用户名: 密码: 验证码:
三种腹毛目纤毛虫射出胞器的显微、亚显微结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在原生动物纤毛虫中,细胞表膜或表膜附近具有一类由膜性囊泡围着的、遇刺激时能迅速发射其内含物的特殊细胞器,即射出胞器。研究表明,在不同类纤毛虫中,射出胞器在细胞生命活动中行使防御、攻击、捕食等不同的功能。目前,对纤毛虫射出胞器的研究尚局限于较低等的类群,例如对草履虫的刺丝泡射出胞器和四膜虫的黏液泡射出胞器的了解较深入;对于较高等的类群,例如对形成明显背、腹皮层及具有纤毛结构分化的腹毛目纤毛虫其射出胞器则知之不多且仅涉及极少数种类。深入观察并阐明这类胞器的起源与发生、结构与定位、射出机制与功能,对进一步认识原生动物细胞内胞器结构的多样性与复杂性、胞器的形成与遗传调控机理,以及细胞与环境的相互作用关系等问题具有重要学术意义。
     本文应用微分干涉相差显微术、蛋白银标记技术、扫描电镜术、透射电镜术以及酶细胞化学技术,以尾柱虫科(Urostylidae)念珠异列虫(Anteholosticha monilata)、尖毛虫科(Oxytrichidae)颗粒尖毛虫(Oxytricha granulifera)和印度原毛虫(Architricha indica)为材料,在显微、亚显微水平上共同显示了不同类型射出胞器的结构与特点。其中在念珠异列虫中观察到类刺丝泡射出胞器,在颗粒尖毛虫观察到黏液泡射出胞器,在印度原毛虫观察到“分泌型”射出胞器,所得结果总结如下:
     1念珠异列虫的类剌丝泡射出胞器
     (1)胞器形态与定位射出胞器长杆状,结构由不同电子密度片层的体部、贯穿整个胞器的中央轴杆部和多层膜的帽部组成,在营养期细胞表膜下大量成列分布,而在包囊细胞中分布较少。遇外界刺激时,该胞器突破表膜射出,其射出结构呈“金针菇”状,由一个球形头部和一个细长杆部组成。
     (2)胞器起源与功能射出胞器由产生至成熟的过程中,由细胞质深处单层膜包裹的小囊泡,经历了纤维物质的聚集、内外片层的分化、致密轴杆的出现及帽部结构的形成等阶段,最终成熟定位到细胞表膜下。据结果认为,念珠异列虫的射出胞器是由高尔基体活动产生的小囊泡发育而来。本文纤毛虫所制备的电镜标本均不可避免地出现胞器射出结构,说明射出胞器具有应激或防御功能;在口区及其附近位置未见胞器的射出结构,推断胞器在细胞摄食过程中未发挥功能;在包囊细胞中,仅在自噬泡内发现一个或几个消化中的射出胞器,说明射出胞器在特殊生理条件下,可能作为细胞内利用自身物质提供能量的来源之一。
     (3)与其他刺丝泡类胞器的比较与草履虫的刺丝泡比较,尽管念珠异列虫的射出胞器在细胞内的发生及胞器成熟时的形态与定位有相似之处,但草履虫的刺丝泡不太敏感,念珠异列虫的射出胞器则十分敏感,其胞器在实验过程中不可避免地发生应激反应,发射其内含物;草履虫的刺丝泡射出刺丝内含物,念珠异列虫的射出胞器则射出金针菇样内含物。与伪尾柱虫的射出胞器相比较,念珠异列虫的射出胞器在细胞内的形态及胞器射出物的形态均有相似之处。据此,将念珠异列虫的射出胞器作为一种类刺丝泡射出胞器,并认为在亲缘关系较近的纤毛虫中,射出胞器结构的分化具有相似的特征。
     2颗粒尖毛虫的黏液泡射出胞器
     (1)胞器形态与定位黏液泡近球形,外围一层膜结构,内含高电子密度物质,其外周有刺突或丝状结构,前端有致密的纤维状物质。该结构锚定在表膜下,在细胞质深部较少观察到。射出前,其前端的致密纤维物与表膜融合,射出过程中有微丝发射行为,部分内含物被保留在细胞外表面,粗糙不光滑,有时可见其间有丝状结构相连。
     (2)胞器起源与功能由于颗粒尖毛虫细胞核附近有大量粗细相近但长度不一的内质网结构,推测黏液泡的发生可能与内质网有关。该类纤毛虫是一种土壤生纤毛虫,在不良条件下极易形成包囊,黏液泡在营养期细胞中大量存在,发射后其射出物在细胞皮层表面为不定形的黏液类物质,而在包囊细胞的皮层表面却未观察到该结构的存在。由此认为,胞器的分泌物可能与包囊壁的形成有关,同时对表膜的更新有物质贡献作用。
     (3)与其他黏液泡类胞器的比较颗粒尖毛虫的黏液泡外围膜结构,内含晶状物质,遇刺激后能够发射泡内物质,这与低等纤毛虫四膜虫和腹毛类纤毛虫大尾柱虫的黏液泡有相似之处。但颗粒尖毛虫的黏液泡近球形,与四膜虫长椭球形的黏液泡和大尾柱虫可分为头、体、尾三部分的黏液泡不同;胞器前端有致密纤维物锚定在表膜下,其外围有刺突或丝状结构,这与其他黏液泡外围一层平滑的膜不一样;胞器在射出过程中有微丝发射行为,这种现象在其他黏液泡射出时并未观察到。
     3印度原毛虫的“分泌型”射出胞器
     (1)胞器形态与定位射出胞器长椭球形,在细胞表膜下成列分布。其前端1/4处无结构物质,形成凹陷状小窝,其余部分则充满了高电子密度物质。遇外界刺激时,前端与表膜融合,分泌物呈“杯状”,可区分为具小窝的头部、略膨大的体部和稍尖的尾部三部分。
     (2)胞器起源与发生射出胞器发生早期,在细胞质深部内质网附近产生各种类型的小囊泡,且小囊泡的膜内外均呈现葡糖糖-6-磷酶反应颗粒活性;胞器成熟过程中逐渐向表膜迁移,其囊泡内包裹的纤维状物质不断聚集,葡糖糖-6-磷酶反应颗粒主要集中在囊泡的外层区域,此后泡由球形变为椭球形后定位于表膜下。据结果认为,印度原毛虫的射出胞器,可能起源于内质网的膜性囊泡。
     (3)胞器射出机制与功能胞器射出前,泡外层膜与泡内结构脱离,形成较大的空隙,此后其前端膜与表膜融合,泡内结构从泡、膜融合处的缺口“射出”或者排出,胞器“射出”物几乎原封不动地残留在细胞表面,呈“杯状”的形态。胞器“射出”过程可能与细胞行使某种应激或防御功能有关,胞器“射出”时细胞内线粒体大量聚集,结果表明胞器的活动不仅对促进细胞内膜结构的更新有作用,并与线粒体的功能活动相联系。
     (4)与其他类射出胞器的比较印度原毛虫的射出胞器明显区别于目前已报道的类型:胞器在发生过程中泡内纤维状物质是从泡外周向中心积累的;在射出前,胞器的膜结构先与内含物脱离,其前端膜再与表膜融合;在“射出”过程中,泡内结构似乎是逐渐或缓慢地排出的,结果使射出物几乎原封不动地残留在细胞表面,对这一过程与其说是射出的过程,还不如说是分泌的过程。由此认为,印度原毛虫的射出胞器是一种“分泌型”射出胞器,这是未报道的又一类射出胞器。
     4总结
     本文应用显微和亚显微方法,显示并探索了三种腹毛类纤毛虫射出胞器的形态与定位、起源与发生、射出机制与功能;比较了念珠异列虫射出胞器与草履虫刺丝泡及伪尾柱虫射出胞器的异同,将念珠异列虫的射出胞器作为类刺丝泡射出胞器;通过将颗粒尖毛虫的黏液泡与四膜虫、大尾柱虫的黏液泡的比较,提出了颗粒尖毛虫的黏液泡不同于其他纤毛虫黏液泡的特征;通过对印度原毛虫射出胞器的射出过程和射出物的观察,认为印度原毛虫的射出胞器是一种“分泌型”射出胞器。所得结果,对深入认识腹毛类纤毛虫射出胞器这类特殊细胞器提供了形态学资料,并对进一步认识及阐明原生动物细胞的结构、结构形成与进化、结构功能与细胞调控等提供了基础资料。
Extrusomes are membrane-bound peculiar organelles in ciliates of protists and generally found in their cortical cytoplasm or just beneath the pellicle. They are considered to play an important role in the life activity of different kinds of ciliates, such as defensive, offensive and predation by discharging their internal content to the outside of the cell in response to stimulus. The previous researches mainly focused on some extrusomes of lower forms of ciliates, particularly trichocyst extrusomes in Paramecium and mucocyst extrusomes in Tetrahymena. To date, the research data are very limited in the hypotrichous ciliates showing differentiation of the dorsoventral cortex and functional ciliature. To study the origin and morphogenesis, morphology and localization, extrusion mechanism and functions of extrusomes is of great academic significance for the further understanding the diversity and complexity, the genetics and regulation mechanism of the organelles in protozoa cells, and the interaction relationship between the cells and the external environment.
     By using differential interference contrast microscopy, protargol staining, scanning and transmission electron microscopy and enzymo-cytochemistry, the present paper demonstrates the different types of extrusomes at microscopic and submicroscopic level:trichocyst-like extrusomes in Anteholosticha monilata of Urostylidae, mucocyst extrusomes in Oxytricha granulifera of Oxytrichidae and excretion extrusomes in Architricha indica of Oxytrichidae. The results are as follows:
