用户名: 密码: 验证码:
鞍山—本溪地区铁建造型铁矿成矿构造环境与成矿、找矿模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鞍山-本溪地区位于华北克拉通北缘东段,以其广泛发育铁建造型(IF)铁矿倍受国内外学者的广泛关注和研究。为了进一步深入揭示区域内IF铁矿的成矿规律,本文在综合前人研究成果的基础上,开展了各类IF铁矿床的区域地质、矿床地质、成岩成矿年代学、矿床地球化学研究,结合地球物理特征,深入探讨成矿构造环境和成矿机制,建立成矿、找矿模式。取得的主要成果与进展如下。
     1.通过对区域地质、矿床地质以及地球物理特征的研究,将区内铁矿床分为鞍山矿集区、弓长岭矿集区、歪头山‐北台矿集区和南芬‐大台沟矿集区。
     鞍山矿集区主要铁矿床为西鞍山、齐大山、大孤山、胡家庙子、眼前山和小房身等,主要赋矿地层为鞍山群樱桃园组,控矿构造为以铁架山太古代花岗杂岩为核心的轴面近南北、西翼向南西倒伏、东翼近似直立的不对称穹形构造体系。南北两个矿带,南矿带呈东西走向,北矿带呈南北走向,主矿体均为单层,厚度>100m,上部矿石以假象赤铁石英岩、磁铁石英岩为主,下部矿石以磁铁石英岩、绿泥磁铁石英岩为主。地球物理特征为以铁架山负磁异常为中心,成环状高磁异常分布,南北矿带航磁异常呈南北向,北北西展布。值得注意的是鞍山矿集区还发育有赋存于南芬组紫色页岩中的赤铁石英岩型小房身富铁矿和赋存于早元古代千枚岩中的含菱铁矿型大孤山主矿体北侧铁矿体;
     弓长岭矿集区主要铁矿床为弓长岭一矿区、二矿区、三矿区、独木矿区,赋矿地层为鞍山群茨沟组,控矿构造为以混合花岗岩为核部,茨沟组和辽河群岩层为两翼的弓长岭背斜,北翼呈北西向,向北东倾斜,南翼走向近东西,向南倾斜。矿体同斜长角闪岩呈互层状产出,为多层薄层状,单层厚度<50m,矿石类型主要为磁铁石英岩。二矿区发育有富磁铁矿矿石,其围岩蚀变主要为绿泥石化、石榴石化、白云母化、电气石化、碳酸盐化、黄铁矿化。地球物理特征表现为磁异常南侧宽大,北侧呈细条状正异常,航磁总体走向为北西西向;
     歪头山‐北台矿集区主要铁矿床为歪头山、北台、棉花堡子、大河沿等,赋矿地层为鞍山群茨沟组和大峪沟组。控矿构造为近南北向往东倒卧复式背斜褶皱构造。多具有三层矿体,矿体均向西倾斜,呈NNE向延伸,紧闭同斜褶皱和石香肠构造发育,矿石类型主要为磁铁石英岩、含闪石磁铁石英岩。地球物理特征表现为具有多个椭圆状航磁正异常区,区内具有较高的剩余磁异常;
     南芬‐大台沟矿集区主要铁矿床为南芬、大台沟、思山岭、欢喜岭等,赋矿地层为鞍山群樱桃园组、茨沟组和大峪沟组。矿体主要受具有左行压扭性运动特征的偏岭断裂带控制,导致区内地层均轻微西倾。大台沟铁矿床为厚层板状单一矿体,而南芬铁矿床为多层薄层状矿体,矿石类型为赤铁石英岩、假象赤铁石英岩和磁铁石英岩。地球物理特征表现为航磁异常走向北北西向,北东侧梯度带较南西侧密集,显示矿层产状西倾的特征;
     2.对弓长岭二矿区、歪头山矿区鞍山群茨沟组同铁矿体呈互层状的中粗粒斜长角闪岩以及侵入至其中块状细粒斜长角闪岩进行锆石U‐Pb同位素定年,获得成岩年龄为2548±12Ma、2540±13Ma以及2523±12Ma,变质年龄为2475±15Ma、2476±8Ma以及2481±19Ma,表明鞍山‐本溪地区在晚太古代末期存在大规模基性火山岩喷发,随后发生基性脉岩的侵入,在早元古代初期经历强烈的构造变质作用。细粒斜长角闪岩中捕虏锆石内核207Pb/235U,206Pb/238U和207Pb/206Pb谐和年龄分别为4165±24Ma,4144±71Ma和4174±48Ma,但普通铅含量过高,多信号区间获得4100Ma左右的上交点年龄。弓长岭、歪头山地区浅粒岩中发现大量207Pb/206Pb年龄为3.3Ga、3.1Ga的早太古代末期‐中太古代具有岩浆成因的碎屑锆石,其中在弓长岭二矿区浅粒岩中发现具有早太古代早期的年龄信息的碎屑锆石,207Pb/206Pb年龄为3763±14Ma,表明鞍山‐本溪地区中‐始太古代锆石及岩石具有更大的分布范围。
     3.西鞍山铁矿床假象赤铁石英岩、大孤山铁矿床磁铁石英岩、齐大山铁矿床磁铁石英岩、弓长岭二矿区磁铁石英岩、歪头山铁矿床磁铁石英岩中具有岩浆成因的碎屑锆石中获得沉积下限年龄分别为2530±16Ma、2548±7.9Ma、2541±7.4Ma、2535.7±8.1Ma、2542±2.0Ma,变质年龄为2484±9Ma,从中还获得207Pb/206Pb年龄为2764±27Ma、2757±40Ma、2635±16Ma晚太古代中早期以及3563±14Ma,3498±14Ma早太古代中期碎屑锆石年龄信息。大孤山主矿体北侧含菱铁矿矿体中的假象赤铁石英岩沉积下限年龄为1872±18Ma,含有大量207Pb/206Pb加权平均年龄为2507±9.6Ma的晚太古代末期碎屑锆石;赋存于细河群南芬组紫色页岩中的小房身赤铁石英岩沉积下限年龄为820±13Ma,含有一粒207Pb/206Pb年龄为1564±66Ma的碎屑锆石。碎屑锆石年龄显示研究区内存在晚太古代末期、早元古代末期、新元古代中期三期铁建造成矿,在早太古代中期、晚太古代中早期以及中元古代早期存在岩浆构造事件。
     4.铁建造铁矿床主要矿石类型为磁铁石英岩、假象赤铁石英岩、富磁铁矿矿石、赤铁石英岩。主量元素显示不同类型铁矿石主要组分均为SiO2、Fe2O3、FeO,三者之和大于95%, SiO2含量同TFe2O3含量通常成反比关系,均含有较低的TiO2,暗示铁矿石中只有极少的陆源碎屑物质加入。原始地幔标准化微量元素配分模式对比图中,不同类型的铁矿石均具有Sr、Ta、Nb、Ti、Zr相对负异常,Rb、U、P、Y相对正异常,亏损高场强元素的特征。磁铁石英岩稀土总量(∑REE+Y)平均值为21.8×10‐6,轻重稀土明显分馏(La/YbPAAS=0.1~1.2),具有明显的La正异常(La/La*=1.0~4.1)、Eu正异常(Eu/Eu*=1.7~7.8)、Y正异常(Y/Y*=1.1~2.5)以及轻微的Ce负异常或无异常(Ce/Ce*=0.6‐1.5)。晚太古代末期假象赤铁石英岩稀土总量(∑REE+Y)平均值为15.3×10‐6,轻重稀土明显分馏(La/YbPAAS=0.19~0.84),具有明显的La正异常(La/La*=1.26~4.19)、Eu正异常(Eu/Eu*=1.97~4.27)、Y正异常(Y/Y*=1.42~2.37)以及轻微的Ce负异常或无异常Ce/Ce*=0.81~1.32)。早元古代末期假象赤铁石英岩稀土总量(∑REE+Y)平均值为20.19×10‐6,轻重稀土分馏现象更为明显,La/YbPAAS=0.31~0.54,具有较低的La正异常(La/La*=1.30~2.54)、 Eu正异常(Eu/Eu*=1.52~1.84)、Y正异常(Y/Y*=0.89~2.13)以及无Ce负异常(Ce/Ce*=0.78~1.19)。赤铁石英岩稀土总量(∑REE+Y)平均为117.8×10‐6,明显高于其它类型铁矿石,强烈富集重稀土元素(La/YbPAAS=0.12~0.22),具有La正异常(La/La*=1.24~1.38),轻微Eu正异常(Eu/Eu*=1.27~1.41)以及弱Ce正异常(Ce/Ce*=1.07‐1.24),Y异常不明显(Y/Y*=0.77~1.07)。富磁铁矿矿石稀土总量(∑REE+Y)平均为20.7×10‐6,重稀土元素富集,轻稀土元素亏损(La/YbPAAS=0.02~0.68),具有明显的La正异常(La/La*=0.73~5.42),强烈的Eu正异常(Eu/Eu*=1.2~5.3)、显著的Y正异常(Y/Y*=0.7~1.9)以及强烈的Ce正异常(Ce/Ce*=0.66~3.75)。
     5.元素地球化学特征表明晚太古代末期斜长角闪岩原岩为拉斑玄武岩,分为LREE平坦或略亏损TH1型和LREE富集TH2型两类拉斑玄武岩。TH1型拉斑玄武岩相对富集MgO、Al2O3、Ni,亏损SiO2、TiO2、P2O5以及不相容性元素和大离子亲石元素,无轻重稀土分馏特征((La/Yb)N=0.85~1.10,(La/Sm)N=0.91~1.16,(Gd/Yb)N=0.72~1.05),具有较高的Zr/Hf、Zr/Sm比值, Nb/Th>8,。TH2型拉斑玄武岩明显轻稀土富集((La/Yb)N=4.44~4.93,(La/Sm)N=2.28–2.41),重稀土平坦((Gd/Yb)N=1.33~1.4),无Eu异常,Nb、Ta、P、Ti等高场强元素同相邻稀土元素系统性亏损,Th、La相对Nb富集。Sr‐Nd同位素特征显示TH1型拉斑玄武岩具有较低的初始87Sr/86Sr比值(ISr=0.70066~0.70287),较高的147Sm/144Nd比值(147Sm/144Nd=0.1978~0.1988),εNd(t)=+4.5~+4.6,fSm/Nd=+0.01,单阶段模式年龄为2512~2523Ma,两阶段模式年龄为2540~2542Ma;TH2型拉斑玄武岩初始87Sr/86Sr比值较高(ISr=0.70849~0.70977),147Sm/144Nd比值为0.1387~0.1412,εNd(t)=+1.8~+2.4,fSm/Nd=‐0.28~‐0.29,单阶段模式年龄为2754~2822Ma,两阶段模式年龄为2706~2754Ma;
