, dry and wet etching process selection, dry etching recipe selection and optimization of a detailed analysis. Finally, we successfully fabricated the V-coupled cavity laser based on GaAs/AlGaAs material system.
     Then we described the laser performance tests, introduced the configuration and equipment constitutes of the test system. Through the FP laser testing, informed the IV/IP characteristics of GaAs/AlGaAs material based laser and the phenomenon of the catastrophic optical mirror destruction (COMD), analyzed the role of wet etching process on the COMD phenomenon. Introduced the tuning mechanism of the V cavity laser based on carrier injection effect and thermal effect. Under the carrier injection effect, the laser output SMSR is31dB, with the temperature control, the laser can be tuned27channels, the tuning range is8.2nm, under the thermal effect, the laser output SMSR is36dB, he laser can be tuned31channels on single stable temperature, with the temperature control,60channels tunable with tuning range of22.4nm is achieved.
     We proposed a reflective human blood detection system, introduced the principle to detect oxygen saturation and blood flow velocity, the V-cavity lasers is used in this system, and some results was obtained. Proposed a method to detect the concentration of blood glucose with frequency modulated continuous wave (FMCW) technology, builded a validation experiment testing system, some results was obtained and analyzed.
     Finally, we discussed the future research plans fot the laser design, fabrication and applications in biological detection.
引文
[1]http://zh.wikipedia.org/wiki/砷化镓
    [2]Werle P, Slemr F, Maurer K, et al. Near-and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering,2002,37(2):101-114.
    [3]Kobayashi K, Mito I. Single frequency and tunable laser diodes[J]. Lightwave Technology, Journal of,1988,6(11):1623-1633.
    [4]Koch T L, Koren U. Semiconductor lasers for coherent optical fiber communications[J]. Lightwave Technology, Journal of,1990,8(3):274-293.
    [5]《2010年全球非传染性疾病现状报告》,2011年,日内瓦,世界卫生组织。
    [6]Global atlas on cardiovascular disease prevention and control. Geneva:WHO; 2011.
    [7]Mathers C D, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030[J]. PLoS medicine,2006,3(11):e442.
    [8]Lim S S, Vos T, Flaxman A D, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010:a systematic analysis for the Global Burden of Disease Study 2010[J]. The lancet,2013,380(9859):2224-2260.
    [9]The global burden of disease:2004 update. Geneva:WHO; 2008.
    [10]沈莹.急性心肌梗死病人缺氧性损伤及其吸氧护理[J].护士进修杂志,2003,18(10):902-903.
    [11]王薇,赵冬,刘静.中国35-64岁人群血压水平与10年心血管病发病危险的前瞻性研究[J].中华内科杂志,2004,43(10):730-734.
    [12]王振才,边连防,伍爱民,等.高血糖对中风预后影响的研究[J].中国综合临床,2000,16(4):268-268.
    [13]Mendelson Y. Pulse oximetry:theory and applications for noninvasive monitoring[J]. Clinical chemistry,1992,38(9):1601-1607.
    [14]http://www.omronhealthcare.com.cn
    [15]Higurashi E, Sawada R, Ito T. An integrated laser blood flowmeter[J]. Journal of lightwave technology,2003,21(3):591.
    [16]Crespi F, Bandera A, Donini M, et al. Non-invasive in vivo infrared laser spectroscopy to analyse endogenous oxy-haemoglobin, deoxy-haemoglobin, and blood volume in the rat CNS[J]. Journal of neuroscience methods,2005,145(1): 11-22.
    [17]Gabriely I, Wozniak R, Mevorach M, et al. Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia[J]. Diabetes Care,1999, 22(12):2026-2032.
    [18]Waxman S, Ishibashi F, Caplan J D. Rationale and use of near-infrared spectroscopy for detection of lipid-rich and vulnerable plaques[J]. Journal of nuclear cardiology,2007,14(5):719-728.
    [19]Harvey K C, Myatt C J. External-cavity diode laser using a grazing-incidence diffraction grating[J]. Optics Letters,1991,16(12):910-912.
    [20]http://laser.cheng.cam.ac.uk/wiki/images/6/62/ECDL3D.jpg
    [21]Weigl B, Grabherr M, Michalzik R, et al. High-power single-mode selectively oxidized vertical-cavity surface-emitting lasers[J]. Photonics Technology Letters, IEEE,1996,8(8):971-973.
