用户名: 密码: 验证码:
新型地锚扶壁式泥石流格栅坝的理论分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国广大的山区,分布着数以万计的泥石流沟和潜在泥石流沟。每年的暴雨季节,泥石流灾害频繁发生。特别是我国西部地区,近年来泥石流灾害造成的人民生命财产损失相当严重。泥石流的防治已经成了一项刻不容缓的工作,新的泥石流防治技术有待进一步引入到工程应用中。本文结合国家科技支撑计划项目《白龙江流域滑坡泥石流工程防治技术研究与示范》,开展了泥石流防治技术方面的研究。通过现场调研和查阅资料首次提出了新型地锚扶壁式泥石流格栅坝(以下简称新型泥石流格栅坝)。这种新的泥石流防治结构,理论计算方法还不完善,工程应用实践也比较欠缺。针对新型格栅坝的特点对其进行了全面的理论分析和数值模拟研究,完成的工作和取得的成果如下:
     (1)对白龙江流域泥石流的现状及在建和在役部分防治工程开展了实地调研。分析了防治结构成败的原因,给防治工程以后的设计、施工和维护提出了建议。通过现场调研客观认识以往单一防治结构存在的弊端,避免千篇一律的使用大截面或深埋的拦挡结构,在新理念和新认识的基础上首次提出了拦排结合的新型泥石流格栅坝结构,并对其结构组成、特点和选型等相关问题进行详细介绍。
     (2)利用能量叠加和平衡原理,推导了初期和中后期新型泥石流格栅坝基础冲刷深度的计算公式。并用其建立了新型格栅坝坝下基础冲刷破坏的数学模型,分析了基础冲刷深度的可靠性。由算例计算结果可知:本文公式计算的基础冲刷深度相对较大,设计时初期冲刷对新型格栅坝基础冲刷深度的影响应给予足够的重视;当沟床物质组成和泥石流体参数等条件相同的情况下,新型格栅坝基础冲刷深度随着沟床纵坡的增大而增大,随着容重和沟床质抗压强度的增大而逐渐减小。
     (3)建立并推导了拉锚体系抗拔力和位移变形的计算公式。计算分析可知:锚墩周围土体弹性模量和锚墩尺寸增加时位移变形逐渐减小;泊松比和锚索拉力T增大时,位移变形量呈线性增长。利用ANSYS有限元分析软件对拉锚体系的位移变形做了数值模拟,结果表明:从受力性能来看,梯形锚墩能提供更大的锚固力,是一个比理想的选择。
     (4)将格栅梁简化为刚性支撑在格栅柱上的多跨连续梁,并分空库过流和满库过流两种情况,建立其力学模型并推导了计算公式;通过刚度等效和嵌固端处理将格栅柱简化为弹性支撑在拉索上的多跨连续梁,提出考虑弹性支座的内力计算方法。另外,分别考虑格栅梁柱整体协同工作和支座产生位移对新型格栅坝结构内力的影响,推导了各自内力的计算公式;新型格栅坝结构的稳定性计算分为空库过流、半库过流和满库过流三种情况,分别建立了各自的稳定性计算模型,给出了稳定性系数的计算方法。
     (5)采用大型有限元软件ANSYS模拟分析了扶壁墙约束与否和不同格栅梁柱间距对新型格栅坝结构受力性能和位移控制的影响。模拟结果表明:扶壁墙受到约束时将分担很大一部分格栅柱柱底的内力,使格栅柱的受力更加合理;为了控制新型格栅坝结构的位移,在新型格栅坝结构设计时,应适当考虑扶壁底梁和底板的埋深,使其更加符合扶壁底被约束的条件。从受力性能和控制位移的角度出发,建议格栅梁柱的间距采用5m×3m对整个新型格栅坝结构的设计是相对最优的。
     (6)根据集中质量法,建立了新型格栅坝地震动力模型和控制方程。将速度脉冲模型与随机地震地面运动模型联合起来生成近场脉冲型地震动,并以此作为激励,对近场脉冲型地震动作用下新型泥石流格栅坝的地震响应进行了分析和求解。计算结果表明:格栅坝顶部位移最大,底部最小;拉索轴力中间层最大,底层最小。采用有限元软件ANSYS对新型格栅坝结构做了模态分析和动力时程分析。分析结果表明:一阶模态和二阶模态分别为沿新型格栅坝结构长向和短向的平动;格栅梁的加速度、位移和内力峰值沿其轴线方向呈现中间大两头小的趋势。而沿格栅柱高方向三者均有放大效应,即表现为上大下小。
Tens of thousands of potential debris flow and debris flow widely distribute in the vast area of China's mountains. Every year in the heavy rain season, debris flow disasters occur frequently, especially in the west. In recent years, debris flow has caused serious loss of lives and property. Thus debris flow prevention has become an urgent task, and the new debris flow control technology is to be further introduced to engineering applications. This paper carried out a research on debris flow control technology based on "Research and Demonstration on Bailong River's Landslide and Debris Flow Control Techniques", which is a sub-project of a National Key Technology Support Program. Through on-site investigation and information collation, a new type of ground anchors buttress dam-style debris grille was first proposed. As a new debris flow control structure, its theoretical calculation method is not perfect, and the practical application is also very lacking. A comprehensive theoretical analysis and numerical simulation on the characteristics of the dam for the new grille has been carried out. The work done and the results obtained are as follows:
     (1) Field research has been done in debris area of the Bailong River, some under construction prevention project and in-service prevention project being investigated. Reason analysis of the success and failure in prevention and control structure has been carried out to instruct the future design, construction and maintenance of the prevention and control engineering. Through field research we have got an objective understanding of the disadvantages of a single control structure. Repeated use of the same large cross-section or buried retaining structures should be avoided, while a new landslides blocking exhaust grille dam structure is first proposed on the basis of the new ideas and new understanding, and a detailed introduction of its structure, characteristics and model selection is made.