     地球化学特征表明TH1型拉斑玄武岩成岩岩浆起源于亏损地幔,未受地壳物质混染,具有深俯冲贫Th、U等大离子亲石元素以及轻稀土元素的洋壳板片进入软流圈地幔柱部分熔融特征,TH2型拉斑玄武岩成岩岩浆明显遭受地壳物质混染,为高温地幔柱岩浆熔融部分上地壳组分而成。
     6.区域构造演化显示:晚太古代末期IF铁矿形成的地球动力学背景为地幔柱‐岛弧构造体系,强烈的基性岩浆、火山热液活动为成矿提供大量的Si、Fe物质;中元古代末期IF铁矿形成于弧后伸展盆地构造环境中,大量的海底基性火山喷发为大孤山主矿体北侧沉积下限年龄为1.87Ga的铁建造形成提供了热液活动、硅铁来源以及成矿物理‐化学环境;新元古代中期IF铁矿形成于“雪球事件”时期的拉张构造环境中的海相沉积盆地。
     7.依据成矿地质特征、成矿年代学以及地球化学特征,将研究区内铁建造型铁矿分为Algoma型、Algoma型向Superior型过渡型、Superior型和Rapitan型。Algoma型IF铁矿主要分布于弓长岭矿集区、歪头山‐北台矿集区以及南芬铁矿床等,沉积环境为缺氧的深海盆地,同海底火山热液活动密切相关,成矿物质来源于高温热液同海水的混合。Algoma型向Superior型过渡型IF铁矿主要分布于下的鞍山矿集区,相对Algoma型IF铁矿,沉积环境更靠近浅海大陆架,具有硫同位素非质量分馏效应,成矿物质来源于高温热液同海水的混合,但含有更高的古海水组分。Superior型IF铁矿为沉积下限年龄为1.87Ga的大孤山主矿体北侧含菱铁矿矿体,成矿明显受海底火山热液活动的影响,为缺氧环境下高温热液和深部海水混合成因,但相对晚太古代末期铁建造其接受更多的陆源碎屑沉积,而热液组分相对减少。Rapitan型IF铁矿为赋存于南芬组紫色页岩中的小房身赤铁石英岩矿床,受新元古代中期“雪球事件”的影响,冰盖阻碍海洋微生物光合作用以及海洋同大气圈之间氧等物质的交换,使海水中的氧逐渐消耗缺氧,古风化环境中存在大规模的晚太古代铁建造,形成富铁的碎屑沉积、冰碛,使海水中溶解大量的Fe2+,后期随着海洋氧化程度的升高,就近沉积而成。富磁铁矿矿石均产出于贫矿体之中,同贫磁铁石英岩具有相同的PAAS标准化稀土元素配分模式,同蚀变岩关系密切,为高温变质热液淋滤贫磁铁矿,致使贫铁矿石脱硅、磁铁矿重结晶而成。
     8.将鞍山‐本溪地区航磁异常归纳为高大磁异常、复杂磁异常、低缓磁异常、深大磁异常、剩余磁异常五类。磁异常长轴方向反映矿体的走向,轴向越长矿体延长就越大,短轴方向反映矿体的厚度,短轴越宽矿体的厚度越大,梯度反映矿体的埋藏深度,梯度越陡矿体埋藏就越浅,反之越深,磁场强度反映矿体规模,强度越大矿体规模就更显著。
The Anshan–Benxi greenstone belt is situated in the east segment of the northern margin of the North China Craton (NCC), concerned by domestic and foreign scholars due to the Widely distributed Iron‐formation(IF). In order to further reveal tectonic setting, metallogenic mechanism and establish metallogenic, exploration models for IF Mine, We carry out the study for the regional geology, deposit geology, diagenesis and metallogenic geochronology, ore deposit geochemistry and geophysical characteristics of the various types IF iron ore, on the basis of previous research. The main advance achievements from this study are as followings.
     1. According to the research on g regional geology, deposit geology and geophysical characteristics, we further divide the study area into Anshan, Gongchangling, Waitoushan‐Beitai and Nanfen‐Dataigou ore concentration area.
     The main IF iron ores in Anshan ore concentration area are Xianshan, Qidashan, Dagushan, Hujiamiaozi, Yanqianshan, Xiaofangshen, and so on, hosted in the Yingtaoyuan Group of the Anshan complex. The ore‐controlling structure is the asymmetric domed structure system, as Tiejiashan Archean granitic complex as the core. The south ore zone is east‐west trend and the north ore zone is south‐north trend, which main orebody are single layer and thickness>100m. The upper part of the iron ore is consist by the martite quartzite and magnetite quartzite, the lower ore is composed by magnetite quartzite and chlorite magnetite quartzite. Geophysics is characterized by the Tiejiashan negative magnetic anomaly center, with a ring of high magnetic anomaly, north‐south trend and north‐west distribution aeromagnetic anomaly belt. It is noteworthy that Xiaofangshen hematite quartzites type is hosted in the purple shale of the Nanfen Group, and the Containing siderite ore type in the north side of the Dagushan main ore body is hosted in the early Proterozoic phyllite.
     The main IF iron ores in Gongchangling ore concentration area are First mine, Second mine, Third mine and Dumu mine, hosted in the Cigou Group of the Anshan complex. The ore‐controlling structure is Gongchangling anticline, with the mixed granite as the core and the Cigou Group and Liaohe Group stratum as the wings. Orebody with plagioclase amphibolite were interbedded output, multilayer thin‐bedded, single‐layer thickness of <50m, The main types of ore is magnetite quartzite. The Senond mine is known by lage scale rich iron ore, with the wall rock alteration of chlorite, garnet, muscovite, tourmaline, carbonate and pyrite. Geophysics is characterized by large magnetic anomaly on the south side, thin strip positive anomaly on the north side and the overall aeromagnetic NWW trend.