    [22]Grabherr M, Jager R, Michalzik R, et al. Efficient single-mode oxide-confined GaAs VCSEL's emitting in the 850-nm wavelength regime[J]. Photonics Technology Letters, IEEE,1997,9(10):1304-1306.
    [23]Grabherr M, Wiedenmann D, Jager R, et al. Fabrication and performance of tuneable single-mode VCSELs emitting in the 750-to 1000-nm range[C]. Integrated Optoelectronic Devices 2005. International Society for Optics and Photonics,2005: 120-128.
    [24]Wolf P, Moser P, Hofmann W, et al. Optoelectronics & Communications Abolishing copper interconnects [J].
    [25]Huang M C Y, Cheng K B, Zhou Y, et al. Monolithic integrated piezoelectric MEMS-tunable VCSEL[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2007,13(2):374-380.
    [26]Sano H, Nakata N, Nakahama M, et al. Athermal and Tunable VCSELs with a Thermally Actuated Cantilever Structure for WDM Optical Interconnects [J]. Athermal and Tunable VCSELs with a Thermally Actuated Cantilever Structure for WDM Optical Interconnects,2012 (9-2).
    [27]Huang M C Y, Zhou Y, Chang-Hasnain C J. A nanoelectromechanical tunable laser[J]. Nature Photonics,2008,2(3):180-184.
    [28]Huang M C Y, Zhou Y, Chang-Hasnain C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating[J]. Nature Photonics,2007, 1(2):119-122.
    [29]Blokhin S A, Lott J A, Mutig A, et al. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s[J]. Electronics Letters,2009,45(10):501-503.
    [30]Westbergh P, Safaisini R, Haglund E, et al. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s[J]. Electronics letters, 2012,48(18):1145-1147.
    [31]Li N, Schow C L, Kuchta D M, et al. High-performance 850 nm VCSEL and photodetector arrays for 25 Gb/s parallel optical interconnects[C]//Optical Fiber Communication Conference. Optical Society of America,2010.
    [32]http://www.cstf.kyushu-u.ac.jp
    [33]Gulgazov V, Zhao H, Major Jr J S, et al. DFB laser diodes operating at 785 and 852 nm[C]. Semiconductor Laser Conference,1998. ISLC 1998 NARA.1998 IEEE 16th International. IEEE,1998:137-138.
    [34]Major Jr J S, O'Brien S, Gulgazov V, et al. High-power singlemode AlGaAs distributed Bragg reflector laser diodes operating at 856 nm[J]. Electronics Letters, 1994,30(6):496-497.
    [35]Price R K, Borchardt J J, Elarde V C, et al. Narrow-linewidth asymmetric cladding distributed Bragg reflector semiconductor lasers at 850 nm[J]. Photonics Technology Letters, IEEE,2006,18(1):97-99.
    [36]Price R K, Elarde V C, Coleman J J. Scattering loss and effective index step of asymmetric cladding surface-etched distributed Bragg reflector lasers at 850 nm[J]. Journal of Applied Physics,2007,101(5):053116-053116-6.
    [37]Zimmerman J W, Price R K, Reddy U, et al. Narrow Linewidth Surface-Etched DBR Lasers:Fundamental Design Aspects and Applications [J].2013.
    [38]Price R K, Elarde V C, Coleman J J. Widely tunable 850-nm metal-filled asymmetric cladding distributed Bragg reflector lasers[J]. Quantum Electronics, IEEE Journal of,2006,42(7):667-674.
    [32]Jin J, Wang L, Yu T, et al. Widely wavelength switchable V-coupled-cavity semiconductor laser with~40 dB side-mode suppression ratio[J]. Optics letters,2011, 36(21):4230-4232.
    [40]He J J, Liu D. Wavelength switchable semiconductor laser using half-wave V-coupled cavities[J]. Optics Express,2008,16(6):3896-3911.
    [41]Kuznetsov M, Verlangieri P, Dentai A G, et al. Asymmetric Y-branch tunable semiconductor laser with 1.0 THz tuning range[J]. Photonics Technology Letters, IEEE,1992,4(10):1093-1095.
