用户名: 密码: 验证码:
地基GPS反演大气水汽关键问题的理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究利用地基GPS反演大气水汽不仅对天气变化的预报有重要意义,而且可以促进GPS定位精度的提高,从而发挥GPS在应用方面的潜力。基于此,本文对地基GPS反演大气水汽所涉及的主要问题进行了系统的研究,整个论文的主要研究内容和创新点概括如下:
     1.概述了影响GPS反演大气水汽各主要问题的研究现状,并指出了本文的研究目标,对GPS的观测模型及估计方法进行了详细的介绍,从而为本文后续数据处理奠定基础。
     2.分析了广播星历外推卫星轨道的精度,并给出了Lagrange插值、Neville插值、Chebyshev多项式拟合和Legendre多项式拟合进行精密星历加密的方法,通过对实际精密星历数据的计算,分别从内插和拟合的阶数、计算精度、计算效率进行了比较分析,并给出了最佳阶数插值算法和拟合算法计算卫星轨道的点位误差对比图、所有卫星轨道的精度对比效果图。随后,分别以实例对卫星信号发射时刻的两种计算方法与影响卫星轨道的地球自转误差进行了探讨分析。
     3.基于TurboEdit方法对GPS观测数据进行周跳探测的特点,设计了固定弧段长度的滑动窗口拟合模型,对其中的Geometry-Free组合法进行改进,在探测出周跳后,提出利用最小二乘Chebyshev多项式拟合来修复周跳。实验结果表明:改进后的TurboEdit算法可以探测出等周的1周小周跳、等周的大周跳和连续的小周跳、大周跳,同时,最小二乘Chebyshev多项式拟合可以精确修复以上周跳对。
     4.根据双差相位观测序列在相邻历元间求差后,周跳能真实地以粗差形式反映出来的特点,在利用Chebyshev多项式拟合双差观测量时,顾及抗差估计的思想、Chebyshev多项式拟合阶数、拟合弧段长度,提出基于移动窗口的抗差Chebyshev多项式拟合算法来探测与修复周跳,应用采样间隔为60s和15s的L1频率的载波相位数据测试表明,该算法可有效的探测多历元间隔周跳及连续周跳,能对周跳进行准确的修复。
     5.针对不存在先验信息时常规GPS单历元数据处理中存在的问题,提出了一种新的GPS整周模糊度单历元算法。该算法先采用一个历元的码观测值进行最小二乘定位,求取初始模糊度,并根据解的中误差来构造模糊度原始搜索空间。再采用两种不同线性组合的扩波方法进行模糊度变换,使原模糊度的搜索空间变小。在模糊度的新搜索空间确定后,通过线性组合的逆变换求取模糊度N1及N2,并以模糊度函数法进行真值的搜索,实现单历元解算。采用基线长度不同的两组数据作为实例进行测试,试验结果表明了本文方法的可行性和正确性。
     6.针对单频GPS动态定位中常用模糊度求解方法存在的问题,提出了一种新的整周模糊度快速解算方法。该方法先通过对双差观测方程中坐标参数的系数阵进行QR分解变换以消除坐标参数,从而仅对模糊度参数建立Kalman滤波方程进行估计,然后利用排序和双Cholesky分解对滤波得到的模糊度进行降相关处理,并结合收缩模糊度搜索空间的思想来搜索固定整周模糊度。以实测的动态数据为例对该方法进行测试,其分析结果表明,该方法不但可以改善模糊度浮点解精度,而且具有良好的模糊度降相关效果,可正确有效地实现整周模糊度的快速解算。
     7.通过考虑模糊度的整数特性及相位波长与基线非参考站初始坐标误差之间的约束条件,提出了一种基于梯级递推的无模糊度基线解算方法。该方法不受周跳的影响,并且在基线求解过程中不用考虑模糊度参数。分别以单个历元和移动窗口的多历元两种求解方案验证了该方法的可行性和正确性,并且基线解算结果具有较高的精度。
     8.利用参考站坐标已知的先验信息,基于组合后的超快星历,提出了一种参考站对流层湿延迟近实时估计的三步Kalman滤波算法,该方法先利用Kalman滤波分离宽巷模糊度与伪距多路径误差,再基于电离层无关组合模型,启动Kalman滤波器进行L1模糊度与相对对流层湿延迟的分离,然后利用将正确固定的L1双差模糊度进行回代的方法,重新构建Kalman滤波器来估计准确的相对对流层湿延迟参数,通过实例验证了该方法的可行性和正确性。随后,利用该方法获取的近实时对流层湿延迟计算了相应的近实时可降水量,并与GAMIT解算的可降水量结果进行了比较分析。
The research on atmospheric water vapor inversion by ground-based GPS not only has important significance for weather forecast, but also can improve the precision of GPS positioning, so as to display potential in the application of GPS. The main problems related to atmospheric water vapor by ground-based GPS inversion were systematically researched in this thesis. The main research contents and innovation points were summarized as follows:
     1. Research status of the main problems which influence atmospheric water vapor inversion by ground GPS were outlined, and the research goals were pointed out in this thesis, the GPS observation model and estimation method were introduced in detail, so as to lay a foundation for subsequent data processing.
     2. The broadcast ephemeris extrapolation accuracy of satellite orbit was analyzed,and the methods of Lagrange interpolation, Neville interpolation, Chebyshev and Legendre polynomial fitting applied to precise ephemeris were introduced in this dissertation, through calculation of actual precision ephemeris data, the calculations of precise ephemeris in interpolating and fitting from the order, accuracy and computational efficiency were analysed comparatively, and the best order of the interpolation algorithm and the fitting algorithm of the position error comparison chart and the accuracy of all the satellite figure contrasts were given. And then, two kinds of calculation methods of satellite signal launch time and the earth's rotation error influencing satellite orbit were respectively analyzed by each numerical example.