     The main IF iron ores in Waitoushan‐Beitai ore concentration area are Waitoushan, Beitai, Mianhuapuzi, Daheyan, hosted in the Cigou and Dayugou Group of the Anshan complex. The ore‐controlling structure is lying east and north‐south trend duplex anticlinal folds. The deposits Generally have westward tilt and NNE trending three‐layers orebodies, with magnetite quartzite and magnetite quartzite containing amphibole as the main ore types. Geophysics characterized by having a plurality of oval‐shaped aeromagnetic anomaly zone, with high residual magnetic anomaly.
     The main IF iron ores in Nanfen‐Dataigou ore concentration area are Nanfen, Dataigou, Sishanling, Huanxiling, hosted in the Cigou, Yingtaoyuan and Dayugou Group of the Anshan complex. The ore‐controlling structure is Pianling left–lateral displacement Fault,due to the slightly west‐dipping strata. The orebody is thickness single‐layer and multilayer thin‐bedded, with martite quartzite, magnetite quartzite and hematite quartzite as the main ore types. Geophysics have the performance of aeromagnetic anomalies towards NNW, north eastern side of the gradient zone over the southwest side of the dense, showing occurrence west‐dipping seam characteristics.
     2. Studies on diagenetic and metamorphic epoch show that the coarse‐grained amphibolites in the Gongchangling second mine and Waitoushan mine are occurred in2548±12Ma and2540±13Ma, with the metamorphic age of2475±15Ma and2476±8Ma. The massive fine‐grained amphibolites, intruded to those coarse‐grained, have a diagenetic age of2527±15Ma, and a metamorphic age of2476±19Ma. Those zircon U‐Pb ages indicate that Anshan‐Benxi areas exist large‐scale mafic volcanic eruption in the Late Archean, intrusive mafic dikes subsequently, and experienced strong tectonic metamorphism in the Early Paleoproterozoic. The xenocrystic core of zircon grain from the massive fine‐grained amphibolites exhibits a207Pb/206Pb age of4174±48Ma, corresponds to206Pb/238U and207Pb/235U ages within analytical uncertainty. The leptite in the Gongchangling second mine and Waitoushan mine have lots of Middle‐Early Archean zircons, with207Pb/206Pb ages of~3.1Ga,~3.3Ga, worthy noting that there is a initial Early Archean detrital zircon, with207Pb/206Pb age of3763±14Ma. Those ages indicate that the Middle‐Early Archean ancient earth materials have a wider distribution in the Anshan–Benxi greenstone belt.
     3. The martite quartzite form the Xianshan deposit and magnetite quartzites form Dagushan, Qidashan, Gongchangling and Waitoushan have magmatic detrital zircons U‐Pb weighted average age of2530±16Ma,2548±7.9Ma,2541±7.4Ma,2535.7±8.1Ma and2542±2.0Ma, with a metamorphic age of2484±9Ma, other Mid‐Late Archean detrital zircons age of2764±27Ma,2757±40Ma、2635±16Ma and Early Archean detrital zircons age of3563±14Ma,3498±14Ma. In addition, the Containing siderite ore type in the north side of the Dagushan main ore body has the detrital zircons U‐Pb207Pb/206Pb weighted average age of1872±18Ma and2507±9.6Ma. The hematite quartzites from Xiaofangshen deposit has the detrital zircons U‐Pb207Pb/206Pb weighted average age of820±13Ma, with a detrital zircon207Pb/206Pb age of1564±66Ma. The ages of detrital zircons indicate that there is final Late Archean, Late Paleoproterozoic and Middle Neoproterozoic metallogenic epoch for IF iron ore,, and middle Early Archean, middle‐early Late Archean and early Mesoproterozoic magmatic tectonic events.
     4. The main ore types of IF iron deposits are magnetite quartzite, martite quartzite, hematite quartzite and rich magnetite ore. The major elements show that the sum of SiO2, Fe2O3and FeO is more than95%, low content of TiO2, with the inverse relationship between SiO2and TFe2O3, demonstrated little terrigenous material in the ore. In the primitive mantle‐normalized trace element distribution patterns comparison chart, different types of iron ores are characterized by Sr, Ta, Nb, Ti, Zr relatively negative anomaly, Rb, U, P, Y relatively positive anomalies, loss on of high field strength elements. Magnetite quartzite shows low REE+Y average contents with∑REE+Y of21.8×10‐6. Post Archean Australian Shale (PAAS) normalized REE patterns for Magnetite quartzite show that HREE are strongly enriched with La/YbPAAS of0.1~1.2. Magnetite quartzite displays significantly La, Eu and Y positive anomalies with La/La*PAAS, Eu/Eu*PAAS and Y/Y*PAAS of1.0~4.1,1.7~7.8and1.1~2.5, slight Ce negative anomalies or no anomalies with Ce/Ce*PAAS of0.60~1.5. Final Late Archean martite quartzite shows low REE+Y average contents with∑REE+Y of15.3×10‐6. PAAS normalized REE patterns for martite quartzite show that HREE are strongly enriched with La/YbPAAS of0.19~0.84. Martite quartzite displays significantly La, Eu and Y positive anomalies with La/La*PAAS, Eu/Eu*PAAS and Y/Y*PAAS of1.26~4.19,1.97~4.27and1.42~2.37, slight Ce negative anomalies or no anomalies with Ce/Ce*PAAS of0.81~1.32. Late Paleoproterozoic martite quartzite shows low REE+Y average contents with∑REE+Y of20.19×10‐6. PAAS normalized REE patterns for Late Paleoproterozoic martite quartzite show that HREE are strongly enriched with La/YbPAAS of0.31~0.54. Late Paleoproterozoic martite quartzite displays relatively lower La, Eu and Y positive anomalies with La/La*PAAS, Eu/Eu*PAAS and Y/Y*PAAS of1.3~2.54,1.52~1.84and0.89~2.13, slight Ce negative anomalies or no anomalies with Ce/Ce*PAAS of0.78~1.19. Middle Neoproterozoic hematite quartzite shows obviously higher than other iron ores REE+Y average contents with∑REE+Y of117.8×10‐6. PAAS normalized REE patterns for hematite quartzite show that HREE are very strongly enriched with La/YbPAAS of0.12~0.22. Hematite quartzite displays slight La and Eu positive anomalies with La/La*PAAS and Eu/Eu*PAAS of1.24~1.38and1.27~1.41, slight Ce positive anomalies and no Y anomalies with Ce/Ce*PAAS and Y/Y*PAAS of1.07~1.24and0.77~1.07. Rich magnetite ore shows similar to magnetite quartzite REE+Y average contents with∑REE+Y of20.7×10‐6. Post Archean Australian Shale (PAAS) normalized REE patterns for rich magnetite ore show that HREE are very strongly enriched with La/YbPAAS of0.02~0.68. Rich magnetite ore displays significantly La, Eu and Y positive anomalies with La/La*PAAS, Eu/Eu*PAAS and Y/Y*PAAS of0.73~5.42,1.2~5.3and0.7~1.9, obviously Ce positive anomalies or no anomalies with Ce/Ce*PAAS of0.66~3.75.