     1Trichocyst-like extrusomes in Anteholosticha monilata
     (1) Morphology and localization Extrusomes are long rod-shaped and consist of three parts: a body of stratiform structures of uneven electron density, an elongated shaft located at the center of the body and a cap including multilayer membrane-structure. A great number of extrusomes are found to arrange in rows just beneath the pellicle of vegetative cells but less in cyst. The organelles break through the pellicle and discharge their internal substances when suffered from external stimulus. The extruded structures are needle mushroom shaped including a spherical head and a long rod.
     (2) Origin and function During the process of maturation, small vesicles undergo the collection of the filamentous materials, the differentiation of inner and outer layers, the appearance of dense shaft, the formation of cap structure and finally positioned in their functional areas. So these organelles may originate from membrane-limited vesicle related to Golgi apparatus. The present study reveals that the extrusomes in Anteholosticha monilata discharge inevitably during the experimental process, which suggests the organelles are involved in defense against chemical stimulus; however, no extrusomes are found near the oral region, indicating that the organelles do not play a role in the process of prey capture. The extrusomes are digested inside autophagic vacuole of cyst, suggesting the organelles may provide energy as material in the special physiological conditions.
     (3) Compared with trichocysts extrusomes Although the extrusomes in Anteholosticha monilata have similarities in morphogenesis, morphology and localization with trichocysts in Paramecium, the extrusomes are sensitive to external stimulus and discharge inevitably lots of mushroom-shaped structure while trichocysts are insensitive and eject needle-shaped inclusion. In addition, these characteristics are consistent with the trichocysts-like extrusomes of Urostylidae ciliates. The results show that the extrusomes in Anteholosticha monilata are identified as trichocysts-like extrusomes and their structure may have similar differentiation characteristics in the close relationship of ciliates.
     2Mucocyst extrusomes in Oxytricha granulifera
     (1) Morphology and localization The mature extrusomes are suborbicular vesicles and arrange in rows beneath the pellicle. These organelles are surrounded with a plasma membrane with spike or filament structure and containing high electron dense materials. When suffered from the external stimulus, the inclusions of mucocyst are extruded and stay outside of the cell surface. The structure of the ejection seems to be not smooth and some filamentous structures are often found.
     (2) Origin and function Due to lots of similar thickness but different length of endoplasmic reticulum structure distribute around the membrane of nuclear, we speculate that the formation of these organelles is connection with endoplasmic reticulum. Oxytricha granulifera is a kind of soil ciliate, which will becomes cyst easily under adverse conditions. The extruded structure are often found on the vegetative cell surface, but not on the cyst surface, which suggests the extruded structure is beneficial to the formation of the cyst wall and contributes to the pellicle retrieval or renewal.
     (3) Compared with reported mucocyst extrusomes Mucocyst of Oxytricha granulifera, which are membrane-bound vesicles and filled with high election dense materials and can discharge their content when suffered from stimulus, is similar to mucocyst of lower formers of ciliates Tetrahymena and hypotrichous ciliates Urostyla grandis. However, the mucocyst in Oxytricha granulifera are suborbicular with spike or filament structure, which is different from the oval shaped mucocyst in Tetrahymena and from mucocyst Urostyla grandis which has three recognizable parts: head body and tail. In addition, the extrusomes in Oxytricha granulifera have the phenomenon of microfilament occurrence during ejection while the phenomenon is not to be observed in reported mucocyst during the process.