     3. The characteristics of GPS observation data cycle slips detection based on TurboEdit algorithm, fixed length sliding window fitting model has been designed, which makes the improvement to Geometry-Free combination method, using the least square Chebyshev polynomial fitting to repair cycle slips after cycle slips detection is proposed in the dissertation. The experimental results show that the improved TurboEdit algorithm can detect equal-cycle such as one cycle of small cycle slips, big cycle slips and continuing happened small and big cycle slips, at the same time, the least square Chebyshev polynomial fitting can also repair cycle slips more precisely.
     4. Base on cycle slips act as gross errors after differencing between adjacent epoch in double difference observation sequences, when using Chebyshev polynomial fitting double difference observations, with respect to the thoughts of robust estimation, taking into account of the order of Chebyshev polynomial fitting and the length of fitting arc, cycle slips detection and correction for single-frequency GPS data based on sliding window of robust estimation Chebyshev polynomial fitting was proposed in this dissertation. L1-frequency carrier phase data with sampling interval of60seconds and15seconds were applied for the tests, test results showed that the proposed algorithm can effectively detect multi-epoch cycle slips and continuous cycle slips, and cycle slips can be accurately repaired.
     5. Aiming at the problem in the conventional GPS single epoch data processing if no priori information, A new algorithm for solving GPS integer ambiguity using single epoch data was proposed in this dissertation. It uses code observation of one epoch to calculate initial ambiguity by least square method, the original search space of ambiguity was constructed by using standard deviation of the initial position, the ambiguity transformation by using two different linear combination of expansion wave was carried out to make the original search space of ambiguity smaller. After the new search space of ambiguity was confirmed, ambiguity N1and N2were solved by means of the inverse linear transformation. Furthermore, ambiguity function method was used for the searching of the true value using single epoch data. Two sets of data for different baseline length was used for analyzing and testing, the experimental results show that the proposed method was feasible and correct.
     6. Aiming at the problem in the conventional ambiguity algorithm of single frequency GPS kinematical positioning, a new algorithm for rapid integer ambiguity resolution was proposed in this dissertation. In the algorithm, QR decomposition transform of the coordinate coefficient matrix was adopted to eliminate the coordinate parameters in the double difference observation equation, thereby the Kalman Filter equations can be established to estimate only the ambiguity parameters. Then ordering process and double Cholesky decomposition were used for the decorrelation of the filtered ambiguities and the ambiguities were fixed by using the shrinking ambiguity search space strategy. Based on the experimental data for testing the algorithm, the analysis results show that the proposed algorithm can not only improve the accuracy of ambiguity float solution, but also has a good ambiguity decorrelation capability, and it can achieve rapid integer ambiguity resolution correctly and effectively.
     7. A method of GPS baseline solution based on cascade recursive without ambiguity resolution was proposed in this dissertation, considering the integer characteristic of ambiguity and the constraint condition between wavelength of carrier phase and the initial coordinate error of baseline non-reference station. The method was immune to cycle slip and it is unnecessary to take into account the ambiguity parameters in baseline solution process.The feasibility and correctness of the proposed method were demonstrated by single epoch scheme and multiple-epoch scheme with sliding window model respectively and the baseline resolution results with higher precision can be obtained.
     8. Using the priori information of known coordinates on reference stations, based on the combination of ultrarapid ephemeris, a three-step kalman filter algorithm for near real-time estimating tropospheric wet delay on reference stations was proposed, in the algorithm, wide lane ambiguity and pseudorange multipath error were separated by using kalman filter, and then, starting the kalman filter for separating L1ambiguity and tropospheric wet delay based on ionosphere-free combination model. After that, using the correctly fixed L1ambiguity back substitution method and rebuilding the kalman filter to estimate accurate relative tropospheric wet delay parameter, the feasibility and correctness of the algorithm was verified through numerical example. Subsequently, using near real-time tropospheric wet delay result obtained by the algorithm to calculate the corresponding near real-time precipitable water vapor, which were compared and analyzed with precipitable water vapor of GAMIT solution.