    [42]Salzman J, Osinski J S, Bhat R, et al. Cross coupled cavity semiconductor laser[J]. Applied physics letters,1988,52(10):767-769.
    [43]Lin X, Liu D, He J J. Design and optimization of a 2x2 half-wave optical coupler[C]. Optical Fiber Communication & Optoelectronic Exposition & Conference, 2008. AOE 2008. Asia. IEEE,2008:1-3.
    [44]Huang W P. Coupled-mode theory for optical waveguides:an overview[J]. JOSA A,1994,11(3):963-983.
    [45]Hunsperger R G. Integrated optics:theory and technology[M]. Berlin-Springer-Verlag,1984.
    [46]Bachmann M, Besse P A, Melchior H. General self-imaging properties in N×N multimode interference couplers including phase relations[J]. Applied Optics,1994, 33(18):3905-3911.
    [47]Kim J P, Sarangan A M. Temperature-dependent Sellmeier equation for the refractive index of AlxGal-xAs[J]. Optics letters,2007,32(5):536-538.
    [48]Kokubo Y, Ohta I. Refractive index as a function of photon energy for AlGaAs between 1.2 and 1.8 eV[J]. Journal of applied physics,1997,81(4):2042-2043.
    [49]Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits[M]. Wiley. com,2012.
    [50]Holonyak N, Kolbas R, Dupuis R, et al. Quantum-well heterostructure lasers[J]. Quantum Electronics, IEEE Journal of,1980,16(2):170-186.
    [51]Tanaka H.780 nm band TM-mode laser operation of GaAsP/AlGaAs tensile-strained quantum-well lasers[J]. Electronics Letters,1993,29(18):1611-1613.
    [52]Koch T L, Koren U. Semiconductor lasers for coherent optical fiber communications[J]. Lightwave Technology, Journal of,1990,8(3):274-293.
    [53]Clawson A R. Guide to references on III-V semiconductor chemical etching [J]. Materials Science and Engineering:R:Reports,2001,31(1):1-438.
    [54]Lee J W, Jeon M H, Devre M, et al. Understanding of etch mechanism and etch depth distribution in inductively coupled plasma etching of GaAs[J]. Solid-State Electronics,2001,45(9):1683-1686.
    [55]Hahn Y B, Hays D C, Cho H, et al. Effect of inert gas additive species on C12 high density plasma etching of compound semiconductors:Part I. GaAs and GaSb[J]. Applied surface science,1999,147(1):207-214.
    [56]Maeda T, Lee J W, Shul R J, et al. Inductively coupled plasma etching of Ⅲ-Ⅴ semiconductors in BC13 based chemistries:Ⅰ. GaAs, GaN, GaP, GaSb and AlGaAs[J]. Applied surface science,1999,143(1):174-182.
    [57]Braive R, Le Gratiet L, Guilet S, et al. Inductively coupled plasma etching of GaAs suspended photonic crystal cavities[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2009,27(4):1909-1914.
    [58]Lim W T, Baek I K, Lee J W, et al. BC13/Ne etching of Ⅲ-Ⅴ semiconductors in a planar inductively coupled plasma reactor[J]. Applied surface science,2004,222(1): 74-81.
    [59]Mochizuki M, Kitabayashi Y, Nakajima T, et al. Dry Etching of Al-Rich AlGaAs for Photonic Crystal Fabrication[J]. Japanese Journal of Applied Physics,2011,50(4): 04DG15.
    [60]Volatier M, Duchesne D, Morandotti R, et al. Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation [J]. Nanotechnology,2010,21(13):134014.
    [61]Edwards G T, Sobiesierski A, Westwood D I, et al. Fabrication of high-aspect-ratio, sub-micron gratings in AlGaInP/GaAs laser structures using a BC13/C12/Ar inductively coupled plasma[J]. Semiconductor Science and Technology, 2007,22(9):1010.
    [62]Agarwala S, King O, Horst S, et al. Response surface study of inductively coupled plasma etching of GaAs/AlGaAs in BC13/C12 [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1999,17(1):52-55.
    [63]Hobson W S, Chen Y K, Wu M C. InGaAs/AlGaAs ridge waveguide lasers utilizing an InGaP etch-stop layer[J]. Semiconductor science and technology,1992, 7(11):1425.