     (2) The new mudslides grille dam foundation scour formula in the early and late stage is derived using energy superposition and balance principle. In employing the newly-derived formulas, we have established a new probability mathematical model of grille dam erosion and analyzed the reliability of Foundation scouring depth. We could know from the calculation:the scouring depth is relatively large according to the formula of this paper, so its early stage influence should be given enough attention in design. When ditch bed material composition and debris flow parameters under the same circumstance, new grille dam foundation ditch bed scouring depth increases with the increase of longitudinal slope gully bed; and it decreases with the increase of ditch bed material bulk density and compressive strength.
     (3) A formula concerning the anchor system pullout force and displacement deformation has been established and derived. Through calculation and analysis with the formula, it can be seen that:the anchor pier displacement and deformation decreases when anchor pier surrounding soil modulus increase in size; displacement deformation increases linearly when Poisson's ratio and cable tension T increases. ANSYS finite element software is employed to simulate the displacement and deformation of anchor system and the result manifests that trapezoid anchor pier is a relatively ideal choice for it provides greater anchoring force in terms of mechanical performance.
     (4) A mechanical model has been established and a formula has been derived on the basis of the grille beam's simplification to multi-span continuous beam rigidly propping up the grid columns, taking into account the two conditions:empty-reservoir overflowing and full-reservoir overflowing. Through the equivalent stiffness and embedment side processing the grid column is simplified to elastically supported cable multi-span continuous beam, then force calculation method considering elastic support is proposed. Besides, considering the overall work of the beam grille and displacement influence on new grille dam's structural forces, respective calculation formulas have been derived; there are three circumstances in the stability calculation of the new grille dam structure: empty-reservoir overflowing, half-reservoir overflowing and full-reservoir overflowing, with each a respective stability calculation model has been established and the computing methods of stability coefficient have been put forward.
     (5) The general finite element software ANSYS has been employed to simulate buttresses constraints and the influence of different grille beam spacing on mechanical properties and displacement control of new grille dam structure. Simulation analysis shows that:when buttress wall is restrained it will bear a large part of the internal forces of the end-column grid, which makes the grille a more reasonable force column. In order to control the displacement of the new grille dam structure, buttresses sill burying should be considered in design to make it more consistent with buttresses bottom in constrained conditions. We recommend5m×3m as grid spacing beams which is believed the optimal design from the perspective of performance and force displacement control.
     (6)A new seismic dynamic model of grille-dam and a control equation have been established in accordance with the concentrated mass method. A pulse model and a stochastic ground motion model are combined to generate near-fault ground motions. The seismic response of the new grille-dam under simulated near-fault ground motions is analyzed. The calculation shows, the maximum displacement is at the top and the smallest is in the bottom; the maximum axial force is in the middle layer, the underlying minimum. Finite element software ANSYS made modal analysis and dynamic analysis for the dam structure. The results shows the first-order and second-order modal were new grille along the dam structure and the short to long to translational; the grille beam's acceleration, displacement and peak force along the axial direction showing the trend of the big in middle and small in two sides. However, along the direction of column height the grille has amplification effects, namely, being big at the top and small at the bottom.
