用户名: 密码: 验证码:
吉黑东部钨矿成因及成矿地球动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吉黑东部地区地处西伯利亚板块和华北板块之间的中亚造山带东段,是一个经历了古亚洲洋构造域和太平洋构造域叠加转换的复杂构造区,成矿地质条件优越,矿产资源丰富。本文选择该区近年来找矿取得较大突破,但理论研究相对薄弱的钨矿床为研究对象,通过杨金沟、五道沟、白石砬子、翠宏山和羊鼻山等典型矿床地质地球化学特征、成矿流体特征、成岩成矿时代和构造背景等研究,确定了区内钨矿床的成因类型,讨论了不同矿床的成岩成矿物质来源和成矿地球动力学背景。取得的主要成果如下:
     1.对东北地区近年来新发现的首个大型钨矿床—珲春杨金沟白钨矿矿床进行了系统研究。首次提出该矿床属国内外少见的含白钨矿石英脉型,时空及成因上与二叠纪末期I-S型过渡花岗岩密切相关,成矿时代为三叠纪(热液白云母40Ar/39Ar年龄(230.79±1.19)Ma),成岩成矿物质具有深源性,成岩成矿作用与兴蒙造山带东段古生代末期古亚洲洋的俯冲作用有关。
     2.根据矿床成因,将本区钨矿床划分为热液脉型和矽卡岩型两种。热液脉型矿床的主矿体一般呈脉状发育于地层或岩体中,矿石矿物组成较为简单,围岩蚀变主要有硅化、云英岩化、高岭土化、白云母化和绿泥石化;矽卡岩型钨矿床的主矿体一般呈扁豆状和透镜状产于中酸性侵入岩和地层的接触带上,围岩蚀变主要为矽卡岩化、硅化、绿泥石化、绿帘石化、高岭土化、碳酸盐化、萤石化等,根据矿石中的矿物组合,进一步分为独立型和共(伴)生型矽卡岩型钨矿床。
     3.热液脉型钨矿床与成矿关系密切的岩体主要为花岗闪长岩,具有髙硅、富铝、富碱的特征,显示为准过铝质-弱过铝质钙碱性花岗岩的I型或I-S型过渡花岗岩特征。矽卡岩型钨矿床成矿相关岩体可分为两类,第一类为I型花岗岩,以石英闪长岩、石英二长岩为代表,为准铝质碱钙性系列岩石,富集轻稀土元素,亏损重稀土元素和Nb、Ta等高场强元素;第二类以混合岩化片麻状花岗岩为代表的与S型花岗岩,为过铝质富钾钙碱性系列岩石,富集轻稀土元素和Rb,亏损重稀土元素和Ba、Sr、Nb、Ta、Ti等元素。
     4.不同矿床主成矿阶段流体包裹体、H-O同位素研究结果表明,热液脉型钨矿床包裹体气相组分主要为H2O、CO2和N2,偶见少量的CH4,成矿流体属NaCl-H2O-CO2体系,主要来自岩浆水。矽卡岩型钨矿床包裹体中的气相成分主要为H2O和CO2,偶见少量的CH4等,成矿流体属NaCl-H2O体系,主要为岩浆水和大气降水的混合。
     白钨矿单矿物的稀土、微量元素分析结果显示,热液脉型钨矿床中白钨矿单矿物的轻重稀土分馏不明显,并具有强烈的正Eu异常,显示为Ⅱ型白钨矿的特征,成矿物质来源较深;矽卡岩型钨矿床白钨矿单矿物具有一定程度的轻重稀土分馏,并以弱的正Eu或负Eu异常为特征;成矿物质与赋矿地层和成矿岩体具有密切联系。
     5.成岩成矿年代学研究显示,以杨金沟矿床为代表的热液脉型钨矿床形成于二叠纪晚期-三叠纪早期,成矿年龄约为(230.79±1.19)Ma。矽卡岩型钨矿床明显分为两期,早期以佳木斯地区的羊鼻山铁钨矿床为代表,成矿相关岩体的锆石U-Pb年龄为(507.6±1.0)Ma;晚期以翠宏山钨钼多金属矿床和白石砬子钨矿床为代表,白石砬子矿床成矿岩体的侵位年龄为(198.27±0.80)Ma,翠宏山矿床辉钼矿Re-Os等时线年龄为(198.9±3.7)Ma。
     6.代表性矿床的成岩成矿时代、成矿岩体的岩石地球化学特征及区域构造演化的综合研究表明,吉黑东部热液脉型钨矿床形成于晚二叠世-三叠世时期古亚洲洋向东北地块群俯冲作用有关的活动大陆边缘构造背景,成岩成矿物质应为壳源或壳幔混合源。以翠宏山和白石砬子为代表的早侏罗世矽卡岩型钨矿化主要发生于岛弧活动大陆边缘环境,其成岩成矿物质为壳幔混合源,形成于早侏罗世太平洋板块向欧亚板块俯冲的动力学背景下;以羊鼻山为代表早古生代钨矿化形成于同碰撞的构造环境,成岩成矿物质为壳源,与早奥陶世佳木斯地块与松嫩-张广才岭地块之间的陆陆碰撞有关。
Eastern Jilin and Heilongjiang Provinces is located in the east part of Central AsiaOrogenic Belt, situated between the Siberian Plate and North China Plate. This area is acomplex tectonic region that experienced superposition activities of Paleo Asian Oceanand Pacific Ocean tectonic domain, which resulted in advantageous metallogenicgeological conditions and abundant mineral resources. Geological prospecting of tungstendeposits in recent years has made obvious breakthroughs in the area, but the theory level isrelatively low. This thesis focuses on the geological and geochemical characteristics,ore-forming fluid, geochronology and tectonic settings of typical deposits, such asYangjingou, Wudaogou, Baishilazi, Cuihongshan, Yangbishan, and discusses their theore-forming materials source and geodynamic settings. Such major conclusions are drawnas followings.