     5. Elements geochemistry indicate that the protolith of final Late Archean amphibolites is tholeiite, and divided into TH1tholeiite with depleted LREE and TH2tholeiite with enriched LREE. TH1tholeiite relatively enrich MgO, Al2O3, Ni, and deplete SiO2, TiO2, P2O5, incompatible elements and LILE, without fractionation of REE ((La/Yb)N=0.85~1.10,(La/Sm)N=0.91~1.16,(Gd/Yb)N=0.72~1.05), and high the ratio of Zr/Hf、Zr/Sm and Nb/Th. TH2tholeiite is characterized by the obviously enrichment of LREE ((La/Yb)N=4.44~4.93,(La/Sm)N=2.28–2.41), without Eu anomaly, Nb, Ta, P, Ti high field strength elements with adjacent REE systematic loss, and hight the ratio of Th/Nb and La/Nb. Sr‐Nd isotope show that: TH1tholeiite have low initial87Sr/86Sr ratio (ISr=0.70066~0.70287), high147Sm/144Nd ratio (147Sm/144Nd=0.1978~0.1988), εNd(t)=+4.5~+4.6, fSm/Nd=+0.01, the single‐stage model ages of2512~2523Ma,the two‐stage model ages of2540~2542Ma;TH2tholeiite is characterized by high initial87Sr/86Sr ratio (ISr=0.70849~0.70977), low147Sm/144Nd ratio (147Sm/144Nd=0.1387~0.1412), εNd(t)=+1.8~+2.4, fSm/Nd=‐0.28~‐0.29, the single‐stage model ages of2754~2822Ma Ma,the two‐stage model ages of2706~2754Ma;
     The protolith magma of TH1tholeiite was derived from a long–term depleted mantle that evolved as LREE–depleted sources, without crustally contaminated. Positive anomalies at Nb (Nb/Th>8) have been interpreted to be the recycling of ocean slab into a mantle plume. The protolith magma of TH2tholeiite were formed by melts from a depleted mantle source that were contaminated with15%–20%of upper crustal materials before eruption.
     6. Regional tectonic evolution Show: final Late Archean IF iron deposits were formed in the plume‐arc tectonic setting, where strongly mafic magma erupted and volcanic hydrothermal activity brought lots of Si and Fe; Late Paleoproterozoic IF iron deposit was formed in the back‐arc extensional basin tectonic environment, where strongly mafic magma erupted and volcanic hydrothermal activity brought lots of Si and Fe for the Containing siderite ore type in the north side of the Dagushan main ore body; Middle Neoproterozoic IF iron deposit was formed in the marine sedimentary basins in extensional the tectonic environment in the “Snowball” event.
     7. According to the deposit geology, metallogenic chronology and geochemical characteristics, we divide the IF iron deposit in the Anshan‐Benxi area into Algoma‐type IF、Algoma transition to Superior‐type IF、Superior‐type IF and Rapitan‐type IF. The Algoma‐type IF are mainly distributed in Gongchangling ore concentration area, Waitoushan‐Beitai ore concentration district and Nanfen iron ore deposit etc. Algoma‐type IF deposited in the environment of the deep anoxic basin, with closely related to submarine volcanic hydrothermal activity, and formed in the hydrothermal mixed with seawater. Algoma transition to Superior‐type IF are mainly distributed in Anshan ore concentration area, relative to Algoma‐type IF, deposited closer to the shallow shelf, with sulfur isotope Mass independent fractionation effects, and derived from high‐temperature hydrothermal minerals mixed with seawater, But contains a higher component of ancient seawater. Superior‐type IF is the containing siderite ore body on the north side of the Dagushan main ore body,1.87Ga age limit for the deposition. Superior‐type IF mineralization is significantly affected by submarine volcanic hydrothermal activity, has the causes of hydrothermal and deep anoxic seawater mixed, but accept more terrigenous clastic sediments, and decrease the hydrothermal component, relative to Late Archean IF. Rapitan type IF is hosted in purple shale of Nanfen group in the Xiaofangshen hematite quartzite deposits. Due to the impact of Mid‐Neoproterozoic “snowball” event, ice hinder marine microbial photosynthesis and the exchange between atmosphere and ocean with oxygen and other substances, so that the gradual depletion of oxygen in the water make the ocean anoxia. Because of the massive presence of the late Archean IF in the ancient weathering environment, the formation of iron‐rich clastic sediments and moraines result in the large‐scale dissolution of Fe2+in the seawater. The degree of oxidation of the oceans rise as the ice melts, the Fe2+deposit in the near. Rich magnetite ore are produced with lean ore body, and has the similar PAAS normalized REE distribution patterns to magnetite quartzite, with close relation to altered rock. High temperature metamorphic hydrothermal leach the magnetite quartzite, and make it desilication and the recrystallization to form rich magnetite ore.
     8. Aeromagnetic anomalies in the Anshan‐Benxi area are summarized as tall magnetic anomalies, complex magnetic anomaly, low and gentle magnetic anomaly, deep and enormous magnetic anomalies and residual magnetic anomaly. The long axis of magnetic anomalies reflect the orebody trend, the ore bodis have greater extension as the longer of the long axis. Short axis direction reflects the thickness of the ore body, the greater the thickness of the ore bodies as the wider short axis direction. Gradient of the magnetic anomalies reflects the depth of burial ore body, the steeper the gradient, the more shallow buried ore bodies, whereas the deeper. Field strength of the magnetic anomalies reflects the size of the ore body, the larger size of field strength with more remarkable ore body.
引文
[1] Alexander B W, Bau M, Andersson P and Dulski P. Continentally derived solutes in shallow Archean seawater:Rare earth element and Nd isotope evidence in iron formation from the2.9Ga Pongola Supergroup, southAfrica [J]. Geochimica et Cosmochimica Acta,2008,72(12):378‐394.
    [2] Ali P, Nicolas D, Thomas J I. A novel extraction chromatography and MC‐ICP‐MS technique for rapid analysisof REE, Sc and Y: Revising CI‐chondrite and Post‐Archean Australian Shale (PAAS) abundances[J]. ChemicalGeology,2012,291(06):38‐54.
    [3] André L, Cardinal D, Alleman L Y and Moorbath S. Silicon isotopes in~3.8Ga West Greenland rocks as cluesto the Eoarchaean supracrustal Si cycle [J]. Earth and Planetary Science Letters,2006,245(2):162‐173.
    [4] Balakrishnan S, Hanson G N, Rajamani V. Pb and Nd isotope constraints on the origin of high Mg and tholeiiticamphibolites, Kolar schist belt, south India [J].Contrib. Mineral. Petrol,1990,107:279–292.
    [5] Basta F F, Ayman E M, Lluís F, Pierre Y F. Petrology and geochemistry of the banded iron formation (BIF) ofWadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF [J].Precambrian Research,2011,187:277–292
    [6] Bekker A, Barley M E, Fiorentini M L, Rouxel O J, Rumble D and ford S W, Atmospheric sulfur in Archeankomatiite‐hosted nickel deposits [J]. Science,2009,326:10861089.
    [7] Bekker A, Slack J F, Planavsky N, Krape B, Hofmann A, Konhauser K O and Rouxel O J. Iron formation: Thesedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes [J].Econ. Geol.,2010,105(3):467‐508.
    [8] Beukes N J an d Klein C. Models for iron formation deposition [M]. Cambridge: Cambridge University Press,1992.
    [9] Beukes N J. Palaeoenvironmental setting of iron‐formations in the depositional basin of the TransvaalSupergroup, South Africa [M]. Amsterdam: Elsevier Press,1983.
    [10] Bolhar R, Van Kranendonk M J and Kamber B S. A trace element study of siderite‐jasper banded ironformation in the3.45Ga Warrawoona Group, Pilbara Craton: Formation from hydrothermal fluids and shallowseawater[J]. Precambrian Research,2005,137(1‐2):93‐114.
    [11] Boyle R W and Davies J L. Banded iron formations [J]. Geochim.Cosmochim. Acta,1973,37(3):1389‐1398.
    [12] Brocks J J, Logan G A, Buick R and Summons R E. Archean molecular fossils and the early rise of eukaryot es[J]. Science,1999,285:1033‐1036.
    [13] Campbell IH, Griffiths RW, Hill RI. Melting in an Archean mantle plume: heads its basalts, tails itskomatiites[J]. Nature,1989,339:697–699.
    [14] Canfield D E, A new model for Proterozoic ocean chemistry [J]. Nature,1998,396:450453.
    [15] Canfield D E, Poulton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, and Strauss H. Ferruginousconditions dominated later Neoproterozoic deep‐water chemistry [J]. Science,2008,15:949952.
    [16] Cloud P. Paleoecological significance of the banded iron‐formation [J]. Econ.Geol.,1973,68(7):1135‐1143.
    [17] Clout J M F and Simonson B M. Precambrian iron formations and iron formation‐hosted iron ore deposits [M].Littleton: Economic Geology,2005.
    [18] Condie K C. High field strength element ratios in Archean basalts: a window to evolving sources of mantleplumes?[J]. Lithos,2005,79:491–504.
    [19] Condie K C. Trace element geochemistry of Archean greenstone belts[J]. Earth Sci Rev,1976,12:393~417.