引文
[1]周必凡,李德基,罗德富等.泥石流防治指南[M].北京:科学出版社,1991.
    [2]马东涛,崔鹏,祁龙等.西部地区交通建设中的泥石流灾害与防治对策[J].工程地质学报,2003,11(2):180-185.
    [3]赵源,刘希林.泥石流灾害损失评价[J].中国地质灾害与防治学报,2005,(3):44-57.
    [4]罗元华.泥石流灾害的危害方式及破坏损失评价[J].中国减灾,2000,(2):38-43.
    [5]吴积善,田连权,康志成.泥石流及其综合治理[M].北京:科学出版社,1993.
    [6]西藏自治区交通科学研究所,中国科学院水利部成都山地路病害整改对策研究[R].成都:四川科学技术出版社,2002.
    [7]铁道部第三设计院.铁路设计手册(桥梁水文)[M].北京:人民铁道出版社,1965:90-232.
    [8]西藏自治区交通科学研究所,中国科学院水利部成都山地灾害与环境研究所.西藏干线公路修筑技术研究分报告.泥石流防治及预测技术研究研究报告[R].拉萨,2004.
    [9]中国科学院水利部成都山地灾害与环境研究所.中国泥石流[M].北京:商务印书馆,2000,318-321.
    [10]游勇,吴积善,程尊兰.蒋家沟下游泥石流导流堤冲决原因及防治对策[J].灾害学,2001,(2):233-237.
    [11]姚令侃.泥石流防治工程优化设计方法初探[J].中国地质灾害与防治学报,1995,6(4):171-175.
    [12]唐邦兴,章书成.泥石流研究[J].中国科学院院刊,1992,(2):119-123.
    [13]吴积善,田连权.论泥石流学[J].山地研究,1996,14(2):26-33.
    [14]王继康.泥石流防治工程技术[M].北京:中国铁道出版社,1996.
    [15]陈洪凯,唐红梅,马永泰,等.公路泥石流研究及治理[M].北京:交通出版社,2004.
    [16]中国科学院兰州冻土研究所,甘肃省交通科学研究所.甘肃泥石流[M].北京:人民交通出版社,1982.
    [17]李明.泥石流区水利工程中选线与处理整治[J].甘肃农业,2008,(2):23-34.
    [18]荆绍华,姚一江.兰州铁路局辖区内主要干线的泥石流及防治[C].泥石流学术讨论会兰州会议文集.四川科学技术出版社,1986:197-202.
    [19]崔鹏,庄建琦,等.汶川地震区震后泥石流活动特征与防治对策[J].四川大学学报(工程科学版),2010,42(5):10-18.
    [20]刘传正.汶川地震区文家沟泥石流成因模式分析[J].地质论评,2012,58(4):709-3716.
    [21]张之贤,张强,陶际春,等.2010年“8.8”舟曲特大山洪泥石流灾害形成的气候特征及地质地理环境分析[J].冰川冻土,2012,32(3):267-270.
    [22]王根龙,张茂省,于国强,等.舟曲2010年“8.8”特大泥石流灾害致灾因素[J].山地学报,2013,31(3):349-355.
    [23]刘汉东,李小超,刘顺,等.舟曲特大山洪泥石流堰塞坝稳定性分析[J].人民黄河,2013,35(8):116-118.
    [24]唐兰,陈洪.甘肃舟曲特大泥石流灾害形成机制及减灾对策[J].中国地质灾害与防治学报,2012,23(2):7-14.
    [25]甘肃省水文水资源局.甘肃岷县“5.10”特大冰雹山洪泥石流灾害成因分析[R].2012.5.
    [26]甘肃省水利水电勘测设计研究院.甘肃岷县山洪灾害防治非工程措施建设实施方案[R].2010.
    [27]何秉顺,郭良,左吉昌.甘肃岷县“5.10”特大山洪灾害调查[J].防汛与抗旱,2012,15:23-25.
    [28]许禄世.甘肃岷县“2012.5.10”山洪泥石流灾害及防治措施[J].中国防汛与抗旱,2013,23(4):19-20.
    [29]Takahashi T. Mechanical characteristics of debris flow[J].Journal of the Hydraulics Division,1978,104:1153-1169.
    [30]Takahashi T. Debris flow on prismatic open channel[J]. Journal of the Hydraulics Division,1980,106(HY3):381-396.
    [31]O'Brien J.S., Julien EY and Fullerton W.T. Tow dimensional water flood and mudflow simulation[J]. Journal of Hydraulic Engineering, 1993,119(2):244-261.