引文
[1]黄丁发,熊永良,袁林果.全球定位系统(GPS)-理论与实践[M].西南交通大学出版社,2006
    [2]徐锐.GPS基线解算的质量控制与完整性监测[D].西南交通大学博士学位论文,2008
    [3]张绍成.基于GPS/GLONASS集成的CORS网络大气建模与RTK算法实现[D].武汉大学博士学位论文,2010
    [4]李征航,黄劲松.GPS测量与数据处理[M].武汉大学出版社,2005
    [5]刘大杰,施一民,过静瑶.全球定位系统(GPS)的原理与数据处理[M].同济大学出版社,1999
    [6]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].测绘出版社,1997
    [7]李征航,张小红.卫星导航定位新技术及高精度数据处理方法[M].武汉大学出版社,2009
    [8]Zhang Jihong. Investigations into the estimation of residual tropospheric delay in a GPS Network[D]. University of Calgary,1999
    [9]Schuler T. On ground-based GPS tropospheric delay estimation[D].University of Munchen,2001
    [10]李国平.地基GPS遥感大气可降水量及其在气象中的应用研究[D].西南交通大学学位博士论文,2007
    [11]魏子卿,葛茂荣.GPS相对定位的数学模型[M].测绘出版社,1998
    [12]刘伟平,郝金明,李作虎.由广播星历解算卫星位置、速度及精度分析[J].大地测量学与地球动力学,2010,30(2):144-147
    [13]Montenbruck O, Gill E, Kroes R. Rapid orbit determination of LEO satellites using IGS clock and ephemeris products[J]. GPS Solutions,2005,9(3):226-235
    [14]Lichten S.M, Bertiger W.I. Demonstration of sub-meter GPS orbit determination and 1.5 parts in 108 three-dimensional baseline accuracy[J]. Bulletin geodesique,1989,63 (2):167-189
    [15]Bertiger W.I, Lichten, S.M. A demonstration of sub-meter GPS orbit determination and high precision user positioning[A]. IEEE PLANS'88 Position Location and Navgation Symposium, Orlando, Florida, November,1988,185-194
    [16]Beutler G, Brockman E, Gurtner W, Hugentobler U, et al. Extended orbit modeling techniques at the CODE processing center of the International GPS Service for Geodynamics (IGS):theory and initial results[J]. Manuscripta Geodaetica,1994, 19(6):367-386
    [17]Dousa.J. The impact of errors in predicted GPS orbits on zenith troposphere delay estimation[J]. GPS Solution,2010,14(3):229-239
    [18]Ge M. Calais E. Haase J. Reducing satellite orbit error effects in near real-time GPS zenith tropospheric delay estimation for meteorology [J]. Geophysical Research Letters, 2000,27(3):1915-1918
    [19]Ge M. Calais E. Haase J. Automatic orbit quality control for near real-time GPS zenith tropospheric delay estimation[J]. Physics and Chemistry of the Earth(A),2001, 26(3):177-181
    [20]Springer T.A. Hugentobler U. IGS ultra rapid products for near-real-time applications [J].Physics and Chemistry of the Earth(A),2001,26(6-8):623-628
    [21]Fang P, Gendt G, Springer T, et al. IGS near real-time products and their applications[J]. GPS solutions,2001,4(4):2-8
    [22]Warren D.L.M., Raquet J.F. Broadcast vs. Precise GPS ephemerides:a historical perspective[J]. GPS Solutions,2003,7(3):151-156
    [23]Schenewer M. A brief review of basic GPS orbit interpolation strategies [J]. GPS Solutions,2003,6(4):265-267
    [24]Feng Y.M., Zheng Y. Efficient interpolations to GPS orbits for precise wide area applications [J]. GPS Solutions,2005,9(4):273-282
    [25]Horemuz M, Andersson J.V. Polynomial interpolation of GPS satellite coordinates [J]. GPS solutions,2006,10(1):67-72.
    [26]刘宁,熊永良,徐韶光.内插和拟合算法应用于精密星历和钟差的比较研究[A].CPGPS 2010 Navigation and Location Services:Emerging Industry and International Exchanges, Shanghai,2010,8,237-241
    [27]洪樱,欧吉坤,彭碧波.GPS卫星精密星历和钟差三种内插方法的比较[J].武汉大学学报(信息科学版),2006,31(6):516-518
    [28]吴继忠,高俊强,李明峰.IGS精密星历和钟差插值方法的研究[J].工程勘察,2009(7):52-54
    [29]张守建,李建成等.两种IGS精密星历插值方法的比较分析[J].大地测量与地球动力学,2007,27(2):80-83
    [30]魏二虎,柴华.GPS精密星历插值方法的比较研究[J].全球定位系统,2006,(5):13-15
    [31]李明峰,江国焰,张凯.IGS精密星历内插与拟合法精度的比较[J].大地测量与地球动力学,2008,28(2):77-80
    [32]冯炜,薛志宏,邵佳妮等.两种常用GPS星历拟合方法的精度分析[J].大地测量与地球动力学,2010,30(1):145-149
    [33]孔巧丽.用切贝雪夫多项式拟合GPSS-星精密坐标[J].测绘通报,2006,(8):1-3
    [34]Hofman-Wellenhof.B, Lichtenegger.H, Collins.J. Global Positioning System Theory and Practice, Fifth revised Edition[M], Springer Wien New York,2001
    [35]张小红,李征航,蔡昌盛.用双频GPS观测值建立小区域电离层延迟模型研究[J].武汉大学学报(信息科学版),2001,26(2):140-143
    [36]Klobuchar J.A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE Transactions On Aerospace And Electronic Systems,1987,23(3):325-331
    [37]Feess W.A, Stephens S.G. Evaluation of GPS ionospheric time-delay model[J]. IEEE Transactions on Aerospace and Electronic Systems,1987,23(3):332-338
    [38]Newby S.P., Langley R.B. Three alternative empirical ionospheric models-Are they better than GPS broadcast model[A]. Proceedings of the 6th International Geodetic Symposium on Satellite Positioning, Columbus, March,1992,240-244