    [64]Zhou Z, Dou Y, Huang Y, et al. Accurately nonselective and selective etching of GaAs/A10.8Ga0.2As/AlAs structure for making air-gap cavity [J]. Proc. SPIE5280, 2004:889-895.
    [65]Thummel R P. Benzocyclobutene and related compounds[J]. Accounts of Chemical Research,1980,13(3):70-76.
    [66]Chen Q, Zhang D, Tan Z, et al. Thick benzocyclobutene etching using high density SF6/O2 plasmas[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2011,29(1):011019-011019-6.
    [67]Stareev G. Formation of extremely low resistance Ti/Pt/Au ohmic contacts to p-GaAs[J]. Applied physics letters,1993,62(22):2801-2803.
    [68]李鸿渐,石瑛.测量计算金属-半导体接触电阻率的方法[J].半导体技术,2008,2:016.
    [69]Baca A G, Ren F, Zolper J C, et al. A survey of ohmic contacts to Ⅲ-Ⅴ compound semiconductors [J]. Thin Solid Films,1997,308:599-606.
    [70]Furumai M, Oku T, Ishikawa H, et al. NiGe-based ohmic contacts to n-type GaAs[J]. Journal of Electronic Materials,1996,25(11):1684-1694.
    [71]Henry C H, Petroff P M, Logan R A, et al. Catastrophic damage of AlxGal-x As double-heterostructure laser material [J]. Journal of Applied Physics,1979,50(5): 3721-3732.
    [72]Ziegler M, Tomm J W, Zeimer U, et al. Imaging catastrophic optical mirror damage in high-power diode lasers[J]. Journal of electronic materials,2010,39(6): 709-714.
    [73]Devices C Q. Advantages of Al-free InGaAsP/GaAs lasers for WDMApplications[J].
    [74]Qu Y, Yuan S, Liu C Y, et al. High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm[J]. Photonics Technology Letters, IEEE,2004,16(2):389-391.
    [75]Steinmann P, Borchert B, Stegmuller B. Asymmetric quantum wells with enhanced QCSE:modulation behaviour and application for integrated laser/modulator [J]. Photonics Technology Letters, IEEE,1997,9(2):191-193.
    [76]Holonyak N, Kolbas R M, Rezek E A, et al. Bandfilling in metalorganic chemical vapor deposited AlxGa1-xAs/GaAs/AlxGa1-x As quantum-well heterostructure lasers [J]. Journal of Applied Physics,1978,49(11):5392-5397.
    [77]Jain S C, McGregor J M, Roulston D J. Band-gap narrowing in novel III-V semiconductors[J]. Journal of applied physics,1990,68(7):3747-3749.
    [78]Henry C H, Logan R A, Bertness K A. Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers[J]. Journal of Applied Physics, 1981,52(7):4457-4461.
    [79]Haga E, Kimura H. Free-Carrier Infrared Absorption in Ⅲ-Ⅴ Semiconductors Ⅲ. GaAs, InP, GaP and GaSb[J]. Journal of the Physical Society of Japan,1964,19(5).
    [80]Spitzer W G, Whelan J M. Infrared absorption and electron effective mass in n-type gallium arsenide[J]. Physical Review,1959,114(1):59.
    [81]Bennett B R, Soref R A, Del Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP[J]. Quantum Electronics, IEEE Journal of,1990, 26(1):113-122.
    [82]Tomita A, Suzuki A. Carrier-induced lasing wavelength shift for quantum well laser diodes[J]. Quantum Electronics, IEEE Journal of,1987,23(7):1155-1159.
    [83]Talghader J, Smith J S. Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities[J]. Applied physics letters,1995,66(3):335-337.
    [84]Tell B, Brown-Goebeler K F, Leibenguth R E, et al. Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers[J]. Applied physics letters, 1992,60(6):683-685.
    [85]Gulgazov V, Zhao H, Major Jr J S, et al. DFB laser diodes operating at 785 and 852 nm[C]. Semiconductor Laser Conference,1998. ISLC 1998 NARA.1998 IEEE 16th International. IEEE,1998:137-138.