    [32]C.M.弗莱施曼(前苏联).泥石流[M].北京:科学出版社,1986.
    [33]Johnson, P.C., Jackson, R. Frictional-collisional constitutive relation for granular materials, the application to planes hearing[J]. Journal of Fluid Mechanics,1987,16(7):67-93.
    [34]Mizuyama Takahisa. Structural countermeasures for debris flow disasters [J]. International Journal of Erosion Control Engineering, 2008,1(2):38-43.
    [35]Cui Peng, Liu Suqing, Tang Bangxing, et al. Debris flow Prevention pattern in national Parks [J]. Science in China Ser. E Technology Sciences,2003,46(s):1-11.
    [36]Dominique Laigle, Philippe Lachamp, Mohamed Naaim. SPH-based numerical investigation of mudflow and other complex fluid flow interactions with structures[J].Comput Geosci,2007, (11):297-306.
    [37]Donato D'Ambrosio, Giulio Iovine, William SPataro, et al. A macro-scopic collisional model for debris-flow simulation[J]. Environmental Modelling & Software,2007, (22):1417-1436.
    [38]D. D'Ambrosio W. SPataro, G. Iovine. Parallel genetic algorithms for optimizing cellular automata models of natural complex phenomena: An application to debris flows [J]. Computers & Geosciences,2006, (32):562-575.
    [39]J.Hubl and H. Steinwendtner. Two-dimensional simulation of two viscous debris flows in Austria[J].Phys. Chem. Earth(C),2001,26 (9): 639-644.
    [40]Aronne Armanini, Luigi Fraeearollo, Giorgio Rosatti. Two-dimensional simulation of debris flow in erodible channels[J]. Computers & Geosciences,2009,35(2):993-1006.
    [41]P. Bertolo, G. Bottino. Debris-flow event in the Frangerello Stream-Susa Valley (Italy)-calibration of numerical models for the back analysis of the 16 October,2000 rainstorm[J].Landslides,2008, (5): 19-30.
    [42]Pia Rosella Teeca, Rinaldo Genevois. Field observations of the June 30, 2001 debris flow at Acquabona (Dolomites, Italy) [J]. Landslides,2009, (6):39-45.
    [43]Der-Guey Lin, Sen-Yen Hsu, Kuang-TSung Chang. Numerical simula-tions of flow motion and deposition characteristics of granular debris flows[J]. Natural Hazards,2009,50(3):623-650.
    [44]水山高久,阿部宗平,矢岛重美,韩文林(译).狭缝拦砂坝的流量系数与淤砂形状[J].水土保持科技情报,1994,(4):9-10.
    [45]江崎一博,金窗爱(译).关于拦砂坝的堆砂纵断形状[J].水土保持科 技情报,1985,(3):32-37.
    [46]游勇.泥石流排导槽最小不淤纵坡初步试验研究[J].水土保持通报,2000,(6):110-114.
    [47]游勇.泥石流排导槽水力最佳断面[J].山地学报,1999,17(3):255-258.
    [48]陈晓清,王士革,李德基,等.两种主要泥石流排导槽的比较[J].灾害学,2001,16(3):12-16.
    [49]周富春,黄本生,杨钢,等.稀性泥石流对排导槽的冲磨破坏机理[J].山地学报,2001,19(5):470-473.
    [50]张开平,吕态能.泥石流排导槽冲淤规律观察研究[J].水土保持研究,2002,9(4):61-63.
    [51]DZ/T0239-2004泥石流灾害防治工程设计规范[S].中华人民共和国国土资源部,2004.
    [52]DZ/T0220-2006泥石流灾害防治工程勘查规范[S].中华人民共和国国土资源部,2006.
    [53]陈洪凯,唐红梅.速流结构防治泥石流的理论及应用[J].中国地质灾害与防治学,2004,15(1):11-16.
    [54]陈洪凯,唐红梅,陈野鹰.公路泥石流力学[M].北京:科学出版社2007:125-134.
    [55]陈洪凯,唐红梅.泥石流两相冲击力及冲击时间计算方法[J].中国公路学报,2006,19(3):19-23.
    [56]陈野鹰,唐红梅,陈洪凯.公路泥石流防治结构冲磨性能优化研究[J].中国地质灾害与防治学报,2007,(2):182-186.
    [57]孙晓勇,陈洪凯.泥石流V型排导槽计算方法[J].重庆交通大学学报,2010,(1):113-117.
    [58]陈野鹰,石晋旭,黄勇.天山公路沟谷型泥石流动力学研究[J].中国地质灾害与防治学报,2007,18(3):11-15.