     3Excretion extrusomes in Architricha indica
     (1) Morphology and localization The mature extrusomes are ellipsoidal vesicles and arrange in rows beneath the pellicle. Two parts can be recognized according to its internal structure:a spherical cavity possibly containing structureless substance, occupies about1/4of the extrusomes volume; while the rest part is full of different electron dense materials. When suffered from the external stimulus, the extrusomes are extruded and present a cyathiform-shaped structure including a head with a cavity, a slightly swollen body and a pointed tail.
     (2) Origin and morphogenesis The observation showed small vesicles are closely bounded up with the endoplasmic reticulum and developing extrusomes migrate to the cell pellicle. Moreover, the results reveal that glucose-6-phosphatase reactive granules are found not only in the endoplasmic reticulum and its nearby vesicles, but in those developing extrusomes in the cytoplasm. We can speculate that the extrusomes of Architricha indica might originate from endoplasmic reticulum.
     (3) Extrusion mechanism and function Before discharge, the extrusomes expand gradually to separate its membrane from internal content forming a lager space, then the membrane fuse with the pellicle and the internal content break through the pellicle and eject out. During ejection, the entire internal content of extrusomes has not obviously morphological change and the extruded structures of extrusomes are cyathiform and remain outside of the cell surface intactly. The process of ejection of extrusomes in Architricha indica may perform stress response or defensive function, which associates with the activity of mitochondria and contributes to the structure of membrane retrieval or renewal.
     (4) Compared with reported extrusomes The extrusomes of Architricha indica clearly differ from that of previously reported extrusomes in other ciliates. In their morphogenetic processes, the filamentous substances in vesicles cluster gradually from outer to center area. Before discharge, the extrusomes expand gradually to separate its membrane from internal content and then the membrane fuse with the pellicle. After extrusion, the extruded structure remain outside of the cell surface intactly appear not to "eject" but "secrete" gradually. Therefore, the extrusomes in Architricha indica are excretion extrusomes and are a new type of extrusomes without report in ciliates.
     4Conclusion
     By using the microscopic and submicroscopic methods, the present paper observed and explored the morphology and localization, origin and morphogenesis, extrusion mechanism and functions of different extrusomes in three kinds of hypotrichous ciliate. Based on the comparison of difference and similarities of extrusomes between Anteholosticha monilata and Paramecium and Pseudourostyla ciliates, the extrusomes in Anteholosticha monilata are identified as trichocysts-like extrusomes. The mucocyst extrusomes in Oxytricha granulifera have some obvious characteristics distinguishing from that of Tetrahymena and Urostyla grandis. The extrusomes in Architricha indica are excretion extrusomes by ejected process and extruded structure observation. The present paper supplies the morphological data in detail for the investigation on extrusomes in hypotrichous ciliates. Meanwhile, the results also provide basic information for the further understanding the structure, formation, evolution and regulation of protozoa cells.
引文
顾福康.1991.原生动物学概论.北京:高等教育出版社.1-69.
    顾福康,倪兵.1993.原生动物扫描电镜样品制备方法探讨.电子显微学报.12:525-529.
    顾福康,倪兵.1995.包囊游仆虫休眠包囊的超微结构研究.实验生物学报.27:163-171.
    顾福康,倪兵,季玲妹,隋淑光.1999.魏氏拟尾柱虫休眠包囊及其细胞超微结构的观察.动物学研究.20:406-410.
    沈韫芬.1999.原生动物学.北京:科学出版社.41-43.
    宋微波等.1999.原生动物学专论.青岛:青岛海洋大学出版社.16-24.
    宋微波等译.2007.原生生物学.青岛:中国海洋大学出版社.200-209.
    宋碧玉,曹宏.2000.原生动物及其研究.生物学通报.1:14-16.
    宋微波,徐奎栋.1994.纤毛虫原生动物形态学的常用方法海洋科学.6:6-9.
    赵柳,尹飞,倪兵,顾福康.2007.华美游仆虫的大、小核透射电镜和生化抽提扫描电镜观察.复旦学报(自然科学版).46:965-971.
    章骏,倪兵,盛春,顾福康.2007.大尾柱虫黏液泡的超微结构观察.复旦学报(自然科学版).46:972-975.
    张小翠,翟羽佳,倪兵,顾福康.2012.纤毛虫念珠异列虫射出胞器的超微结构观察.中国细胞生物学学报.34:174-178.
    Adoutte A, de Loubresse NG, Beisson J. 1984. Proteolytic cleavage and maturation of the crystalline secretion products of Paramecium. Journal of Molecular Biology. 180:1065-1081.
    Allen RD.1967. Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. The Journal of Protozoology. 14:553-565.
    Allen RD, Hausmann K. 1976. Membrane behavior of exocytic vesicles. I. The ultrastructure of Paramecium trichocysts in freeze-fracture preparations. Journal of Ultrastructure Research. 54:224-234.
    Allman, GJ. 1855. On the occurrence among Infusoria of peculiar organs resembling thread cells. Journal of Microscopy. 3:177-179.
    Anderer R, Hausmann K. 1977. Properties and structure of isolated extrusive organelles. Journal of Ultrastructure Research. 60:21-26.
    Bannister LH. 1972. The structure of trichocysts in Paramecium caudatum. Journal of Cell Science. 11:899-929.
    Baumgartner M, Stetter KO, Foissner W. 2002. Morphological, small subunit rRNA, and physiological characterization of Trimyema minutum (Kahl, 1931), an anaerobic ciliate from submarine hydrothermal vents growing from 28 degrees C to 52 degrees C. Journal of Eukaryotic Microbiology. 49:227-238.
    Berger H, Foissner W. 1997. Cladistic relationships and generic characterization of Oxytrichid hypotrichs (Protozoa, Ciliophora). Archiv Fur Protistenkunde. 148:125-155.
    Bilinski M, Plattner H, Matt H. 1981. Secretory protein decondensation as a distinct, Ca2+-mediated event during the final steps of exocytosis in Paramecium cells. The Journal of Cell Biology. 88:179-188.
    Buonanno F, Harumoto T, Ortenzi C. 2013. The defensive function of trichocysts in Paramecium tetraurelia against metazoan predators compared with the chemical defense of two species of toxin-containing ciliates. Zoological Science. 30:255-261.
    Buonanno F, Saltalamacchia P, Miyake A. 2005. Defence function of pigmentocysts in the karyorelictid ciliate Loxodes striatus. European Journal of Protistology. 41:151-158.