    [39]Klobuchar J.A, Doherty P. H, El-Arini B. Potential ionospheric limitations to GPS wide-area augmentation system (WAAS)[J]. Navigation,1995,42(2):353-370
    [40]Camargo P.D.O, Monico J.F.G, Ferreira L.D.D. Application of ionospheric corrections in the equatorial region for L1 GPS users[J]. Earth, Planets and Space, 2000,52(11):1083-1089
    [41]Odijk D, Marel H.V.D, Song I. Precise GPS positioning by applying ionospheric corrections from an active control network[J]. GPS Solutions,2000,3(3):49-57
    [42]Otsuka Y, Ogawa T, Saito A, et al.A new method for mapping of total electron content using GPS in Japan[J]. Earth, Planets and Space,2002,54:63-70
    [43]Gao Y, Liu Z Z. Precise ionosphere modeling using regional GPS network data[J]. Journal of Global Positioning Systems,2002,1(1):18-24
    [44]蔡昌盛,李征航,张小红.利用GPS载波相位观测值建立区域电离层模型研究[J].测绘通报,2002,11:14-16
    [45]章红平,平劲松,朱文耀等.电离层延迟改正模型综述[J].天文学进展,2006,24 (1):16-26
    [46]何玉晶,杨力.基于球谐函数模型的GPS电离层延迟改正分析[J].测绘科学,2010,35(4):74-75
    [47]杨力.大气对GPS测量影响的理论与研究[D].中国人民解放军信息工程大学博士论文,2001
    [48]袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].中国科学院测量与地球物理研究所博士学位论文,2002
    [49]李成钢.网络GPS/VRS系统高精度差分改正信息生成与发布研究[D].西南交通大学博士学位论文,2007
    [50]Braasch M.S. Multipath effects[J].Global Positioning System:Theory and applications 1996,1:547-568
    [51]Ray J.K. Mitigation of GPS code and carrier phase multipath effects using a multi-antenna system[D]. University of Calgary,2000
    [52]Counselman C.C. Array antennas for DGPS[A]. Position Location and Navigation Symposium, IEEE 1998:352-357
    [53]Tranquilla J.M, Carr J.P, Al-Rizzo H.M. Analysis of a choke ring groundplane for multipath control in Global Positioning System (GPS) applications[J]. IEEE Transactions on Antennas and Propagation,1994,42(7):905-911
    [54]Garin L, van Diggelen F, Rousseau J.M. Strobe & edge correlator multipath mitigation for code[A]. Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation,1996:657-664
    [55]Garin L, Rousseau J.M. Enhanced strobe correlator multipath rejection for code & carrier [A]. Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation,1997:559-568
    [56]Veitsel V.A, Zhdanov A.V, Zhodzishsky M.I.The mitigation of multipath errors by strobe correlators in GPS/GLONASS receivers[J]. GPS Solutions,1998,2(2):38-45
    [57]Hatch R.The synergism of GPS code and carrier measurements [A]. International Geodetic Symposium on Satellite Doppler Positioning,1983,1:1213-1231
    [58]Cannon M E, Lachapelle G. Analysis of a high-performance C/A-code GPS receiver in kinematic mode[J]. Navigation,1992,39(3):285-300
    [59]Lachapelle G, Bruton A, Hemiksen J, et al. Evaluation of high performance multipath reduction technologies for Precise DGPS Shipborne Positioning [A]. Proceedings of the 1996 National Technical Meeting of The Institute of Navigation,1996,399-406
    [60]Bruton A.M. Kinematic positioning using adaptive filters and multiple DGPS receiver configurations[A]. Advances in positioning and reference frames:IAG International Symposium,1997,325-330
    [61]Kee C, Parkinson B. Calibration of multipath errors on GPS pseudorange measurements [A]. Proceedings of the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation,1994,353-362
    [62]范建军,雍少为,王飞雪.基于卡尔曼滤波的多径误差消除及双频模糊度快速估计方法研究[J].电子与信息学报,2008,30(5):1075-1079
    [63]戴吾蛟,伍锡锈,罗飞雪.一种利用增广参数Kalman滤波的GPS多路径效应处理方法[J].武汉大学学报(信息科学版),2012,37(4):423-427
    [64]袁林果,黄丁发,丁晓利等.GPS载波相位测量中的信号多路径效应影响研究[J].测绘学报,2004,33(3):210-215
    [65]周乐韬.连续运行参考站网络实时动态定位理论、算法和系统实现[D].西南交通大学博士学位论文,2007
    [66]Mader G.Dynamic positioning using GPS carrier phase measurements[J]. Manuscripta Geodaetica,1986,11:272-277
    [67]Lichtenegger H, Hofman-Wellenhof.B. GPS data preprocessing for cycle-slip detection[A]. Global Positioning System:an overview,International Association of Geodesy Symposia 102, Edinburgh, Scotland,2-8, August,1989,57-68
    [68]Bastos L, Landau H. Fixing cycle slips in dual-frequency kinematic GPS-applications using kalman filtering[J]. Manuscripta Geodaetica,1988,13(4):249-256
    [69]Blewitt G. An automatic editing algorithm for GPS data[J]. Geophysical Research Letters,1990,17(3),199-202
    [70]Lu G. Statistical quality control for kinematic GPS positioning[A]. Proceedings of the 4th International Technical Meeting of the Satellite Division of The Institute of Navigation,1992,903-914