    [59]鲁安新,邓晓峰,赵尚学,等.2005年西藏波密古乡沟泥石流暴发成因分析[J].冰川冻土,2006,28(6):956-960.
    [60]赵尚学.泥石流沉积砾石组构特征的探讨[J].水土保持通报,1985,(1):24-27.
    [61]曾思伟.兰州市的泥石流[J].铁道工程学报,1986,(4):112-114.
    [62]曾思伟,王得楷.泥石流研究与展望[J].甘肃科学学报,2003,15:11-14.
    [63]田昭一,曾思伟,王景荣.白水江沿岸的泥石流概况[J].水土保持通报,1985,(2):47-50.
    [64]朱彦鹏,郑善义,周勇,等.非常规荷载作用下泥石流板式渡槽的优化设计[J].公路交通科技,2007,24(7):24-27.
    [65]何思明,李新坡,吴永.考虑弹塑性变形的泥石流大块石冲击力计算[J].岩石力学与工程学报,2007,26(8):1664-1669.
    [66]王强,何思明,张俊云.泥石流防撞墩冲击力理论计算方法[J].防灾减灾工程学报,2009,29(4):423-427.
    [67]何思明,吴永,沈均.泥石流大块石冲击力的简化计算[J].自然灾害学报,2009,18(5):51-56.
    [68]徐永年,舒安平,匡尚富,等.锚杆在泥石流防治工程中的应用前景[J].地质灾害与环境保护,2000,11(2):168-175.
    [69]陈宁生,崔鹏,姚令侃,山区道路泥石流工程防治原则与模式[J].中国地质灾害与防治学报,2009,20(1):1-5.
    [70]陈宁生,周伟,杨成林,等.工矿弃土弃渣泥石流灾害工程治理模式与应用[J].矿业研究与开发,2010,30(4):84-87.
    [71]崔纯纯,陈宁生,王元欢,等.地震灾区新建蒲虹公路弃土泥石流成灾特征与防治建议[J].地质灾害与环境保护,2010,21(2):7-10.
    [72]周海波,陈宁生,卢阳,等.泥石流沟谷坊坝群治理效应—以地震极重灾区北川县化石板沟为例[J].山地学报,2012,30(3):347-354.
    [73]陈宁生,周海波,卢阳,等.西南山区泥石流防治工程效益浅析[J].成都理工大学学报(自然科学版),2013,40(1):5-58.
    [74]吴强,陈征宙,刘裕华,等.格栅坝在泥石流防治中的应用-以汶川地震引发的烂泥沟泥石流治理为例[J].防灾减灾工程学报,2011,31(3):341-348.
    [75]吴宏,董金义,李瑞冬,等.三维可视化技术在舟曲县城区灾后重建泥石流防治工程中的应用[J].冰川冻土,2013,35(2):383-388.
    [76]徐林荣,韩征,苏志满,等.泥石流流速横向分布特征与防治工程结构优化[J].岩土力学,2012,33(12):3715-3728.
    [77]胡向德,毕远宏,魏新平,等.舟曲县三眼峪沟泥石流灾害治理工程分析[J].水土保持通报,2012,32(3):267-270.
    [78]王根龙,张茂省,赵成,等.对三眼峪泥石流以往防治措施的反思[J].西北地质,2011,44(3):116-121.
    [79]王根龙,张茂省,张新社,等.舟曲“8.8”特大泥石流治理中的关键技术研究[J].西北地质,2011,44(3):l 00-106.
    [80]崔鹏.我国泥石流防治进展[J].中国水土保持科学,2009,7(5):7-13.
    [81]陈晓清,崔鹏,赵万玉.汶川地震区泥石流灾害工程防治时机的研究 [J].四川大学学报(工程科学版),2009,41(3):125-130.
    [82]钟卫,陈晓清.泥石流谷坊防治工程的可靠性分析[J].水利学报,2012,43(增刊2):155-161.
    [83]陈晓清,崔鹏,游勇.汶川地震区大型泥石流工程防治体系规划方法探索[J].水利学报,2013,44(5):586-593.
    [84]陈晓清,游勇,崔鹏,等.汶川地震区特大泥石流工程防治新技术探索[J].四川大学学报(工程科学版),2013,45(1):14-22.
    [85]唐红梅,陈洪凯.公路泥石流研究综述(1)[J].重庆交通学院学报,2004,23(4):28-36.
    [86]唐红梅,陈洪凯.公路泥石流研究综述(2)[J].重庆交通学院学报,2004,23(5):76-81.