    Cameron DW, Riches AG. 1995. Synthesis of stentorin. Tetrahedron Letters. 36:2331-2334.
    Chavez-Munguia B, Espinosa-Cantellano M, Castanon G, Martinez-Palomo A. 2000. Ultrastructural evidence of smooth endoplasmic reticulum and Golgi-like elements in Entamoeba histolytica and Entamoeba dispar. Archives of Medical Research. 31:S165-S 167.
    Delmonte Corrado MU, Chessa MG, Pelli P. 1996. Ultrastructural survey of mucocysts throughout the life cycle of Colpoda cuculus (Ciliophora, Colpodea). Acta Protozoologica. 35:125-129.
    Earland KA, Montagnes DJS.2002. Description of a new marine species of Askenasia Blochmann, 1895 (Ciliophora, Haptoria), with notes on its ecology. Journal of Eukaryotic Microbiology. 49:423-427.
    Fabczak H. 2000. Protozoa as model system for studies of sensory light transduction: Photophobic response in the ciliate Stentor and Blepharisma. Acta Protozoologica. 39:171-181.
    Foissner W. 1995. Tropical protozoan diversity: 80 ciliate species (Protozoa, Ciliophora) in a soil sample from a tropical dry forest of Costa Rica, with descriptions of four new genera and seven new species. Archiv Fur Protistenkunde. 145:37-79.
    Foissner W. 2000. A compilation of soil and moss ciliates (protozoa, ciliophora) from Germany, with new records and descriptions of new and insufficiently known species. European Journal of Protistology. 36:253-283.
    Foissner W. 2003. Cultellothrix velhoi gen. n., sp n., a new Spathidiid ciliate (Ciliophora:Haptorida) from a Brazilian floodplain soil. Acta protozoologica. 42:47-54.
    Foissner W, Foissner I. 1995. Fine etructure and systematic position of Enchelyomorpha vermicularis (Smith,1899) Kahl, 1930, an Anaerobic ciliate (Protozoa, Ciliophora) from domestic sewage. Acta Protozoologica. 34:21-34.
    Foissner W, Leipe D. 1995. Morphology and ecology of Siroloxophyllum utriculariae (Penard, 1922) N. G., N. Comb. (Ciliophora, Pleurostomatida) and an improved classification of pleurostomatid ciliates. Journal of Eukaryotic Microbiology. 42:476-490.
    Foissner W, Song W. 2002. Apofrontonia lametschwandtneri nov gen., nov spec., a new peniculine ciliate (Protozoa, Ciliophora) from Venezuela. European Journal of Protistology. 38:223-234.
    Grim JN. 1967. Ultrastructure of pellicular and ciliary structures of Euplotes eurystomus. The Journal of Protozoology. 14:625-633.
    Gortz HD, Kuhlmann HW, Mollenbeck M, Tiedtke A, Kusch J, Schmidt HJ, Miyake A.1999. Intra- and intercellular communication systems in ciliates. Naturwissenschaften. 86:422-434.
    Gupta R, Kamra K, Sapra GR. 2006. Morphology and cell division of the oxytrichids Architricha indica nov gen., nov sp., and Histriculus histrio (Muller,1773), Corliss, 1960 (Ciliophora, Hypotrichida). European Journal of Protistology. 42:29-48.
    Gu FK, Chen L, Ni B, Zhang XM. 2002. A comparative study on the electron microscopic enzymo-cytochemistry of Paramecium bursaria from light and dark cultures. European Journal of Protistology. 38:267-278.
    Harumoto T. 1994. The role of trichocyst discharge and backward swimming in escaping behavior of Paramecium from Dileptus margaritifer. Journal of Eukaryotic Microbiology. 41:560-564.
    Harumoto T, Miyake A, Ishikawa N, Sugibayashi R, Zenfuku K, Iio H. 1998. Chemical defense by means of pigmented extrusomes in the ciliate Blepharisma japonicum. European Journal of Protistology. 34:458-470.
    Hausmann K. 1978. Extrusive organelles in protists. International Review of Cytology. 52:197-276.
    Hausmann K, Allen RD.1976. Membrane behavior of exocytic vesicles. Ⅱ. Fate of the trichocyst membranes in Paramecium after induced trichocyst discharge. The Journal of Cell Biology. 69:313-326.
    Iwadate Y, Kikuyama M. 2001. Contribution of calcium influx on trichocyst discharge in Paramecium caudatum. Zoological Science. 18:497-504.
    Kovacs P, Muller WEG, Csaba G. 1997. A lectin-like molecule is discharged from mucocysts of Tetrahymena pyriformis in the presence of insulin. Journal of Eukaryotic Microbiology. 44:487-491.
    Kugrens P, Lee EE, Corliss JO. 1994. Ultrastructure, biogenesis, and functions of extrusive organelles in selected non-ciliate protists. Protoplasma. 181:164-190.
    Kwon CB, Shin MK. 2013. Two oxytrichid ciliates, Cyrtohymena primicirrata and Oxytricha granulifera (Ciliophora: Sporadotrichida: Oxytrichidae) Unknown from Korea. Animal Systematics Evolution and Diversity. 29:23-30.
    Marangoni R, Gobbi L, Verni F, Albertini G, Colombetti G. 1996. Pigment granules and hypericin-like fluorescence in the marine ciliate Fabrea salina. Acta Protozoologica. 35:177-182.
    Matsuoka T, Tokumori D, Kotsuki H, Ishida M, Matsushita M, Kimura S, Itoh T, Checcucci G. 2000. Analyses of structure of photoreceptor organelle and blepharismin-associated protein in unicellular eukaryote Blepharisma. Photochemistry and Photobiology. 72:709-713.
    Mikrjukov KA. 1995. Structure, function, and formation of extrusive organelles-microtoxicysts in the rhizopod Penardia cometa. Protoplasma. 188:186-191.
    Miyake A, Buonanno F, Saltalamacchia P, Masaki ME, Iio H. 2003. Chemical defence by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. European Journal of Protistology. 39:25-36.
    Miyake A, Harumoto T. 1996. Defensive function of trichocysts in Paramecium against the predatory ciliate Monodinium balbiani. European Journal of Protistology. 32:128-133.
    Miyake A, Harumoto T, Salvi B, Rivola V. 1990. Defensive function of pigment granules in Blepharisma japonicum. European Journal of Protistology. 25:310-315.
    Modeo L, Petroni G, Bonaldi M, Rosati G. 2001. Trichites of Strombidium (Ciliophora, Oligotrichida) are extrusomes. Journal of Eukaryotic Microbiology. 48:95-101.