    [20] Cui P L, Sun J G, Sha D M, Wang X J, Zhang P, Gu A L, Wang Z Y. Oldest zircon xenocryst (4.17Ga) fromthe North China Craton[J]. International Geology Review,2013,55(15):1902‐1908.
    [21] Dauphas N, Van Zuilen M, Wadhw A M, Davis M, Mart y A M, Janney B and Philip E. Clues from Fe isotopevariations on the origin of Early Archean BIFs from Greenland [J]. Science,2004,306:2077‐2080.
    [22] Ding T, Jiang S, Wan D, Li Y, Li J, Liu Z et al. Silicon Isotope Geochemistry [M]. Beijing: GeologicalPublishing House,1996.
    [23] Dymek R F and Klein C. Chemistry, petrology, and origin of banded ironformation lithologies from the3800Ma Isua Supracrustal Belt, West Greenland [J]. Precambrian Research,1988,39:247–302.
    [24] Farquhar J, Bao H M and Thiemens M. Atmospheric influence of the Earth’s earliest sulfur cycle, Science [J],2000,289:756758.
    [25] Farquhar J, Peters M, Johnston D T, Strauss H, Masterson A, Wiechert U and Kaufman A J. Isotopic evidencefor Mesoarchaean anoxia and changing atmospheric sulphur chemistry[J]. Nature,2007,449(11):706‐709.
    [26] Geng Y S, Liu D Y, Ren L D. Growth and reworking of the early Precambrian continental crust in the NorthChina Craton: Constraints from zircon Hf isotopes[J]. Gondwana Res,2012,2:517‐529.
    [27] Glikson A and Vickers J. Asteroid mega‐impacts and Precambrian banded iron formations:2.63Ga and2.56Gaimpact ejecta/fallout at the base of BIF/argillite units, Hamersley basin, Pilbara craton, Western Australia [J].Earth and Planetary Science Letters,2007,254(1‐2):214‐226.
    [28] Gole M and Klein C. Banded iron‐formations through much of Precambrian time [J]. Journal of Geology,1981,89(2):169‐183.
    [29] Goodwin A M. Archean iron‐formations and tectonic basins of the Canadian Shield [J]. Econ. Geol.,1973,68(7):915‐933.
    [30] Gross G A. A classification of iron formations based on depositional environments [J]. Canadian Mineralogist,1980,18(2):215‐222.
    [31] Gross G A. Geology of iron deposit s in Canada, Vol.1. General geology and evaluation of iron deposits [M].Geological Survey of Canada: Economic Report.1965.
    [32] Gross G A. Primary features in chert y iron formations [J]. Sedimentary Geology,1972,7(4):241‐261.
    [33] Gross G A. Tectonic syst ems and the deposit ion of iron‐formation [J]. Precambrian Research,1983,20(2‐4):171‐187.
    [34] Halverson G P, Poitrasson F, Hoffman P F, et al. Fe isotope and trace element geochemistry of theNeoproterozoic syn‐glacial Rapitan iron formation [J]. Earth and Planetary Science Letters,2011,309:100‐112.
    [35] Hoffman P. Early Proterozoic foreddeps, foredeep magmatism, and Superior‐type iron‐formation of theCanadian Shield [M]. Washinton DC: Am. Geophys U nion, Geodyn Ser,1987.
    [36] Holland H D. The chemical evolution of the atmosphere and oceans [M]. New York: Princeton UniversityPress,1984.
    [37] Holland H D. The oceans: A possible source of iron in iron‐formations[J]. Econ.Geol.,1973,68(7):1169‐1172.
    [38] Hollings P, Kerrich R. Trace element systematics of ultramafic and mafic volcanic rocks from the3Ga NorthCaribou greenstone belt. North western Superior Province [J]. Precambrian Res,1999,93:257–279.
    [39] Hollings P, Wyman D. Trace element and Sm–Nd systematics of volcanic and intrusive rocks from the3GaLumby Lake Greenstone belt. Superior Province: evidence for Archaean plume–arc interaction [J]. Lithos,1999,46:189–213.
    [40] Huston D L and Logan G A. Barite, BIFs and bugs: Evidence for the evolut ion of the Earths early hydrosphere[J]. Earth and Planetary Science Letters,2004,220(1‐2):41‐55.
    [41] Ilyin A V. Neoproterozoic banded iron formations[J]. Lithology and Mineral Resources,2009,44:78–86.
    [42] Isley A E and Abbott D H. Plume‐related mafic volcanism and the deposition of banded iron formation [J].Journal of Geophysical Research,1999,104(B7):15461‐15477.
    [43] Isley A E. Hydrothermal plumes and the delivery of iron to banded iron formation [J]. The Journal of Geology,1995,103(2):169‐185.
    [44] Jahn B M, Wu F Y, Lo C H, Tsai C H. Crust–mantle interaction induced by deep subduction of the continentalcrust: geochemical and Sr–Nd isotopic evidence from post‐collisional mafic–ultramafic intrusions of thenorthern Dabie complex, central China[J]. Chemical Geology,1999,157:119‐146.
    [45] James H L and Trendall A F. Banded iron‐formation: Distribution in time and paleoenvironmental significance
    [M]. New York: Springer Verlag Press,1982.
    [46] James H L. Distribution of banded iron‐formation in space and time [A]. In: Trendall A F an d Morris R C, eds.Iron‐formation: Facts and problems [M]. Amsterdam: Elsevier Press,1983.
    [47] James H L. Sedimentary facies of iron‐formation [J]. Econ.Geol.,1954,49(3):235‐293.
    [48] Jayananda M, Kano T, Peucat J J, Channabassappa S.3.35Ga komatiite volcanism in the western Dharwarcraton, southern India: Constraints from Nd isotopes and whole rock geochemistry [J]. Precambrian Res,2008,162:160–179.
    [49] Kaufman A J. Geochemical and mineralogic effect s of contact metamorphism on banded iron‐formation: Anexample from the Transvaal basin, South Africa[J]. Precambrian Research,1996,79(1‐2):171‐194.
    [50] Kerrich R, Polat A, Wyman D A, Hollings P. Trace element systematics of Mg‐to Fe‐tholeiitic basalt suites ofthe Superior Province: implications for Archean mantle reservoirs and greenstone belt genesis [J]. Lithos,1999,46:163–187
    [51] Kerrich R, Polat A, Xie Q. Geochemical systematics of2.7Ga Kinojevis Group (Abitibi) and Manitouwadgeand Winston Lake (Wawa) Fe‐rich basalt‐rhyolite associations: back arc rift oceanic crust?[J]. Lithos,2008,101:1–23.
    [52] Khoza D, Jones A G, Muller M R, Evans R L, Webb S J, Miensopust M. Tectonic model of the Limpopo belt:Constraints from magnetotelluric data [J]. Precambrian Research,2013,226:143‐156..
    [53] Kieffer B, Arndt N, Lapierre H et al. Flood and shield basalts from Ethiopia: Magmas from the African superswell[J]. J. Petrol,2004,45(4):793–834
    [54] Klein C, and Ladeira E A. Geochemistry and mineralogy of Neoproterozoic banded iron‐formations and someselected, siliceous manganese formations from the Urucum district, Mato Grosso do Sul, Brazil [J]. EconomicGeology,2004,99:12331244.
    [55] Klein C, Beukes N J. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitaniron‐formation in Canada [J]. Econ. Geol.,1993,84:1733‐1774.
    [56] Klein C. Some Precambrian banded iron‐format ions (BIFs) from around the w orld: Their age, geologic setting,mineralogy, metamorphism, geochemistry and origin [J]. American Mineralogist,2005,90(10):1473‐1499.
    [57] Kr ner A, Wilde S A, Li J H, Wang K Y. Age and evolution of a Late Archean to Paleoproterozoic upper tolower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China[J]. Journal of Asian EarthSciences.2005,24:577‐595.
    [58] Kump L R and Seyfried W E. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfateconcentrations and low hydrostatic pressure on the composition of black smokers [J]. Earth and PlanetaryScience Letters,2005,235:654662.
    [59] Kusky T M. Geophysical and geological tests of tectonic models of the North China Craton[J]. GondwanaResearch,2011,20:26‐35.