    [87]游勇,柳金峰,欧国强.泥石流常用排导槽水力条件的比较[J].岩石力学与工程学报,2006,(S1):2820-2825.
    [88]张红兵,周道银.泥石流V型排导槽防治理论及应用研究[J].中国地质灾害与防治学报,2006,(3):17-24.
    [89]王建强,周道银.V型排导槽防治泥石流灾害[J].云南地质,2007,(2):78-83.
    [90]欧阳猛,徐林荣.泥石流泥痕深度的计算[J].研究地质灾害与环境保护,2008,19(1):62-65.
    [91]陈晓清,李德基,崔鹏.软基消能型泥石流排导槽的肋槛基础埋深计算[J].合肥工业大学学报,2009,(10):77-83.
    [92]黄海,马东涛,王显林.“东川型”排导槽结构对泥石流流速影响的实验研究[J].山地学报,2009,(5):96-101.
    [93]杨金和,高俊彩.云南省云龙县城狮尾河泥石流复式V型排导槽优化设计研究[J].昆明理工大学学报,2009,(5):33-39.
    [94]游勇,柿金峰.泥石流直墙V型排导槽横断面优化设计[J].山地学报,2008,26(2):218-222.
    [95]李珂.泥石流防治结构计算软件开发与应用[D].重庆交通大学2008:2-10.
    [96]实用新型专利.泥石流速排结构(ZL200320115126.0).
    [97]卡斯特奈H.隧道与坑道静力学[M].上海科学技术出版社.1980:103-107.
    [98]刘雷激,魏华.泥石流冲击力研究[J].四川联合大学学报(工科版),1997,1(2):99-102.
    [99]实用新型专利.泥石流隧道(ZL200420061905.1).
    [100]易朋莹,唐红梅,陈洪凯.沟谷泥石流护岸、固底与糙底技术研究[J].重庆交通学院学报,2003,22(2):88-92.
    [101]发明专利.泥石流翼型墩汇流结构(ZL200510057376.7).
    [102]吴子牛.空气动力学[M].清华大学出版社.2007.
    [103]ROSPORT M. Hydraulics of steep mountain streams[J].International Journal of Sediment Research,1997,12(3):99-108.
    [104]WOHLE, MADSENS, LEE M. Characteristics of log and clast bed-steps in step-pool streams of northwestern Montana,USA[J]. Geomor-phology,1997,20:1-10.
    [105]LEE A J, FERGUSON R I. Velocity and flow resistance in step-pool streams[J].Geomorphology,2002,46:49-71.
    [106]WANG Z Y, MELCHING C S,DUAN X H,et al.Ecological and hydrau-lic studies of step-pool streams[J]. Journal of Hydraulic Engineering-ASCE,2009,134(9):705-717.
    [107]ABRAHAMS A D, LI G, ATKINSON J F. Step-pool stream:Adjust-ment to maximum flow resistance[J].Water Resources Research, 1995,31(10):2593-2602.
    [108]余国安,王兆印,张康,等.应用人工阶梯-深潭治理下切河流—吊嘎河的尝试[J].水力发电学报,2008,27(1):85-89.
    [109]王兆印,漆力健,王旭昭.消能结构防治泥石流研究—以文家沟为例[J].水利学报,2012,43(3):253-263.
    [110]王兆印,程东升,何易平,等.西南山区河流阶梯-深潭系列的生态学研究[J].地球科学进展,2006,21(4):409-416.
    [111]徐江,王兆印.山区河流阶梯-深潭的发育及其稳定河床的作用[J].泥沙研究,2003,(5):21-27.
    [112]徐江,王兆印.阶梯深潭的形成及作用机理[J].水力学报,2004,(10):48-54.
    [113]余国安,王兆印,张康,等.人工阶梯-深潭改善下切河流水生栖息地及生态的作用[J].水利学报,2008,39(2):162-167.
    [114]张康,王兆印,贾艳红,等.应用人工阶梯-深潭系统治理泥石流沟的尝试[J].长江流域资源与环境,2012,21(4):501-505.
    [115]贺咏梅,彭伟,阳友奎.边坡柔性防护系统的典型工程应用[J].岩石力学与工程学报,2006,25(2):323-328.
    [116]贺咏梅,成铭.柔性防护技术在泥石流防护中的应用及研究进展[J].水土保持研究,2007,14(3):292-294.
    [117]贺咏梅,阳友奎.崩塌落石SNS柔性防护系统的设计选型与布置[J].公路,2001,(11):14-19.