    Modeo L, Petroni G, Rosati G, Montagnes DJS.2003. A multidisciplinary approach to describe protists: Redescriptions of Novistrombidium testaceum anigstein 1914 and Strombidium inclinatum Montagnes, Taylor, and Lynn 1990 (Ciliophora, Oligotrichia). Journal of Eukaryotic Microbiology. 50:175-189.
    Momayezi M, Habermann AW, Sokolova JJ, Kissmehl R, Plattner H. 1993. Ultrastructural and antigenic preservation of a delicate structure by cryopreparation: identification and immunogold localization during biogenesis of a secretory component (membrane-matrix connection) in Paramecium trichocysts. The Journal of Histochemistry and Cytochemistry. 1:1669-1677.
    Montagnes DJS, Humphrey E. 1998. A description of occurrence and morphology of a new species of red-water forming Strombidium (Spirotrichea, Oligotrichia). Journal of Eukaryotic Microbiology. 45:502-506.
    Morelli A, Verni F. 1996. Predator-prey interactions: Effects of the substances released by the prey Euplotes crassus (Protozoa, Ciliata) on the predator Litonotus lamella (Protozoa, Ciliata). Microbios. 87:185-198.
    Olbricht K, Plattner H, Matt H. 1984. Synchronous exocytosis in Paramecium cells. II. Intramembranous changes analysed by freeze-fracturing. Experimental Cell Research. 51:14-20.
    Orias E, Flacks M, Satir BH. 1983. Isolation and ultrastructural characterization of secretory mutants of Tetrahymena thermophila. Journal of Cell Science. 64:49-67.
    Petroni G, Spring S, Schleifer KH, Verni F, Rosati G. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proceedings of the National Academy of Sciences of the United States of America. 97:1813-1817.
    Plattner H, Miller F, Bachmann L. 1973. Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis. Journal of Cell Science. 13:687-719.
    Raikov IB.1992. Unusual extrusive organelles in karyorelictid ciliates: an argument for the ancient origin of this group. Biosystems. 28:195-201.
    Raikov IB, Kovaleva VG. 1995a. Comparative ultrastructure of the cytoplasm in species of the genus Tracheloraphis (Ciliophora: Karyorelictida) Ⅱ. Endoplasmic organelles and genesis of rhabdocysts. Archiv fur Protistenkunde. 146:1-11.
    Raikov IB, Kovaleva VG. 1995b. Comparative ultrastructure of the cytoplasm in species of the genus Tracheloraphis (Ciliophora: Karyorelictida):I. Somatic cortex. Archiv fur Protistenkunde. 145:80-93.
    Ricci N, Morelli A, Verni F. 1996. The predation of Litonotus on Euplotes: A two step cell-cell recognition process. Acta Protozoologica. 35:201-208.
    Rosati G, Modeo L. 2003. Extrusomes in ciliates:Diversification, distribution, and phylogenetic implications. Journal of Eukaryotic Microbiology. 50:383-402.
    Rosati Raffaelli G. 1970. Fine structure of Diophrys scutum (Dujardin). Archives d'anatomie Microscopique et de Morphologie Experimentale. 59:221-234.
    Ruffolo JJ, Jr. 1974. Critical point drying of protozoan cells and other biological specimens for scanning electron microscopy: apparatus and methods of specimen preparation. Transactions of the American Microscopical Society. 93:124-134.
    Satir B, Schooley C, Satir P. 1973. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. The Journal of Cell Biology. 56:153-176.
    Satir BH, Wissig SL. 1982. Alveolar sacs of Tetrahymena: ultrastructural characteristics and similarities to subsurface cisterns of muscle and nerve. Journal of Cell Science. 55:13-33.
    Shao C, Gao F, Hu X, Al-Rasheid KA, Warren A. 2011. Ontogenesis and molecular phylogeny of a new marine Urostylid ciliate, Anteholosticha petzi n. sp. (Ciliophora, Urostylida). Journal of Eukaryotic Microbiology. 58:254-265.
    Small EB, Lynn DH. 1981. A new macrosystem for the phylum Ciliophora doflein, 1901. Biosystems. 14:387-401.
    Small EB, Marszalek DS.1969. Scanning electron microscopy of fixed, frozen, and dried protozoa. Science (New York, NY). 163:1064-1065.
    Song W. 1990. Infraciliature and silverline system of the ciliate Pseudotrachelocerca trepida (Kahl,1928), nov. gen., nov. comb., and establishment of a new family, the pseudotrachelocercidae nov. fam. (Ciliophora, Haptoria). European Journal of Protistology. 26:160-166.
    Song WB, Petz W, Warren A. 2001. Morphology and morphogenesis of the poorly-known marine urostylid ciliate, Metaurostylopsis marina (Kahl, 1932) nov gen., nov comb. (Protozoa, Ciliophora, Hypotrichida). European Journal of Protistology. 37:63-76.
    Song WB, Wang M, Warren A. 2000. Redescriptions of three marine ciliates, Strombidium elegans Florentin, 1901, Strombidium sulcatum Claparede & Lachmann, 1859 and Heterostrombidium paracalkinsi Lei, Xu & Song, 1999 (Ciliophora, Oligotrichida). European Journal of Protistology. 36:327-342.
    Song WB, Wilbert N. 1997. Morphological studies on some free living ciliates (Ciliophora:Heterotrichida, Hypotrichida) from marine biotopes in Qingdao, China, with descriptions of three new species: Holosticha warreni nov spec, Tachysoma ovata nov spec and T-dragescoi nov spec. European Journal of Protistology. 33:48-62.
    Steers E, Jr., Beisson J, Marchesi VT. 1969. A structural protein extracted from the trichocyst of Paramecium aurelia. Experimental Cell Research. 57:392-396.
    Struder-Kypke MC, Wright ADG, Fokin SI, Lynn DH. 2000. Phylogenetic relationships of the Subclass Peniculia (Oligohymenophorea, Ciliophora) inferred from small subunit rRNA gene sequences. Journal of Eukaryotic Microbiology. 47:419-429.
    Sugibayashi R, Harumoto T. 2000. Defensive function of trichocysts in Paramecium tetraurelia against heterotrich ciliate Climacostomum virens. European Journal of Protistology. 36:415-422.
    Tao NB, Orlando M, Hyon JS, Gross M, Song PS.1993. A new photoreceptor molecule from stentor-coeruleus. Journal of the American Chemical Society. 115:2526-2528.
    Terazima MN, Lio H, Harumoto T. 1999. Toxic and phototoxic properties of the protozoan pigments blepharismin and oxyblepharismin. Photochemistry and Photobiology. 69:47-54.