    [60] Lascelles D F. Black smokers and densit y currents: A uniformitarian model for the genesis of bandediron‐formations [J]. OreGeology Reviews,2007,32(1‐2):381‐411.
    [61] Liu D Y, Nutman A P and Compston W et al. Remmants of≥3800Ma crust in the Chinese part of the Sino–Korean Craton [J]. Geology,1992,20:339–342
    [62] Liu D Y, Wilde S A, Wan Y S, Wu J S, Zhou H Y, Dong C Y and Yin X Y. New U–Pb and Hf isotopic dataconfirm Anshan as the oldest preserved segment of the North China Craton [J]. American Journal of Science,2008,38(3),200~231.
    [63] Luo Y, Sun M, Zhao G C, Li S Z, Xu P, Ye K, Xia X P. LA‐ICP‐MS U–Pb zircon ages of the Liaohe Group inthe Eastern Block of the North China Craton: constraints on the evolution of the Jiao‐Liao‐Ji Belt [J].Precambrian Research.2004,134:349–371
    [64] Manikyamba C, Balaram V and Naqvi S M. Geochemical signatures of polygenetic origin of a banded ironformation (BIF) of the Archaean Sandur greenstone belt (schist belt) Karnataka nucleus, India [J]. PrecambrianResearch,1993,61(1‐2):137‐164.
    [65] Manikyamba C, Kerrich R, Khanna T C, Krishna K A, Satyanarayanan M. Geochemical systematics ofkomatiite–tholeiite and adakitic‐arc basalt associations: The role of a mantle plume and convergent margin information of the Sandur Superterrane, Dharwar craton, India [J]. Lithos,2008,106:155–172.
    [66] Manikyamba C, Kerrich R, Naqvi S M, Ram M. Geochemical systematics tholeiitic basalts from the2.7GaRamagiri‐Hungund composite greenstone belt, Dharwar craton [J]. Precambrian Res,2004b,134:21–39.
    [67] Manikyamba C, Naqvi S M, Ram M, Gnaneshwar R T. Remnant of an Archaean subduction complex and itsrelationship with gold mineralization and hydrothermal alterations‐an example from Penakacherla schist belt,Dharwar Craton. India [J]. Ore Geol. Rev,2004a,24:199–227.
    [68] Meschede M. A method of discriminating between different types of mid‐ocean ride basalts and continentaltholeitites with the Nb‐Zr‐Y diagram[J]. Chemi Geol,1986,56:207–218.
    [69] Morris R C. Genetic modeling for banded iron‐formation of the Hamersley Group, Pilbara craton, WesternAustralia [J]. Precambrian Research,1993,60(1‐4):243‐286.
    [70] Noffke N, Eriksson K A, Hazen R M and Simpson E L. A new window into Early Archean life: Microbial matsin Earth’s oldest siliciclastictidal deposits (3.2Ga Moodies Group, South Africa)[J]. Geology,2006,34(4):253‐256.
    [71] Ohmoto H, Kakegawa T and Lowe D R.3.4‐billion‐year‐old biogenic pyrite from Barberton, South Africa:Sulphur isotope evidence [J]. S cience,1993,267:555‐557.
    [72] Ohmoto H. The Archaean atmosphere, hydrosphere and biosphere. In: Eriksson P G, Altermann W, Nelson DR,Mueller W U an d Catun eanu O, eds. The Precambrian earth: Tempos and events, developments inPrecambrian geology12[M].Amsterdam: Elsevier Press.2004:361‐388.
    [73] Pearce JA. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and thesearch for Archean oceanic crust. Lithos[J],2008,100:14–48
    [74] Planavsky N, Bekker A, Rouxel O J, Kamber B, H ofmann A, Knudsen A and Lyons T W. Rare earth elementand yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on thesignificance and mechanisms of deposition [J]. Geochim. Cosmochim. Acta,2010,74(22):6387‐6405.
    [75] Polat A, Kerrich R, Wyman DA. Geochemical diversity in oceanic komatiites and basalts from the lateArchaean Wawa greenstone belt, Superior Province. Canada: trace element and Nd isotope evidence for aheterogeneous mantle [J]. Precambrian Res,1999,94:139–173.
    [76] Polat A, Kusky T, Li J H, Kerrich R, Patrick K. Geochemistry of Neoarchean (ca.2.55–2.50Ga) volcanic andophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: Implications forgeodynamic setting and continental growth [J]. Geological Society of America,2005,117:1387‐1399.
    [77] Prendergast M D. The Bulawayan Supergroup: a late Archaean passive margin‐related large igneous provincein the Zimbabwe craton [J]. Journal of the Geological Society, London,2004,161:431‐445.
    [78] Rao T G and Naqvi S M. Geochemistry, depositional environment and tectonic setting of the BIFs of the LateArchaean Chitradurga Schist Belt, India[J]. Chemical Geology,1995,121(1‐4):217‐243.
    [79] Rosing M T, Rose N M, Bridgwater D and Thomsen H S. Earliest part of Earth’s stratigraphic record: Areappraisal of the>3.7Ga Isua (Greenland) supracrustal sequence[J]. Geology,1996,24(1):43‐46.
    [80] Said N, Kerrich R, Groves D. Geochemical systematics of basalts of the Lower Basalt Unit,2.7Ga Kambaldasequence, Yilgran craton, Australia: plume impingement at a rifted craton margin [J]. Lithos,2010,115:82–100.
    [81] Saunders A D, Storey M and Norry M J. Consequences of plume lithosphere interaction[M]. In: Storey BC,Alabaster T and Pankhurst RJ (eds.). Magmatism and the Causes of Continental Break‐up. Geol. Soc. Spec.Pub, London,1992.
    [82] Simonson B M and Hassler S. Was the deposition of large Precambrian iron formations linked to major marinetransgressions [J]. Journal of Geology,1996,104(6):665‐676.
    [83] Simonson B M, Schubel K A and Hassler S W. Carbonate sedimentology of the early Precambrian HamersleyGroup of Western Australia [J]. Precambrian Research,1993,60(1‐4):287‐335.
    [84] Simonson B M. Early silicacementation and subsequent diagnesis in arenites from four early Proterozoic ironformations of north America [J]. Journal of Sedimentary Petrology,1987,57(3):494‐511.
    [85] Simonson B M. High energy shelf deposit: Early Proterozoic Wishart Formation, northeastern Canada [J].Society of Economic Paleontologists and Mineralogists Special Publication,1984,34(3):251‐268.
    [86] Simonson B M. Origin and evolution of large Precambrian iron formations [J]. Geological Society of America,Special Paper,2003,370:231‐244.
    [87] Simonson BM. Sedimentological constraints on the origins of Precambrian iron formation [J]. GeologicalSociety of America Bulletin,1985,96(2):244‐252.
    [88] Song B, Nutman A P, Liu D Y and Wu J S.3800to2500Ma crustal evolution in the Anshan area of LiaoningProvince, Northeastern China [J]. Precambrian Research,1996,78:79–94.
    [89] Steinhoefel G, Horn I and Von Blanckenburg F. Micro‐scale tracing of Fe and Si isotope signatures in bandediron formation using femtosecond laserablation [J]. Geochim. Cosmochim. Acta,2009,73(18):5343‐5360.
    [90] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantlecomposition and processes[M]. In: Saunders AD, Norry MJ (Eds.). Magmatism in the Ocean Basins. Geol. Soc.London Spec. Publ.,1989,42:313–345.
    [91] Thiemens M H. Atmosphere science‐Mass‐independent istope effects in planetary atmospheres and the earlysolar system[J]. Science,1999,283:341345.
    [92] Thompson S M, Lowe D R, Byerly G R. Abundant pyroclastic komatiitic volcanism in the3.5–3.2GaBarberton greenstone belt, South Africa [J]. Geology,2008,36:779‐782.
    [93] Trendall A F. Iron‐formation: Facts and problems [M]. Trendall A F and Morris RC eds. Amsterdam: E‐lsevierPress,1983.
    [94] Trendall A F. The significance of iron‐formation in the Precambrian stratigraphic record [J]. SpecialPublication International Association of Sedimentologists,2002,33(1):33‐66.
    [95] Trompette R, Alvarenga C J S, and Walde D, Geological evolution of the Neoproterozoic Corumbá grabensystem (Brazil): Depositional context of the stratified Fe and Mn ores of the Jacadigo Group [J]. Journal ofSouth America Earth Sciences,1998,11:587597.