    [118]阳友奎,周迎庆,姜瑞琪,等.坡面地质灾害柔性防护的理论与实践[M].北京:科学出版社,2005.
    [119]De Natale J S, et al. Response of the Geobrugg cable net system to debris flow loading [R]. Report by California Polytechnic State University,1996.
    [120]阳友奎.坡面地质灾害钢丝绳网柔性防护系统[J].路基工程,2000,(4):35-39.
    [121]贾世涛.拦沙坝对泥石流调控机制的试验研究[D].西南交通大学,2011:7-8.
    [122]顾俊周.格拦坝在治理泥石流中的应用[J].水土保持研究,1997,4(1):187-190.
    [123]张军.川滇两省泥石流拦沙坝基础埋深应考虑的几点[J].山地学报,1992,10(4):229-233.
    [124]朱兴华,崔鹏,周公旦,等.稀性泥石流冲刷规律的试验研究[J].水利学报,2012,42(增刊2):85-91.
    [125]赵彦波,游勇,柳金峰,等.黏性泥石流沟床冲刷深度试验研究[J].水利学报,2012,42(增刊2):92-97.
    [126]詹敏.钢制格栅坝拦截泥石流效果试验研究[J].水土保持应用技术,2007,(4):23-24.
    [127]水野秀明,南哲行,水山高久.连续配置钢管格栅坝拦截泥石流效果[J].水土保持科技情报,2001,(2):29-32.
    [128]游勇.泥石流梁式格栅坝拦砂性能试验研究[J].水土保持学报,2001,15(1):113-115.
    [129]余斌.稀性泥石流的平均运动速度研究[J].防灾减灾工程学报,2009,29(5):541-548.
    [130]刘建民.基于能量法的路堤边坡冲刷量计算模型研究[J].中国公路学报,2004,17(4):21-24.
    [131]高冬光,田伟平,张义青,等.桥台的冲刷机理和冲刷深度[J].中国公路学报,1998,11(1):54-62.
    [132]Peggy A Johnson. Reliability-based pier scour engineering[J]. Journal of Hydraulic Engineering,1992,118(10):1344-1358.
    [133]Peggy A Johnson, Ayyub M. Assessing time-variant bridge reliabi-lity due to pier scour[J]. Journal of Hydraulic Engineering,1992,118 (6):887-903.
    [134]Peggy A Johnson, Daniel A, Dock. Probabilistic bridge scour esti-mates[J]. Journal of Hydraulic Engineering,1998,124(7):750-754.
    [135]Zhigang Yang, Tongchun Li, Miaolin Dai. Reliability analysis method for slope stability based on sample weight[J]. Water Science and Engineering,2009,2(3):78-86.
    [136]于生飞,陈征宙,蒋鑫,等.基于区间方法的岩质边坡稳定性非概率可靠性分析[J].防灾减灾工程学报,2012,32(2):170-175.
    [137]赵国藩.工程结构可靠性理论与应用[M].大连理工大学出版社,1996.
    [138]陆有忠,杨有贞,张会林.边坡工程可靠性的支持向量机估计[J].岩石力学与工程学报,2005,24(1):149-153.
    [139]张佰战,王群.桥渡冲刷可靠度计算[J].铁道工程学报,2001(1):50-52.
    [140]易朋莹,陈洪凯,唐红梅,等.泥石流汇流槽可靠度分析[J].中国地质灾害与防治学报,2005,16(3):142-147.
    [141]陈国周.岩土锚固工程中若干问题的研究[D].大连理工大学,2007.
    [142]梁月英.土层扩孔压力型锚杆的锚固机理研究[D].中国铁道科学研究院,2012.
    [143]郝宪武,周谦,郭梅.钢筋混凝土桩式地锚构造及计算理论[J].西安公路交通大学学报,1999,12(2):41-43.
    [144]陈宇佳.端部扩大型锚杆受力机理的现场试验研究[D].太原理工大学,2011.
    [145]深圳钜联锚杆技术有限公司.苏JG/T033-2009高压喷射扩大头锚杆(索)技术规程[S].南京:江苏科学技术出版社,2009.
    [146]闫莫明.岩土锚固技术手册[M].北京:人民交通出版社,2004.
    [147]中国建筑科学研究院.JGJ120-99建筑基坑支护技术规程[S].北京:中国建筑工业出版社,1999.
    [148]李海光等编著.新型支挡结构设计与工程实例[M].北京:人民交通出版社,2011.
    [149]米海珍.弹性力学[M].北京:清华大学出版社,2013.
    [150]李广信主编.高等土力学[M].北京:清华大学出版社,2004.