    [71]Bisnath S.B, Langley R.B. Efficient,automated cycle-slip correction of dual-frequency kinematic GPS data[A]. Proceedings of ION GPS,2000,145-154
    [72]Kim D, Langley R.B. Instantaneous real-time cycle-slip correction of dual frequency GPS data[A]Proceedings of the international symposium on kinematic systems in geodesy, geomatics and navigation,Banff,Alberta, Canada,2001,255-264
    [73]Liu Z.Z. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver[J]. Journal of Geodesy,2011,85(3):171-183
    [74]Dai Z, Knedlik S, Loffeld O. Real-time cycle-slip detection and determination for multiple frequency GNSS[A], Proceedings of the 5th Workshop on Positioning, Navigation and Communication,2008,37-43
    [75]Wu Y, Jin S.G, Wang Z.M, et al. Cycle slip detection using multi-frequency GPS carrier phase observations:A simulation study[J]. Advances in Space Research,2010, 46(2):144-149
    [76]Xiong Y.L, Huang D.F, Shum C K. GPS phase measure cycle-slip detecting and GPS baseline resolution based on wavelet transform[J]. Survey Review,2003,37(289): 200-207
    [77]黄丁发,卓健成.GPS相位观测值周跳检测的小波分析法[J].测绘学报,1997,26(4):352-357
    [78]何海波,杨元喜.GPS动态测量连续周跳检验[J].测绘学报,1999,28(3):199-203
    [79]熊永清.GPS相位观测值中的周跳改正自动化[J].中国科学院上海天文台年刊1999,19:68-73
    [80]贾沛璋,吴连大.单频GPS周跳检测与估计算法[J].天文学报,2001,42(2):192-197
    [81]袁洪,万卫星,宁百齐等.基于三差解检测与修复GPS载波相位周跳新方法[J]测绘学报,1998,27(3):189-194
    [82]Yu Guorong, Sheng Renjun. Cycle slip detection approach based on time-relative positioning theory [J]. Journal of Southeast University (English Edition),2005,21, (3):363-368
    [83]韩保民,欧吉坤,柴艳菊.用拟准检定法探测和修复GPS数据中的粗差和周跳[J].武汉大学学报(信息科学版),2002,27(3):246-250
    [84]郑作亚,程宗颐,黄珹等.对Blewitt周跳探测与修复方法的改进[J].天文学报,2005,46(2):216-224
    [85]张成军,许其凤,李作虎.对伪距/相位组合量探测与修复周跳算法的改进[J].测绘学报,2009,38(5):402-407
    [86]苗赢,孙兆伟.星载GPS测量数据周跳探测方法研究[J].宇航学报,2009,30(2):521-525
    [87]方荣新,施闯,魏娜等.GPS数据质量控制中实时周跳探测研究[J].武汉大学学报(信息科学版),2009,34(9):1094-1097
    [88]袁玉斌,党亚民,成英燕等.非差相位数据预处理的TurboEdit算法及其改进[J]. 大地测量与地球动力学,2009,29(3),109-113
    [89]阳仁贵,欧吉坤,袁运斌.一种GPS相位周跳分段平均组合的自动修复方法[J].大地测量与地球动力学,2009,29(5),76-80
    [90]徐锐,黄丁发,周乐韬等.一种改进的双频单P码周跳探测与修复方法[J].大地测量与地球动力学,2007,27(4):67-71
    [91]宋伟伟,姚宜宾.复杂运动状态下的单频数据预处理方法研究[J].武汉大学学报(信息科学版),2009,11(34):1305-1308
    [92]刘宁,熊永良,徐韶光.利用改进的TurboEdit算法与Chebyshev多项式探测与修复周跳[J].武汉大学学报(信息科学版),2011,36(12):1500-1503
    [93]刘宁,熊永良,徐韶光.基于移动窗口的抗差Chebyshev多项式拟合探测与修复单频GPS周跳[J].大地测量与地球动力学,2011,31(2):94-98
    [94]Hatch R, Euler H.J. Comparison of several AROF kinematic techniques [A]. Proceedings of the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation,1994,363-370
    [95]Kim D, Langley R.B. GPS ambiguity resolution and validation:methodologies, trends and issues[A]. Proceedings of the 7th GNSS Workshop-International Symposium on GPS/GNSS, Seoul, Korea, Nov.30-Dec.2,2000,213-221
    [96]Cocard M, Geiger A. Systematic search for all possible widelanes[A]. Proceedings of the 6th International Geodetic Symposium on Satellite Positioning, Columbus, Ohio, 17-20 March,1992,312-318
    [97]Blewitt G. Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km[J] Journal of Geophysical Research,1989, 94(B8):10187-10203
    [98]Han S.W. Carrier phase-based long-range GPS kinematic positioning[D]. University of New South Wales,1997
    [99]Feng Y, Han S. A long-range dynamic GPS positioning system and its test results[A]. Position Location and Navigation Symposium,1996,711-718
    [100]Collins J P. An overview of GPS inter-frequency carrier phase combinations[J]. Unpublished paper, retrieved May,1999, (Available on-line at:http://gauss.gge.unb.ca /p apers.pdf/L 1 L2combinations. collins.pdf)
    [101]Sjoberg L.E.A new method for GPS phase base ambiguity resolution by combined phase and code observables[J]. Survey Review,1998,34(268):363-372
    [102]Vollath U, Birnbach S, Landau H,et al. Analysis of three-carrier ambiguity resolution (TCAR) technique for precise relative positioning in GNSS[A]. Proceedings of ION GPS,1998,417-426
    [103]Jung J, Enge P,Pervan B.Optimization of cascade integer resolution with three civil GPS frequencies[J]. Proceedings of ION GPS, Salt Lake City,2000,2191-2200
    [104]Horemuz M, Sjoberg L.E. Rapid GPS ambiguity resolution for short and long baselines[J]. Journal of Geodesy,2002,76(6-7):381-391