    [96] Urban, H., Stribrny, B., and Lippolt, H.J., Iron and manganese deposits of the Urucum district, Mato Grosso doSul, Brazil [J]. Economic Geology,1992,87:13751392.
    [97] VanHise C R and Leith C K. The geology of the Lake Superior region [J]. Monogr. US Geol. Surv.,1911,52.641.
    [98] Veizer J. Geologic evolut ion of the Archean‐Early Prot erozoic Earth [M]. In: Schopf J W, ed. Earth’s earliestbiosphere.New Jersey: Princet on Universit y Press.1983.
    [99] Wan Y S, Dong C Y, Liu D Y, Kr ner A, Yang C H, Wang W, Du L L, Xie H Q, Ma M Z. Zircon ages andgeochemistry of late Neoarchean syenogranites in the North China Craton: A review[J]. Precambrian Res.2011,223:265–289.
    [100] Wan Y S, Song B, Liu D Y, Wilde S A, Wu J S, Shi Y R, Yin X Y, Zhou H Y. SHRIMP U–Pb zircongeochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a majorLate Palaeoproterozoic tectonothermal event [J]. Precambrian Research,2006,149:249–271.
    [101] Wang Y F, Xu H F, Merino E and Konishi H. Generation of banded iron formations by internal dynamics andleaching of oceanic crust [J]. Nature Geoscience,2009,2(11):781‐784.
    [102] Wilde S A, Cawood P A, Wang K Y, Nemchin A A. Granitoid evolution in the Late Archean Wutai complex,North China Craton[J]. Journal of Asian Earth Sciences,2005,24:597‐613.
    [103] Wu F Y, Zhang Y B, Yang J H, Xie L W and Yang Y H. Zircon U‐Pb and Hf isotopic constrains on the EarlyArchean crustal evolution in Anshan of the North China Craton[J]. Precambrian Res.2008,167:339‐362.
    [104] Wyman D A, Kerrich R, Polat A. Assembly of Archean cratonic mantle lithosphere and crust: plume arcinteraction in the Abitibi‐Wawa subduction accretion complex [J]. Precambrian Res,2002,115:37–62.
    [105] Wyman D A, Kerrich R. Plume and arc magmatism in the Abitibi subprovince:implications for the origin ofArchean continental lithospheric mantle [J].Precambrian Res,2009,168:4–22.
    [106] Wyman D A. A2.7Ga depleted tholeiite suite: evidence for plume–arc interaction in the Abitibi greenstonebelt, Canada [J]. Precambrian Res,1999,98:27–42.
    [107] Young G M. Geochemical investigation of a Neoproterozoic glacial unit: The Mineral Fork Formation in theWasatch Range, Utah [J]. Geological Society of America Bulletin,2002,114:387399.
    [108] Young G M. Iron‐formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada [J].Precambrian Res.,1976,3:137‐158.
    [109] Zachariah J K, Mohanta M K, Rajamani V. Accretionary evolution of the Ramagiri schist belt, EasternDharwar Craton [J]. J. Geol. Soc. India,1996,47:279–291.
    [110] Zhai M G, Li T S, Peng P, Hu B, Liu F, Zhang Y B., Guo J H. Precambrian key tectonic events and evolutionof the North China Craton[M]. In: Kusky T M, Zhai M G, Xiao W J (Eds). The Evolving Continents:Geological Society of London Special Publications,2010,338:235–262.
    [111] Zhai M G, Santosh M, The early Precambrian odyssey of the North China Craton: A synoptic overview[J].Gondwana Res,2011,20:6‐25.
    [112] Zhang X J, Zhang L C, Peng X, Bo W, Franco P. Zircon U–Pb age, Hf isotopes and geochemistry ofShuichang Algoma‐type banded iron‐formation, North China Craton: Constraints on the ore‐forming age andtectonic setting [J]. Gondwana Research,2011,20:137‐148.
    [113] Zhang X J, Zhang L C, Xiang P, Wan B and Pirajno F. Zircon U‐Pb age, Hf isotopes and geochemistry ofShuichang Algoma‐type banded iron‐formation, North China Craton: Constraints on the ore‐forming age andtectonic setting[J]. Gondwana Research,2011,20(1):137‐148.
    [114] Zhao G C, Sun M, Wilde S A, Li S Z. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research,2005,136:177–202.
    [115] Zhao Z H. Banded iron formation and related great oxidation event [J]. Earth Science Frontiers,2010,17(3):1‐12.
    [116] Zubtsov Y I., Precambrian tillites in the Tien Shan, and their stratigraphic value: Byulleten’ MoskovskogoObshchestva Ispytateley Prirody [J]. Otdel Geologicheskiy,1972,47:4256.
    [117]陈亮.固阳绿岩带的地球化学和年代学[R].北京:中国科学院地质与地球物理研究所,2007:1‐40.
    [118]代培堰,张连昌,朱明田,王长乐,刘利.鞍山陈台沟BIF铁矿与太古代地壳增生:锆石U‐Pb年龄与Hf同位素约束.岩石学报[J],2013,29:2537‐2550.
    [119]董春艳,马铭株,刘守偈,颉颃强,刘敦一,李雪梅,万渝生.华北克拉通古元古代中期伸展体制新证据:鞍山‐弓长岭地区变质辉长岩的锆石SHRIMP U‐Pb定年和全岩地球化学[J].岩石学报,2012,38(09):2785‐2792.
    [120]代培堰,张连昌,王长乐,刘利,崔敏利,朱明田,相鹏.辽宁省本溪歪头山条带状铁矿的成因类型、形成时代及构造背景[J].岩石学报,2012,28:3574‐3594.
    [121]高林志,张传恒,陈寿铭,刘鹏举,丁孝忠,刘燕学,董春燕,宋彪,辽东半岛细河群沉积岩碎屑锆石SHRIMP U‐Pb年龄及其地质意义.地质通报,2010,29:1113‐1122
    [122]韩军,夏毓亮,修群业.辽东本溪、营口花岗岩年龄及锆石饱和温度和Ti温度的地质意义.矿物岩石地球化学通报,2010,29(01):1‐10.
    [123]将辉耀,蒋少涌,赵葵东,倪培,凌洪飞,刘敦一.辽东半岛煌斑岩SHRIMP锆石U‐Pb年龄及其对中国东部岩石圈减薄开始时间的制约[J].科学通报,50(19):2161‐2168.
    [124]李志红.辽宁省鞍山‐本溪地区条带状铁建造的Fe同位素地球化学研究[D].北京:中国地质科学院,2007.
    [125]刘大为.弓长岭铁矿成矿围岩地球化学特征研究[D].北京:中国地质大学(北京),2012.
    [126]刘敦一,万渝生,伍家善, S A Wilde,董春艳,周红英,殷小燕.华北克拉通太古宙地壳演化和最古老岩石[J].地质通报,2007,26(9):1132‐1138
    [127]刘军.辽宁省弓长岭铁矿富铁矿成因及成矿模式研究[D].北京:中国地质大学(北京),2008.
    [128]刘明军.辽宁弓长岭沉积变质型铁矿热液改造用作及其成矿意义[D].北京:中国地质大学(北京),2013.
    [129]路孝平,吴福元,林景仟,等.2004a.辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J].地质科学,29(1):123‐138.
    [130]李碧乐,霍亮,李永胜.条带状铁建造(BIFs)研究的几个问题[J].矿物学报,2007,27(2):205‐210.
    [131]李厚民,王登红,李立兴,陈靖,杨秀清,刘明军.中国铁矿成矿规律及重点矿集区资源潜力分析[J].中国地质,2012,39(3):559‐580.
    [132]李俊建,沈保丰,李双保,毛德宝.辽北—吉南地区太古宙绿岩带[J].华北地质矿产杂志,1999,14:27‐34.
    [133]李延河,侯可军,万德芳,张增杰,乐国良.前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋.地质学报,2010,84(9):1359‐1373.
    [134]李延河,侯可军,万德芳,张增杰. Algoma型和Superior型硅铁建造地球化学对比研究[J].岩石学报,2012,28(11):3513‐3519.