    [86]Guo S, Meng J, Wang L, et al. Experimental Demonstration of Subnano-Second Wavelength Switching in V-Coupled-Cavity Semiconductor Laser[C]. Asia Communications and Photonics Conference. Optical Society of America,2012.
    [87]Kawarada A, Shimazu H, Ito H, et al. Ambulatory monitoring of indirect beat-to-beat arterial pressure in human fingers by a volume-compensation method[J]. Medical and Biological Engineering and Computing,1991,29(1):55-62.
    [88]Chen Y, Wen C, Tao G, et al. Continuous and noninvasive blood pressure measurement:a novel modeling methodology of the relationship between blood pressure and pulse wave velocity[J]. Annals of biomedical engineering,2009,37(11): 2222-2233.
    [89]Wood E H, Geraci J E. Photoelectric determination of arterial oxygen saturation in man[J]. The Journal of laboratory and clinical medicine,1949,34(3):387.
    [90]Aoyagi T, Kishi M, Yamaguchi K, et al. Improvement of the earpiece oximeter[J]. Japanese Society of Medical Electronics and Biological Engineering,1974,974: 90-91.
    [91]Yoshiya I, Shimada Y, Tanaka K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip [J]. Medical and Biological Engineering and Computing,1980,18(1):27-32.
    [92]Shaltis P, Wood L, Reisner A, et al. Novel design for a wearable, rapidly deployable, wireless noninvasive triage sensor[C]. Engineering in Medicine and Biology Society,2005. IEEE-EMBS 2005.27th Annual International Conference of the. IEEE,2006:3567-3570.
    [93]Yang B H, Rhee S. Development of the ring sensor for healthcare automation[J]. Robotics and Autonomous Systems,2000,30(3):273-281.
    [94]Matsushita K, Aoki K, Kakuta N, et al. Fundamental study of reflection pulse oximetry[J]. Optical review,2003,10(5):482-487.
    [95]Shi P, Peris V A, Echiadis A, et al. Non-contact reflection photoplethysmography towards effective human physiological monitoring[J]. J. Med. Biol. Eng,2010,30(3): 161-167.
    [96]Yoshiya I, Shimada Y. Non-invasive spectrophotometric estimation of arterial oxygen saturation[J]. Noninvasive physiological measurements,1983,2:251-286.
    [97]Mannheimer P D, Cascini J R, Fein M E, et al. Wavelength selection for low-saturation pulse oximetry[J]. Biomedical Engineering, IEEE Transactions on, 1997,44(3):148-158.
    [98]Silva S M L, Castilla M L D, Martin J P S. Near-infrared transmittance pulse oximetry with laser diodes[J]. Journal of Biomedical Optics,2003,8(3):525-533.
    [99]冯奇.基于MSP430超低功耗处理器的监护仪脉搏血氧模块[J].中国仪器仪表,2006,3:78-81.
    [100]Shepherd A P, Kiel J W, Riedel G L. Evaluation of light-emitting diodes for whole blood oximetry [J]. Biomedical Engineering, IEEE Transactions on,1984 (11): 723-725.
    [101]Lopez-Silva S M, Silveira J P, Dotor M L, et al. Transmittance photoplethysmography with near-infrared laser diodes in intra-peritoneal organs [J]. Physiological measurement,2006,27(10):1033.
    [102]Bradley S E, Ingelfinger F J, Bradley G P, et al. The estimation of hepatic blood flow in man[J]. Journal of Clinical Investigation,1945,24(6):890.
    [103]Heymann M A, Payne B D, Hoffman J I E, et al. Blood flow measurements with radionuclide-labeled particles[J]. Progress in cardiovascular diseases,1977,20(1): 55-79.
    [104]Riva C, Ross B, Benedek G B. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries[J]. Investigative Ophthalmology & Visual Science, 1972,11(11):936-944.
    [105]Scalise L, de Mul F F M, Steenbergen W, et al. Recent advances in self-mixing laser-Doppler velocimetry:use as an in-vivo blood flow meter[C]. BiOS 2000 The International Symposium on Biomedical Optics. International Society for Optics and Photonics,2000:95-104.
    [106]Fujii H, Nohira K, Yamamoto Y, et al. Evaluation of blood flow by laser speckle image sensing. Part 1[J]. Applied Optics,1987,26(24):5321-5325.