    [105]Odijk D, Teunissen P.J.G, Tiberius C. Triple-frequency ionosphere-free phase combinations for ambiguity resolution [A]. Proceedings of the European Navigation Conference, Copenhagen, Denmark,2002,27-30
    [106]王新洲,花向红,邱蕾.GPS变形监测中整周模糊度解算的新方法[J].武汉大学学报(信息科学版),2007,32(1):24-26
    [107]邱蕾,花向红等.GPS短基线整周模糊度的直接解法[J].武汉大学学报‘信息科学版,2009,34(1):97-99
    [108]唐卫明,刘经南,施闯等.三步法确定网络RTK基准站双差模糊度[J].武汉大学学报(信息科学版),2007,32(4):305-308
    [109]范建军,王飞雪.一种短基线GNSS的三频模糊度解算(TCAR)方法[J].测绘学报,2007,36(1):43-49
    [110]Counselman C.C, Gourevitch S.A.Miniature interferometer terminals for earth surveying:ambiguity and multipath with Global Positioning System[J]. IEEE Transactions on Geoscience and Remote Sensing,1981, GE-19(4):244-252
    [111]Remondi B W. Pseudo-kinematic GPS results using the ambiguity function method[J]. Journal of The Institute of Navigation,1989,38(1):17-36
    [112]Han S, Rizos C. Improving the computational efficiency of the ambiguity function algorithm[J]. Journal of Geodesy,1996,70(6):330-341
    [113]Mader G.L. Ambiguity function techniques for GPS phase initialization and kinematic solutions[A]. Proceedings of 2nd International Symposium on Precise Positioning with the Global Positioning System,The Canadian Institute of Surveying and Mapping, Ottawa,1990,1234-1247
    [114]Mader G.L.Rapid static and kinematic Global Positioning System solutions using the ambiguity function technique[J]. Journal of Geophysical Research,1992,97(B3): 3271-3283
    [115]Cellmer S, Wielgosz P, Rzepecka Z. Modified ambiguity function approach for GPS carrier phase positioning[J]. Journal of Geodesy,2010,84(4):267-275
    [116]熊永良,黄丁发,张献洲.一种可靠的含约束条件的GPS变形监测单历元求解算法[J].武汉大学学报(信息科学版),2001,26(1):51-57
    [117]喻国荣.单历元模糊度解算问题[J].测绘通报,2003,11:6-7
    [118]吴万清,宁龙梅,朱才连.一种单频单历元GPS整周模糊度的解算方法[J].武汉大学学报(信息科学版),2005,30(6):497-501
    [119]孔令杰,党星海,王利等.一种短基线单历元模糊度解算方法研究[J].工程勘察,2012.1:49-52
    [120]Hatch R. Instantaneous ambiguity resolution[A]. Proceedings of KIS'90, Banff, Canada,10-13 September,1990,299-308
    [121]Frei E, Beutler G. Rapid static positioning based on the fast ambiguity resolution approach "FARA":theory and first results[J]. Manuscripta Geodaetica,1990,15(4): 325-356
    [122]Euler H.J, Landau H.Fast GPS ambiguity resolution on-the-fly for real-time application[A]. Proceedings of Sixth International Geodetic Symposium on Satellite Positioning, Columbus, Ohio,17-20 March,1992,650-659
    [123]Chen D, Lachapelle G. A comparison of the FASF and least-squares search algorithms for on-the-fly ambiguity resolution[J]. Journal of The Institute of Navigation,1995,42(2):371-390
    [124]Teunissen, P.J.G. A new method for fast carrier phase ambiguity estimation[A]. Position Location and Navigation Symposium, Las Vegas,April 11-15,1994,562-573
    [125]Teunissen P.J.G,Tiberius C. Integer least-squares estimation of the GPS phase ambiguities [A]. Proceedings of the International Symposium On Kinematic Systems in Geodesy, Banff, Canada, Aug,30-Sept.2,1994,221-231
    [126]Teunissen P.J.G. The invertible GPS ambiguity transformations[J]. Manuscripta Geodaetica,1995,20(6):489-497
    [127]Teunissen P.J.G.The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation [J]. Journal of Geodesy,1995,70(1-2):65-82
    [128]Teunissen P.J.G, De Jonge P.J,Tiberius C.The least-squares ambiguity decorrelation adjustment:its performance on short GPS baselines and short observation spans[J]. Journal of Geodesy,1997,71(10):589-602
    [129]Park C, Kim Ⅰ, Lee J.G, et al.Efficient ambiguity resolution using constraint equation [A]. Position Location and Navigation Symposium, Atlanta, Georgia,1996,277-284
    [130]Kim D, Langley R.B. An optimized least-squares technique for improving ambiguity resolution and computational efficiency[A]. Proceedings of ION GPS, Nashville, Tennessee,14-17 September,1999,1579-1588
    [131]Kim D, Langley R.B. A search space optimization technique for improving ambiguity resolution and computational efficiency[J]. Earth,Planets and Space,2000,52(10): 807-812
    [132]Xu P.L. Random simulation and GPS decorrelation[J]. Journal of Geodesy,2001, 75(7/8):408-423
    [133]Chang X.W, Yang X, Zhou T. MLAMBDA:A Modified LAMBDA Method for Integer Least-Squares Estimation[J]. Journal of Geodesy,2005,79(9):552-565