    [151]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [152]Roscoe K. H. and Bur land J. B. On the generalized stress-strain behavior of wet clay, engineering plastisity, ed.Heyman Land Leckie F. A., Cambridge Univ.Press.1998,5 (1):23-45.
    [153]His J. P, Small c. Simulation of excavation in an elastic-plastic material and analysis method[J]. Geomech,1992,16(1):123-134.
    [154]徐长节,李庆金.支护参数对复合支护基坑变形的影响分析[J].岩土力学,2005,26(2):295-298.
    [155]费祥俊,舒安平.泥石流运动机理与灾害防治[M].北京:清华大学出版社,2004.
    [156]孟河清,王文俊,郝平.格拦坝水力机能的试验研究.见:泥石流防治理论与实践.铁道部科学研究院西南研究所论文集(第2集).重庆:西南交通大学出版社,1991,136-140.
    [157]龙驭球,包世华.结构力学[M].北京:高等教育出版社,2002.
    [158]朱彦鹏,罗晓辉,周勇.支挡结构设计[M].北京:高等教育出版社,2008.
    [159]李健.泥石流冲击作用下框架结构的数值模拟研究[D].兰州理工大学,2012.
    [160]王秀丽,郑国足.新型带弹簧支撑抗冲击研究及其在泥石流拦挡坝中的应用[J].中国安全科学学报,2013,23(2):3-9.
    [161]李瑞冬,马宗源,胡向德.舟曲泥石流桩林拦挡结构抗冲压极限分析[J].甘肃地质,2011,20(2):60-65.
    [162]马宗源,张骏,廖红建.黏性泥石流拦挡工程数值模拟[J].岩土力学,2007,28(Supp.):389-392.
    [163]王俊岭.泥石流冲击砌体结构的流固耦合动力响应[D].兰州理工大学,2012.
    [164]丁毓峰等编著.ANSYS12.0有限元分析完全手册[M].北京:电子工业出版社,2011.
    [165]黄书珍等编著.ANSYS 12.0土木工程有限元分析从入门到精通[M].北京:机械工业出版社,2010.
    [166]刘传正.汶川地震区文家沟泥石流成因模式分析[J].地质论评,2012,58(4):709-716.
    [167]吴强,陈征宙,刘裕华等.格栅坝在泥石流防治中的应用-以汶川地震引发的烂泥沟泥石流治理为例[J].防灾减灾工程学报,2011,31(3):341~348.
    [168]He, W.L. and Agrawal, A.K., Analitical model of ground motion pulses for the design and assessment of seismic protective systems[J]. Journal of Structural Engineering.2008,1177-1188.
    [169]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.
    [170]Chi-Chang Lin, Chi-Lun Chen and Jer-Fu Wang. Vibration control of structures with initially accelerated passive tuned mass dampers under near-fault earthquake excitation [J]. Computer-Aided Civil and Infrastructure Engineering.2010,25,69-75.
    [171]朱彦鹏,董建华.土钉支护边坡动动力模型的建立及地震响应分析[J].岩土力学,2010,31(4):1013~1022.
    [172]朱彦鹏,叶帅华.水平地震下框架锚杆支护边坡简化分析方法[J].工程力学,2011,28(12):27-32.
    [173]Anderson J C, Bertero V V. Uncertainties in establishing design earthquakes[J]. Journal of Structural Engineering,1987,113(8):1709-1724.
    [174]Ching-Tung Huang. Considerations of multimode structural response for near-field earthquakes [J]. Journal of Engineering Mechanics, 2003,129(4):458-467.
    [175]Alavil B, Krawinkler H. Behavior of moment-resisting frame structures subjected to near-fault ground motions[J]. Earthquake Engineering and Structural Dynamics,2004,33(1):687-706.
    [176]Somerville P G, Smith N F, Graves R W, Abraham-son N A. Modification ofempirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters,1997,68(1):199-222.
    [177]Somerville P G. Seismic hazard evaluation[A].Proceedings of 12th World Congress of Earthquake Engineering[C]. Auckaland:New Zealand,Earthquake Commision,2000,1-16.
    [178]Jonathan D.Bray,Adrian R M.Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics and Earthquake Engineering,2004,24(11):815-828.
    [179]Babak Alavi, Helmut Krawinkler. Effects of near-fault ground motions on frame structures. In:Blume Earthquake Engineering Center Report. California,2001,69-72.
    [180]王亚楠.近场地震动作用下土-基础隔震相互作用体系的地震响应研究[D].兰州理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700