    Tokuyasu K, Scherbaum OH. 1965. Ultrastructure of mucocysts and pellicle of Tetrahymena pyriformis. The Journal of Cell Biology. 27:67-81.
    Wesssenberg K, Antipa, G. 1970. Capture and ingestion of Paramecium by Didinium nasutum. The Journal of Protozool. 17:240-270.
    Yusa A. 1963. An electron microscope study of regeneration of trichocysts in Paramecium caudatum. The Journal of protozoology. 10:253-262.
    Zhang J, Sheng C, Tang L, Ni B, Gu FK. 2011. The ultrastructure of the extrusomes in Pseudourostyla cristata, a hypotrichous ciliated protozoan. Protoplasma. 248:475-481.
    Zhou Y, Wang Z, Zhang J, Gu FK. 2011. Ultrastructure of extrusomes in hypotrichous ciliate Pseudourostyla nova. Chinese Journal of Oceanology and Limnology. 29:103-108.
    陈灵,倪兵,顾福康.2000.魏氏拟尾柱虫休眠包囊细胞器的电镜酶细胞化学研究.动物学研究.21:199-203.
    顾福康.1991.原生动物学概论.北京:高等教育出版社.65-69.
    顾福康,倪兵.1993.原生动物扫描电镜样品制备方法探讨.电子显微学报.12:525-529.
    顾福康,倪兵.1995.包囊游仆虫休眠包囊的超微结构研究.实验生物学报.27:163-171.
    顾福康,季玲妹,倪兵,李恭楚.1997.阔口尖毛虫形成包囊期间细胞超微结构的观察.动物学报.43:227-231.
    顾福康,倪兵,杨振云,杜宝剑.2002.冠突伪尾柱虫营养期和形成包囊期间细胞的超微结构.动物学报.48:251-257.
    顾福康,倪兵,季玲妹,隋淑光.1997.魏氏拟尾柱虫休眠包囊及其细胞器超微结构的观察.动物学研究.20:406-410.
    李恭楚,顾福康,季玲妹,倪兵.1999.齿脊肾形虫休眠包囊的细胞器及其酶细胞化学的研究.中国动物科学研究.718-721.
    柳伟君,栾菊敏,俞丽丽,俞奇耀,顾福康.2009.伪红色双轴虫皮层色素颗粒和黏液泡的显微、亚显微结构观察.复旦学报(自然科学版).48:381-385.
    宋微波等译.2007.原生生物学.青岛:中国海洋大学出版社.200-209.
    章骏,倪兵,盛春,顾福康.2007.大尾柱虫黏液泡的超微结构观察.复旦学报(自然科学版).46:972-975.
    Bannister LH. 1972. The structure of trichocysts in Paramecium caudatum. Journal of Cell Science. 11:899-929.
    Buonanno F, Harumoto T, Ortenzi C. 2013. The defensive function of trichocysts in Paramecium tetraurelia against metazoan predators compared with the chemical defense of two epecies of toxin-containing ciliates. Zoological Science. 30:255-261.
    Estbve, JC.1974. Cytochimie ultrastructurale du trichocyste in situ chez Paramecium caudatum. Protistologica. 10:371-378.
    Foissner W. 1991. Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. European Journal of Protistology. 27:313-330.
    Fyda J, Kennaway G, Adamus K, Warren A. 2006. Ultrastuctural events in the predator-induced defence response of Colpidium kleini (Ciliophora: Hymenostomatia). Acta Protozoologica. 45:461-464.
    Hausmann K. 1978. Extrusive organelles in protists. International Review of Cytology. 52:197-276.
    Jurand A, Selman GG. 1969. The anatomy of Paramecium aurelia. London: Macmillan. 24-28.
    Kugrens P, Lee EE, Corliss JO.1994. Ultrastructure, biogenesis, and functions of extrusive organelles in selected non-ciliate protists. Protoplasma. 181:164-190.
    Miyake A, Buonanno F, Saltalamacchia P, Masaki ME, Iio H. 2003. Chemical defence by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. European Journal of Protistology. 9:25-36.
    Momayezi M, Habermann AW, Sokolova JJ, Kissmehl R, Plattner H. 1993. Ultrastructural and antigenic preservation of a delicate structure by cryopreparation: identification and immunogold localization during biogenesis of a secretory component (membrane-matrix connection) in Paramecium trichocysts. The Journal of Histochemistry and Cytochemistry. 41:1669-1677.
    Rosati G, Modeo L. 2003. Extrusomes in ciliates:diversification, distribution, and phylogenetic implications. Journal of Eukaryotic Microbiology. 0:383-402.
    Tokuyasu K, Scherbaum OH. 1965. Ultrastructure of mucocysts and pellicle of Tetrahymena pyriformis. The Journal of Cell Biology. 27:67-81.
    Van-Wagtendonk WG. 1974. Paramecium-a current survey. New York: American Elsevier Publishing Company. 273-275.
    Wesssenberg K, Antipa, G. 1970. Capture and ingestion of Paramecium by Didinium nasutum. The Journal of Protozool. 17:240-270.
    Wibert N, 1975. Eine verbesserte technik der protargolimpragnationfur ciliaten. Mikrokosmos. 64:171-179.
    Zhang J, Sheng C, Tang L, Ni B, Gu FK. 2011. The ultrastructure of the extrusomes in Pseudourostyla cristata, a hypotrichous ciliated protozoan. Protoplasma. 248:475-481.
    Zhou Y, Wang Z, Zhang J, Gu FK. 2011. Ultrastructure of extrusomes in hypotrichous ciliate Pseudourostyla nova. Chinese Journal of Oceanology and Limnology. 29:103-108.
    顾福康.1991.原生动物学概论.北京:高等教育出版社.65-277.
    顾福康,倪兵.1993.原生动物扫描电镜样品制备方法探讨.电子显微学报.12:525-529.
    顾福康,倪兵.1995.包囊游仆虫休眠包囊的超微结构研究.实验生物学报.27:163-171.
    顾福康,季玲妹,倪兵,李恭楚.1997.阔口尖毛虫形成包囊期间细胞超微结构的观察.动物学报.43:227-231.
    柳伟君,栾菊敏,俞丽丽,余奇耀,顾福康.2009.伪红色双轴虫皮层色素颗粒和黏液泡的显微、亚显微结构观察.复旦学报(自然科学版).48:381-385.
    章骏,倪兵,盛春,顾福康.2007.大尾柱虫黏液泡的超微结构观察.复旦学报(自然科学版).46:972-975.