    [134]熊永良,黄丁发,张献洲等.基于整数可逆模糊度变换和概率计算的GPS动态数据处理快速算法[J].测绘学报,2002,31(3):211-216
    [135]Chen Shuxin,Wang Yongsheng, Deng Yan. A Rapid Algorithm for GPS Ambiguity Decorrelation[A].The IEEE 5th International Conference on Intelligent Transportation Systems, Singapore,3-6 September,2002,904-909
    [136]陈树新,王永生.一种消除GPS模糊度相关性的新算法[J].航空学报,2002,23(6):542-546
    [137]韩保民.一种改进的白化滤波求解模糊度算法[J].煤炭学报,2005,30(1):133-136
    [138]韩保民,曲国庆.基于TIKHONOV正则化的白化滤波快速解算模糊度方法[J].煤炭学报,2006,31(5):589-593
    [139]黄张裕,陈苏娟.一种改进的GPS模糊度白化滤波算法[J].西南交通大学学报,2010,45(1):150-155
    [140]刘根友,朱耀仲,韩保民.GPS单历元定位的阻尼LAMBDA算法[J].武汉大学学报(信息科学版),2004,29(3):195-197
    [141]刘根友,朱耀仲,周蓉生.GPS单历元定位新算法用于滑坡监测[J].地震学报,2005,27(4):403-408
    [142]李征航,刘万科,楼益栋等.基于双频GPS数据的单历元定向算法研究[J].武汉大学学报(信息科学版),2007,32(9):753-756
    [143]唐卫明,孙红星,刘经南.附有基线长度约束的单频数据单历元LAMBDA方法整周模糊度确定[J].武汉大学学报(信息科学版),2005,30(5):444-446
    [144]李博峰.混合整数GNSS函数模型及随机模型参数估计理论与方法[D].同济大学博士学位论文,2010
    [145]Bertiger W, Desai S.D, Haines B, et al. Single receiver phase ambiguity resolution with GPS data[J]. Journal of Geodesy,2010,84(5):327-337
    [146]Parkins A. Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm[J]. GPS solutions,2011,15(4):391-402
    [147]庞春雷,赵修斌,卢艳娥等.基于改进型UDVT分解的单频整周模糊度快速解算[J].航空学报,2012,33(1):102-109
    [148]祝会忠,刘经南,唐卫明等.长距离网络RTK基准站间整周模糊度单历元确定方法[J].测绘学报,2012,41(3):359-365
    [149]徐定杰,刘明凯,沈锋等.基于自适应遗传算法的DGPS整周模糊度快速解算[J].航空学报,2013,34(2):371-377
    [150]刘宁,熊永良,王德军等.一种新的GPS整周模糊度单历元求解算法[J].武汉大学学报(信息科学版),2013,38(3):291-294
    [151]刘宁,熊永良,冯威等.单频GPS动态定位中整周模糊度的一种快速解算方法[J]测绘学报,2013,42(2):211-217
    [152]Hopfield H.S.Two-quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of Geophysical Research,1969,74(18):4487-4499
    [153]Goad C C, Goodman L. A modified Hopfield tropospheric refraction correction model [A]. Proceedings of the Fall Annual Meeting of the American Geophysical Union, San Francisco,12-17 Dec,1974
    [154]Saastamoinen J. ontributions to the theory of atmospheric refraction[J]. Bulletin Geodesique,1973,107(1):13-34
    [155]Collins J.P, Langley R.B. A tropospheric delay model for the user of the Wide Area Augmentation System[A]. Final contract report for Nav Canada, Department of Geodesy and Geomatics Engineering Technical Report No.187, University of New Brunswick, Fredericton, N.B., Canada,1997
    [156]Leandro R.F,Santos M.C,Langley R.B.UNB neutral atmosphere models: development and performance[A]Proceedings of the 2006 National Technical Meeting of The Institute of Navigation, Monterey,18-20 January,2006,564-573
    [157]Leandro R.F. Langley R.B, Santos M.C. UNB3m_pack:a neutral atmosphere delay package for radiometric space techniques[J]. GPS Solutions,2008,12(1):65-70
    [158]Tralli D.M, Lichten S.M. Stochastic estimation of tropospheric path delays in Global Positioning System geodetic measurements [J]. Bulletin geodesique,1990,64 (2):127-159
    [159]Dodson A H, Shardlow P J, Hubbard L C M, et al. Wet tropospheric effects on precise relative GPS height determination [J]. Journal of Geodesy,1996,70(4): 188-202
    [160]Davis J.L, Herring T.A, Shapiro I.I, et al. Geodesy by radio interferometry:Effects of atmospheric modeling errors on estimates of baseline length[J]. Radio Science, 1985,20(6):1593-1607
    [161]Herring T.A. Modeling atmospheric delays in the analysis of space geodetic data[A]. Proceedings of theSymposium on Refraction of Transatmospheric Signals in Geodesy,19-22 May,1992,157-164
    [162]Niell A.E. Global mapping functions for the atmosphere delay at radio wavelengths [J]. Journal of Geophysical Research,1996,101(Bl):3227-3246
    [163]Boehm J, Schuh H. Vienna mapping functions in VLBI analyses[J]. Geophysical Research Letters,2004,31, L01603
    [164]Boehm J, Werl B, Schuh H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data[J]. Journal of Geophysical Research,2006,111, B02406
    [165]Boehm J,Niell A,Tregoning P,et al.Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters,2006,33(7), L07304
    [166]熊永良,黄丁发,丁晓利等.虚拟参考站技术中对流层误差建模方法研究[J].测绘学报,2006,35(2):118-121
    [167]殷海涛,黄丁发,熊永良等.GPS信号对流层延迟改正新模型研究[J].武汉大学学报(信息科学版),2007,32(5):454-457
    [168]李薇,袁运斌,欧吉坤等.全球对流层天顶延迟模型IGGtrop的建立与分析[J].科学通报,2012,57(15):1317-1325
    [169]葛茂荣,刘经南.GPS定位中对流层折射估计研究[J].测绘学报,1996,25(4):285-291
    [170]许华冠,程宗颐.GPS精密定位中对流层折射参数估计方法的比较分析[J].中国科学院上海天文台年刊,1997,18:95-102