    [135]李志红,朱祥坤,唐索寒.鞍山‐本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示[J].岩石矿物学,2008,27(4):285290.
    [136]刘军,靳淑韵.2010.辽宁弓长岭铁矿床斜长角闪岩类地球化学特征研究及原岩恢复[J].中国地质,37(2):24‐333
    [137]刘利,张连昌,代培堰,王长乐,李智泉.内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义[J].岩石学报,2012,28:3623‐3637.
    [138]钱烨,孙丰月,李碧乐,霍亮,张雅静.变质重结晶锆石微量元素地球化学与U‐Pb年代学:以辽宁红透山铜锌矿床赋矿片麻岩为例[J].中南大学学报,2013,44(4):1500‐1509.
    [139]秦亚.辽吉古元古裂谷带构造演化的年代学制约[D].长春:吉林大学地球科学学院,2013.
    [140]乔广生,翟明国,阎月华.鞍山地区太古代岩石同位素地质年代学研究[J].地质科学,1990,2(4):158‐165.
    [141]曲亚军王宗林王文清等.辽宁省铁矿预测资源量估算报告[D].沈阳:辽宁省国土资源厅,2010.
    [142]沈其韩,宋会侠,赵子然.山东韩旺新太古代条带状铁矿的稀土和微量元素特征[J].地球学报,2009,30(6):693‐699
    [143]孙景贵,邢树文,郑庆道.中国东北部陆缘有色、贵金属矿床的地质、地球化学[M].长春:吉林大学出版社,2006.
    [144]沈保丰,翟安明,陈文明等.中国前寒武纪成矿作用[M].北京:地质出版社,2006:1‐362.
    [145]沈保丰,翟安明,杨春亮等.中国前寒武纪铁矿床时空分布和演化特征[J].地质调查与研究,2005,28(4):196‐206.
    [146]沈保丰,骆辉,韩国刚,戴薪义,金文山等.辽北‐吉南太古宙地质及成矿[M].北京:地质出版社,1994,1‐255
    [147]沈保丰.中国BIF型铁矿床地质特征和资源远景[J],地质学报,2012,86(9):1376‐1395.
    [148]沈其韩,宋会侠,杨崇辉,万渝生.山西五台山和冀东迁安地区条带状铁矿的岩石地球化学特征及其地质意义[J].岩石矿物学杂志,2011,30(2):161‐171.
    [149]万渝生,刘敦一,王世进,焦秀美,王伟,董春艳,颉颃强,马铭株.华北克拉通鲁西地区早前寒武纪表壳岩系重新划分和BIF形成时代[J].岩石学报,2012a,28:3457‐3475.
    [150]万渝生,刘敦一,王世炎,赵逊,董春艳,周红英,殷小艳,杨长秀,高林志.登封地区早前寒武纪地壳演化‐地球化学和锆石SHRIMP U‐Pb年代学制约[J].地质学报,2009,83(7):982‐999.
    [151]王恩德,夏建明,赵纯福,付建飞,侯根群.弓长岭铁矿床物质来源及沉积古地理环境研究[J].矿产地质,2013,32(2):380‐396.
    [152]王惠初,陆松年,初航,等.2011.辽阳河栏地区辽河群中变质基性熔岩的锆石U‐Pb年龄与形成构造背景[J].吉林大学学报(地球科学版),41(5):1322‐1334.
    [153]王仁民,陈珍珍,赖兴运.华北太古宙从地幔柱体制向板块构造体制的转化.地球科学‐中国地质大学学报,1997,22:317‐321.
    [154]王伟,王世进,刘敦一,李培远,董春艳,颉颃强,马铭株,万渝生.鲁西新太古代济宁群含铁岩系形成时代: SHRIMP U‐Pb锆石定年[J].岩石学报,2010,26:1175‐1181.
    [155]吴福元,杨进辉,柳小明.辽东半岛中生代花岗质岩浆作用的年代学格架[J].高校地质学报,2005.11(3):305‐317.
    [156]伍家善,耿元生,沈其韩等.中朝古大陆太古宙地质特征机构造演化[M].北京:地质出版社,1998.
    [157]万渝生,董春艳,颉颃强,王世进,宋明春,俆仲元,王世炎,周红英,马铭株,刘敦一.华北克拉通早前寒武纪条带状铁建造形成时代‐SHRIMP锆石U‐Pb定年[J].地质学报,2012b,86(9):1447‐1478.
    [158]万渝生,刘敦一,伍家善等.辽宁鞍山‐本溪地区中太古代花岗质岩石的成因一地球化学及Nd同位素制约[J].岩石学报,1998,14(3):278–288
    [159]万渝生,刘敦一,殷小艳, Simon A Wilde,谢烈文,杨岳衡,周红英,伍家善.鞍山地区铁架山花岗岩及表壳岩的锆石SHRIMP年代学和Hf同位素组成[J].岩石学报,2007,23:241‐252
    [160]万渝生,宋彪,刘敦一,李惠民,杨淳,张巧大,杨崇辉,耿元生,沈其韩.鞍山东山风景区3.8‐2.5Ga古老岩带的同位素地质年代学和地球化学[J].地质学报,2001,75(3):363‐370
    [161]万渝生.辽宁弓长岭含铁岩系的形成与演化[M].北京:北京科学技术出版社,1993.
    [162]王长乐,张连昌,刘利,代培堰.国外前寒武纪铁建造的研究进展与有待深入探讨的问题[J].矿床地质,2012,31(6):1311‐1325.
    [163]夏林圻,夏祖春,徐学义等.天山岩浆作用[M].北京:中国大地出版社,2007.
    [164]杨进辉,吴福元,谢烈文,等.辽东矿洞沟正长岩成因及其构造意义:锆石原位微区U‐Pb年龄和Hf同位素制约[J].岩石学报,2007,23:263‐276.
    [165]翟明国.华北克拉通的形成演化与成矿作用[J].矿床地质,2010,29(1):24‐36.
    [166]翟明国.华北克拉通的形成与早期地壳板块构造[J].地质学报,2012,86(9):1335‐1349.
    [167]张国仁,江淑娥,杨占兴,李春明,关培彦,韩小平,丁伟,王海鹏.辽宁寒岭‐偏岭平移断裂带特征及其形成动力机制[J].地学前缘,2004,11(03):183‐192.
    [168]张家辉,金魏,郑培玺,王亚飞,李斌,蔡丽斌,王庆龙.鞍山地区营城子古太古代片麻岩杂岩的识别与锆石U‐Pb年代学研究[J].岩石学报,2013,29(02):399‐413.
    [169]张景.西鞍山铁矿典型矿床研究与“鞍山式”铁矿深部预测[M].长春:吉林大学地球科学学院,2010.
    [170]张秋生,杨振生,刘连登.辽东半岛早期地壳演化与矿产[M].北京:地质出版社,1988.
    [171]张秋生.中国早前寒武纪地质及成矿作用[M].长春:吉林人民出版社,1984.
    [172]赵振华.条带状铁建造(BIF)与地球大氧化事件[J].地学前缘,2010,17(2):1‐12.
    [173]周红英,刘敦一,万渝生, Wilde S A,伍家善.鞍山地区3.3Ga岩浆热事件SHRIMP年代学和地球化学新证据[J].岩石矿物学杂志,2007,26(2):123‐129
    [174]周红英,刘敦一,万渝生,董春艳.辽宁鞍山地区东山杂岩带3.3‐3.1Ga期间的岩浆作用‐锆石SHRIMP定年[J].地质通报,2008,27(12):2122‐2126.
    [175]周世泰.鞍山-本溪地区条带状铁矿地质[M].北京:地质出版社,1994:1‐278,
    [176]张连昌,翟明国,万渝生,郭敬辉,代培堰,王长乐,刘利.华北克拉通前寒武纪BIF铁矿研究:进展与问题[J].岩石学报,2012,28:3431‐3445.
    [177]张连昌,张晓静,崔敏利等.华北克拉通BIF铁矿形成时代与构造环境[J].矿物学报,2011,(增刊):666‐667.
    [178]郑峻庆,张宝华,蔡一廷,崔文智,张文博,刘如琦.辽宁省本溪地区北台‐歪头山一带太古宙鞍山群主要构造特征及其对铁矿的控制[J].地质找矿从论,1986,1(1):20‐29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700