    Allen RD. 1967. Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. The Journal of Protozoology. 14:553-565.
    Berger H. 1999. Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Monographiae Biologicae. 78:1-1080.
    Bolivar I, Guiard-Maffia J. 1989. Cellular localization of the serh surface antigen in Tetrahymena thermophila. Journal of Cell Science. 94:343-354.
    Chen G, Cao Z. 2005. Ecological researches on soil organisms. Journal of Soil Science. 36:259-264.
    Delmonte Corrado MU, Chessa MG, Pelli P. 1996. Ultrastructural survey of mucocysts throughout the life cycle of Colpoda cuculus (Ciliophora, Colpodea). Acta Protozoologica. 35:125-129.
    Foissner W. 1991. Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. European Journal of Protistology. 27:313-330.
    Foissner W. 1999. Notes on the soil ciliate biota (Protozoa, Ciliophora) from the Shimba Hills in Kenya (Africa):diversity and description of three new genera and ten new species. Biodiversity and Conservation. 8:319-389.
    Kovacs P, Muller WEG, Csaba G. 1997. A lectin-like molecule is discharged from mucocysts of Tetrahymena pyriformis in the presence of insulin. Journal of Eukaryotic Microbiology. 44:487-491.
    Kugrens P, Lee EE, Corliss JO. 1994. Ultrastructure, biogenesis, and functions of extrusive organelles in selected non-ciliate protists. Protoplasma. 181:164-190.
    Kwon CB, Shin MK. 2013. Two oxytrichid ciliates, Cyrtohymena primicirrata and Oxytricha granulifera (Ciliophora: Sporadotrichida: Oxytrichidae) unknown from Korea. Animal Systematics Evolution and Diversity. 29:23-30.
    Pesciotta DM, Satir BH. 1985. Effect of cerophyl growth medium on exocytosis in Tetrahymena thermophila. Journal of Cell Science. 78:23-48.
    Rosati G, Modeo L. 2003. Extrusomes in ciliates: diversification, distribution, and phylogenetic implications. Journal of Eukaryotic Microbiology. 50:383-402.
    Satir BH, Wissig SL. 1982. Alveolar sacs of Tetrahymena: ultrastructural characteristics and similarities to subsurface cisterns of muscle and nerve. Journal of Cell Science. 55:13-33.
    Schultz TW, Dumont JN, Kyte LM. 1978. Cytotoxicity of synthetic fuel products on Tetrahymena pyriformis. Ⅱ. Shale oil retort water. The Journal of Protozoology. 25:502-509.
    Tokuyasu K, Scherbaum OH. 1965. Ultrastructure of mucocysts and pellicle of Tetrahymena pyriformis. The Journal of Cell Biology. 27:67-81.
    Wibert N. 1975. Eine verbesserte technik der protargolimpragnationfur ciliaten. Mikrokosmos. 64:171-179.
    顾福康.1991.原生动物学概论.北京:高等教育出版社.65-69.
    顾福康,倪兵.1993.原生动物扫描电镜样品制备方法探讨.电子显微学报.12:525-529.
    柳伟君,栾菊敏,俞丽丽,余奇耀,顾福康.2009.伪红色双轴虫皮层色素颗粒和黏液泡的显微、亚显微结构观察.复旦学报(自然科学版).48:381-385.
    王正君,翟楠,张小翠,倪兵,顾福康.2010.原生动物细胞结构的扫描电镜标本制备方法.广东农业科学.7:163-164.
    周海英,王正君,生欣,顾福康.2008.Trichototaxis songi细胞皮层色素颗粒的显微和亚显微观察.华东师范大学学报(自然科学版).66-70.
    章骏,倪兵,盛春,顾福康.2007.大尾柱虫黏液泡的超微结构观察.复旦学报.46:972-975.
    张小翠,翟羽佳,倪兵,顾福康.2012.纤毛虫念珠异列虫射出胞器的超微结构观察.中国细胞生物学学报.34:174-178.
    Allen RD.1967. Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. The Journal of Protozoology. 14:553-565.
    Allen RD, Hausmann K. 1976. Membrane behavior of exocytic vesicles. Ⅰ. The ultrastructure of Paramecium trichocysts in freeze-fracture preparations. Journal of Ultrastructure Research. 54:224-234.
    Bannister LH. 1972. The structure of trichocysts in Paramecium caudatum. Journal of Cell Science. 11:899-929.
    Beisson J, Lefort-Tran M, Pouphile M, Rossignol M, Satir B.1976. Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains.The Journal of Cell Biology. 69:126-143.
    Buonanno F, Harumoto T, Ortenzi C. 2013. The Defensive ffunction of trichocysts in Paramecium tetraurelia against metazoan predators compared with the chemical defense of two species of toxin-containing ciliates. Zoological Science. 30:255-261.
    Foissner W, Oertel A. 2009. Morphology and ciliary pattern of some rare haptorid ciliates, with a description of the new family Kamburophryidae (Protists, Haptoria). European Journal of Protistology. 45:205-218.
    Fyda J, Kennaway G, Adamus K, Warren A. 2006. Ultrastuctural events in the predator-induced defence response of Colpidium kleini (Ciliophora: Hymenostomatia). Acta Protozoologica. 45:461-464.
    Gupta R, Kamra K, Sapra GR. 2006. Morphology and cell division of the oxytrichids Architricha indica nov gen., nov sp., and Histriculus histrio (Muller, 1773), Corliss, 1960 (Ciliophora, Hypotrichida). European Journal of Protistology. 42:29-48.
    Hausmann K. 1978. Extrusive organelles in protists. International Review of Cytology. 52:197-276.
    Hausmann K, Allen RD.1976. Membrane behavior of exocytic vesicles. II. Fate of the trichocyst membranes in Paramecium after induced trichocyst discharge. The Journal of Cell Biology. 69:313-326.
    Hausmann K, Mignot JP. 1975. Cytological studies on trichocysts. X. The compound trichocysts of Drepanomonas dentata Fresenius 1858. Protoplasma. 83:61-78.
    Kugrens P, Lee EE, Corliss JO. 1994. Ultrastructure, biogenesis, and functions of extrusive organelles in selected non-ciliate protists. Protoplasma. 181:164-190.
    Miyake A, Buonanno F, Saltalamacchia P, Masaki ME, Iio H. 2003. Chemical defence by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. European Journal of Protistology. 39:25-36.
    Rosati G, Modeo L. 2003. Extrusomes in ciliates: Diversification, distribution, and phylogenetic implications. Journal of Eukaryotic Microbiology. 0:383-402.