    [171]王潜心,许国昌,陈正阳.利用区域GPS网进行高海拔流动站的对流层延迟量内插[J].武汉大学学报(信息科学版),2010,35(012):1405-1408
    [172]Xu G.C. GPS Theory, Algorithms and Applications, Second Edition[M]. Springer-Verlag Berlin,2007
    [173]周江文.经典误差理论与抗差估计[J].测绘学报,1989,18(2):115-120
    [174]邱卫宁,陶本藻,姚宜斌等,测量数据处理理论与方法[M].武汉大学出版社,2008,132-139
    [175]熊永良.GPS基线解算的理论与算法及其在变形监测中的应用研究[D].西南交通大学博士学位论文,2000,59-59
    [176]张小红,李征航,徐绍铨.高精度GPS形变监测的新方法及模型研究[J].武汉大学学报(信息科学版),2001,26(5):451-454
    [177]李征航,张小红,朱智勤.利用GPS进行高精度变形监测的新模型[J].测绘学报,2002,31(3):206-210
    [178]邱卫宁,陈永奇.用载波相位宽巷组合高精度确定大数值变形[J].武汉大学学报(信息科学版),2004,29(10):889-892
    [179]Han Shaowei, Rizos C. Single-epoch ambiguity resolution for real-time GPS attitude determination with aid of one-dimensional optical fiber gyro[J]. GPS Solutions,1999, 3(1):5-12
    [180]Pratt M, Burke B,Misra P. Single-epoch integer ambiguity resolution with GPS-GLONASS L1-L2 data[A]. Proceedings of ION GPS 1997, Albuquerque, NM, 30 June-2 July,1997,691-699
    [181]Ji Shengyue, Chen Wu, Zhao Chunmei, et al. Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods[J]. GPS Solutions,2007,11(4): 259-268
    [182]Mok E. Reliable Single epoch GPS processing algorithm for static deformation monitoring[A]. In Papers Presented at the Symposium on Geodesy for Geotechnical and Structural Engineering, Eisenstadt, Austria,1998,159-166
    [183]陈永奇,James Lutes.单历元GPS变形监测数据处理方法的研究[J].武汉测绘科技大学学报,1998,23(4):324-328
    [184]戴吾蛟,朱建军,丁晓利等.GPS建筑物振动变形监测中的单历元算法研究[J].武汉大学学报(信息科学版),2007,32(3):234-237
    [185]Lin S.G, Tzeng D.B. Single epoch kinematic GPS positioning technique in short baseline[J]. Journal of Surveying Engineering,2006,132(2):52-57
    [186]阳仁贵,袁运斌,欧吉坤.相位实时差分技术应用于飞行器交会对接研究[J].中 国科学:物理学,力学,天文学.2010,40(5):651-657
    [187]韩绍伟.GPS组合观测值理论及应用[J].测绘学报,1995,21(2):8-13
    [188]王振杰,欧吉坤,柳林涛.单频GPS快速定位中病态问题的解法研究[J].测绘学报,2005,34(3):196-201
    [189]喻国荣.动对动GPS相对定位系统中整周模糊度求解[J].中国铁道科学,2003,24(4):40-44
    [190]刘立龙,刘基余,李光成.单频GPS整周模糊度动态快速求解的研究[J].武汉大学学报(信息科学版),2005,30(10):885-887
    [191]Mohamed A.H, Schwarz K.P. A simple and economical algorithm for GPS ambiguity resolution on the fly using a whitening filter[J]. Navigation,1998,45(3): 221-231
    [192]De Jonge P, Tiberius C. The LAMBDA method for integer ambiguity estimation: implementation aspects[A]. Delft Geodetic Computing Center LGR-Series:12. Delft: Delft University of Technology,1996,1-49
    [193]黄张裕,刘胜男,陈苏娟.一种改进的GPS模糊度空间搜索算法[J].河海大学学报(自然科学版),2011,39(1):89-94
    [194]高成发,赵毅,万德钧.GPS载波定位中双差观测值权的合理确定[J].测绘科学,2005,30(3):28-32
    [195]陈俊勇.利用GPS反解大气水汽含量[J],测绘工程,1998,7(2):6-8
    [196]Bevis M, Businger, GPS meteorology:Remote sensing of atmospheric water vapor using the Global Positiong System[J]. Journal of Geophical Research,1993,97, 15787-15801
    [197]Bevis M. Businger S., et al. Chiswell S.R, GPS Meteorology:Mapping zentih wet delays onto precipitable water[J]. Journal of Applied Meteorology,1994,33(3): 379-386
    [198]Yang Y, Hatch R.R, Sharpe R.T.GPS multipath mitigation in measurement domain and its applications for high accuracy navigation[A]. Proceedings of the ION GNSS. Long Beach, California,2004,1124-1130
    [199]Zhang J, Lachapelle G. Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications [J]. Journal of Geodesy, 2001,75(5-6):255-266
    [200]Hu G.R, Khoo H.S, Goh P.C, et al. Development and assessment of GPS virtual reference stations for RTK positioning[J]. Journal of Geodesy,2003,77(5-6): 292-302
    [201]Dai L, Wang J, Rizos C, et al. Predicting atmospheric biases for real-time ambiguity resolution in GPS/GLONASS reference station networks[J]. Journal of Geodesy, 2003,76(11-12):617-628
    [202]Chen H Y, Rizos C, Han S. An instantaneous ambiguity resolution procedure suitable for medium-scale GPS reference station networks[J]. Survey Review,2004, 37(291):396-410
    [203]沈雪峰,高成发,潘树国.基于星型结构的虚拟参考站网络实时动态测量关键算法研究[J].测绘学报,2012,41(1):33-40
    [204]杨玲,沈云中,李博峰.GNSS基准站对流层延迟的自适应滤波算法[A].CPGPS 2010 Navigation and Location Services:Emerging Industry and International Exchanges,Shanghai,2010,8,381-385
    [205]孟领坡,吴杰.双频去相关单历元动态解算整周模糊度研究[J].国防科技大学学报,2010,32(1):34-39
    [206]徐韶光,熊永良,刘宁等.利用地基GPS获取实时可降水量[J].武汉大学学报(信息科学版),2011,36(4):407-411
    [207]罗孝文,欧吉坤.中长基线GPS网络RTK模糊度快速解算的一种新方法[J].武汉大学学报(信息科学版),2007,2:156-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700