    [107]Wang Y, Bower B A, Izatt J A, et al. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography [J]. Journal of biomedical optics,2007,12(4):041215-041215-8.
    [108]Higurashi E, Sawada R, Ito T. An integrated laser blood flowmeter[J]. Journal of lightwave technology,2003,21(3):591.
    [109]Stern M D. In vivo evaluation of microcirculation by coherent light scattering [J]. 1975.
    [110]Bonner R, Nossal R. Model for laser Doppler measurements of blood flow in tissue[J]. Applied optics,1981,20(12):2097-2107.
    [111]易金燕.两种血糖测定方法差异性比较[J].护理研究,2011,25(10).
    [112]St John A, Davis W A, Price C P, et al. The value of self-monitoring of blood glucose:a review of recent evidence[J]. Journal of Diabetes and its Complications, 2010,24(2):129-141.
    [113]Krinsley J, Bochicchio K, Calentine C, et al. Glucose measurement of intensive care unit patient plasma samples using a fixed-wavelength mid-infrared spectroscopy system[J]. Journal of diabetes science and technology,2012,6(2):294.
    [114]Esenaliev R O, Larin K V, Larina I V, et al. Noninvasive monitoring of glucose concentration with optical coherence tomography[J]. Optics Letters,2001,26(13): 992-994.
    [115]Christison G B, MacKenzie H A. Laser photoacoustic determination of physiological glucose concentrations in human whole blood[J]. Medical and Biological Engineering and Computing,1993,31(3):284-290.
    [116]Cameron B D, Cote G L. Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach[J]. Biomedical Engineering, IEEE Transactions on, 1997,44(12):1221-1227.
    [117]Nikawa Y, Someya D. Application of millimeter waves to measure blood sugar level[C]. Microwave Conference,2001. APMC 2001.2001 Asia-Pacific. IEEE,2001, 3:1303-1306.
    [118]Andreescu S, Luck L A. Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles:a glucose biosensor application[J]. Analytical biochemistry,2008,375(2):282-290.
    [119]Kim Y J, Yoon G. Prediction of glucose in whole blood by near-infrared spectroscopy:influence of wavelength region, preprocessing, and hemoglobin concentration[J]. Journal of biomedical optics,2006,11(4):041128-041128-7.
    [120]Acosta G M, Henderson J R, Haj N A A, et al. Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy:U.S. Patent 7,787,924[P].2010-8-31.
    [121]Rawer R, Stork W, Kreiner C F. Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye[J]. Graefe's Archive for Clinical and Experimental Ophthalmology,2004,242(12):1017-1023.
    [122]Malik B H, Cote G L. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring[J]. Journal of biomedical optics,2010,15(1): 017002-017002-6.
    [123]Berger A J, Itzkan I, Feld M S. Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,1997,53(2):287-292.
    [124]Cheong W F, Prahl S A, Welch A J. A review of the optical properties of biological tissues[J]. Quantum Electronics, IEEE Journal of,1990,26(12): 2166-2185.
    [125]王德昌.人体皮肤组织学彩色图谱[J].新闻出版导刊,2003(10):49-49.
    [126]http://www.naturalrussia.com/natural/skin/structure.html.
    [127]Huber E, Frost M. Light scattering by small particles[J]. Aqua,1998,47:87-94.
    [128]Kohl M, Cope M, Essenpreis M, et al. Influence of glucose concentration on light scattering in tissue-simulating phantoms[J]. Optics Letters,1994,19(24): 2170-2172.
    [129]Schmitt J M, Knuttel A, Bonner R F. Measurement of optical properties of biological tissues by low-coherence reflectometry[J]. Applied Optics,1993,32(30): 6032-6042.
    [130]Chance B, Leigh J S, Miyake H, et al. Comparison of time-resolved and-unresolved measurements of deoxyhemoglobin in brain[J]. Proceedings of the National Academy of Sciences,1988,85(14):4971-4975.
    [131]Stove A G. Linear FMCW radar techniques[C]. IEE Proceedings F (Radar and Signal Processing). IET Digital Library,1992,139(5):343-350.
    [132]Haberland U H P, Blazek V, Schmitt H J. Chirp optical coherence tomography of layered scattering media[J]. Journal of Biomedical Optics,1998,3(3):259-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700