    Sakaguchi M, Suzaki T, Khan S, Hausmann K. 2002. Food capture by kinetocysts in the heliozoon Raphidiophrys contractilis. European Journal of Protistology. 37:453-458.
    Satir BH, Wissig SL. 1982. Alveolar sacs of Tetrahymena: ultrastructural characteristics and similarities to subsurface cisterns of muscle and nerve. Journal of Cell Science. 55:13-33.
    Tokuyasu K, Scherbaum OH. 1965. Ultrastructure of mucocysts and pellicle of Tetrahymena pyriformis. The Journal of Cell Biology. 27:67-81.
    Zhang J, Sheng C, Tang L, Ni B, Gu FK. 2011. The ultrastructure of the extrusomes in Pseudourostyla cristata, a hypotrichous ciliated protozoan. Protoplasma. 248:475-481.
    Zhou Y, Wang Z, Zhang J, Gu FK. 2011. Ultrastructure of extrusomes in hypotrichous ciliate Pseudourostyla nova. Chinese Journal of Oceanology and Limnology. 29:103-108.
    顾福康,倪兵.1995.包囊游仆虫休眠包囊的超微结构研究.实验生物学报.27:163-171.
    韩玉晟,陈玉英,吴竞酶,郭延寿,陈瑞珍,陈秀丽.1982.酶细胞化学在电子显微术中的应用.细胞生物学杂志.4:4-47.
    韩玉晟,祁小平,陈玉英.1987.葡萄糖-6-磷酸酶在大白鼠心肌细胞超微结构的定位.解剖学报.18:418-422.
    李恭楚,顾福康,季玲妹,倪兵.1999.齿脊肾形虫休眠包囊的细胞器及其酶细胞化学的研究.中国动物科学研究.718-721.
    许守民,焦明大.1994.植物细胞G6P酶活性的电镜细胞化学定位方法.电子显微学报.2:77-79.
    徐根兴,真炳攸,张留保,朱洪文.1988.电镜酶细胞化学技术及其应用.电子显微学报.3:124.
    Adoutte A, de Loubresse NG, Beisson J. 1984. Proteolytic cleavage and maturation of the crystalline secretion products of Paramecium. Journal of Molecular Biology. 180:1065-1081.
    Allen RD. 1967. Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. TheJournal of Protozoology. 14:553-565.
    Allen RD, Hausmann K. 1976. Membrane behavior of exocytic vesicles. I. The ultrastructure of Paramecium trichocysts in freeze-fracture preparations. Journal of Ultrastructure Research. 54:224-234.
    Bannister LH. 1972. The structure of trichocysts in Paramecium caudatum. Journal of Cell Science. 11:899-929.
    Beisson J, Lefort-Tran M, Pouphile M, Rossignol M, Satir B. 1976. Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. The Journal of Cell Biology. 69:126-143.
    Borgers M, Verheyen A. 1985. Enzyme cytochemistry. International Review of Cytology. 95:163-227.
    Collins T, Wilhelm JM. 1981. Post-translational cleavage of mucocyst precursors in Tetrahymena. The Journal Biological Chemistry. 256:10475-10484.
    Delgado P, Calvo P, Torres A. Encystment in the hypotrichous ciliate Paraurostyla weissei: ultrastructure and cytochemistry. The Journal of Protozoology. 34:104-110.
    Foissner W, Oertel A. 2009. Morphology and ciliary pattern of some rare haptorid ciliates, with a description of the new family Kamburophryidae (Protists, Haptoria). European Journal of Protistology. 45:205-218.
    Gu FK, Chen L, Ni B, Zhang XM. 2002. A comparative study on the electron microscopic enzymo-cytochemistry of Paramecium bursaria from light and dark cultures. European Journal of Protistology. 38:267-278.
    Gupta R, Kamra K, Sapra GR. 2006. Morphology and cell division of the oxytrichids Architricha indica nov gen., nov sp., and Histriculus histrio (Muller, 1773), Corliss, 1960 (Ciliophora, Hypotrichida). European Journal of Protistology. 42:29-48.
    Hausmann K, Allen RD.1976. Membrane behavior of exocytic vesicles. Ⅱ. Fate of the trichocyst membranes in Paramecium after induced trichocyst discharge. The Journal of Cell Biology. 69:313-326.
    Iwadate Y, Kikuyama M. 2001. Contribution of calcium influx on trichocyst discharge in Paramecium caudatum. Zoological Science. 18:497-504.
    Liang Z, Xu L. 1995. Studies on the enzyme cytochemistry of Toxoplasma gondii and the influence of artemether. Chinese Journal of Parasitology. 13:182-184.
    Momayezi M, Habermann AW, Sokolova JJ, Kissmehl R, Plattner H. 1993. Ultrastructural and antigenic preservation of a delicate structure by cryopreparation: identification and immunogold localization during biogenesis of a secretory component (membrane-matrix connection) in Paramecium trichocysts. The Journal of Histochemistry and Cytochemistry. 41:1669-1677.
    Raikov IB.1992. Unusual extrusive organelles in karyorelictid ciliates: an argument for the ancient origin of this group. Biosystems. 28:195-201.
    Rosati G, Modeo L. 2003. Extrusomes in ciliates:Diversification, distribution, and phylogenetic implications. Journal of Eukaryotic Microbiology. 0:383-402.
    Satir B, Schooley C, Satir P. 1973. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. The Journal of Cell Biology. 56:153-176.
    Satir BH, Wissig SL. 1982. Alveolar sacs of Tetrahymena: ultrastructural characteristics and similarities to subsurface cisterns of muscle and nerve. Journal of Cell Science. 55:13-33.
    Tokuyasu K, Scherbaum OH. 1965. Ultrastructure of mucocysts and pellicle of Tetrahymena pyriformis. The Journal of Sell Biology. 27:67-81.
    Yusa A. 1963. An electron microscope study on regeneration of trichocysts in Paramecium caudatum. The Journal of Protozoology. 10:253-262.
    Yusa A. 1965. Fing structure of developing and mature trichocysts in Frontonia vesiculosa. The Journal of Protozoology. 12:51-60.
    Zhang J, Sheng C, Tang L, Ni B, Gu FK. 2011. The ultrastructure of the extrusomes in Pseudourostyla cristata, a hypotrichous ciliated protozoan. Protoplasma. 248:475-481.
    Zhou Y, Wang Z, Zhang J, Gu FK. 2011. Ultrastructure of extrusomes in hypotrichous ciliate Pseudourostyla nova. Chinese Journal of Oceanology and Limnology. 29:103-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700