     1. The Yangjingou scheelite deposit recently discovered in Hunchun area, firstlarge-scale tungsten deposits in Northeast China, has been systematically studied. Thedeposit is identified as scheelite-quartz vein type which is rare type in both at home andabroad. It’s proved that Yangjingou deposit is closely related to Late Permian I-S transitiontype and formed in Triassic (40Ar/39Ar age of hydrothermal muscovite is(230.79±1.19)Ma). The diagenetic and metallogenetic material of this deposit was derived from the deepsource. Moreover, the diagenesis and mineralization of Yangjingou deposit are associatedwith the subduction of Paleo Asian Ocean to Xing’an-Mongolia Orogenic Belt in latePaleozoic.
     2. According to their ore genesis, tungsten deposits in the area can be divided into hydrothermal vein type and skarn type. The major orebodies of hydrothermal vein typedeposits are usually hosted by stratum or Late Paleozoic granitic intrusions, and aregenerally scheelite-quartz veins. The mineral composition of the ore is relatively simple.Wall-rock alterations include silicification, greisenization, kaolinization, muscovitizationand chloritization. The orebodies of skarn deposits are usually lenticular and are controlledby contact zone between granites and the stratum. Wall-rock alteration types includeskarnization, silicification, chloritization, epidotization, kaolinization, carbonatization andfluoritization. The skarn type can be further divided into independent skarn type andaccompanying skarn type thanks to ore mineral assemblages in these deposits.
     3. Granite intrusions associated with hydrothermal vein type tungsten mineralizationare mainly granodiorite. These rocks have high-Si, Al and alkali-rich, and display thefeatures of bequasi-peraluminous/weakly peraluminous calc-alkaline series, which areusually I type granites or I-S transition type granites. Granite associated withmineralization of skarn mineralization can be divided into two groups, the first is I-type,represented by quartz diorite or quartz monzonite, and the second is S-type, represented bymigmatized gneissic granite. Quartz diorite or quartz monzonite belongs to bequasi-aluminous calc-alkaline series, have enrichment of LREE and depletion of HREE and thehigh field-strength element (Nb, Ta etc). Migmatized gneissic granite belongs toperaluminous calc-alkaline series, have enrichment of LREE, Rb and depletion of HREE,Ba, Sr, Nb, Ta, Ti etc.
     4. Studies on fluid inclusions and H-O isotope from the main mineralization stage ofdifferent deposits show that gas components of fluid inclusions from hydrothermal veintype deposits are mainly H2O, CO2and N2, and occasionally small amounts of CH4. Theore-forming fluid of hydrothermal vein-type deposits are the NaCl-H2O-CO2system andmainly from magmatic water. Gas components of fluid inclusions from skarn deposits aremainly H2O, CO2and occasionally a small amount of CH4, which indicates that theore-forming fluid of skarn deposits belongs to the NaCl-H2O system and the mixture ofmagmatic water and meteoric waters.
     Rare earth element and trace element analysis of the scheelite show that scheelitesfrom hydrothermal vein-type tungsten deposits have no fractionation of LREE and HREEand a strong positive Eu anomaly, show the characterization of Ⅱ-type which originated from deep source. Scheelites from skarn deposits have obviously fractionation of LREEand HREE and a weak Eu anomaly (positive or negative), and ore-forming material isclosely related with the ore-bearing stratum and metallogenetic rock.
     5. Diagenetic and metallogenetic ages of different tungsten deposits show thathydrothermal vein type deposits (represented by Yangjingou deposit) were formed in thelate Permian to early Triassic, and the metallogenic age was determined to230.79±1.19Ma. Skarn tungsten deposits are clearly divided into two phases, the earlier isrepresented by Yangbishan tungsten deposit in Jiamusi region, zircon U-Pb ages ofmetallogenetic intrusion in Yangbishan deposit is determined to (507.6±1.0) Ma. Thelater is represented by Cuihongshan W-Mo polymetallic deposit and Baishilazi tungstendeposit. The emplacement age of metallogenetic granitic intrusion from Baishilazi depositwas (198.27±0.80) Ma, and molybdenite Re-Os isochron age of Cuihongshan deposit is(198.9±3.7) Ma.
     6. By comprehensive studies of diagenetic and metallogenetic age, geochemicalcharacteristics of representative deposits and tectonic evolution, it can be concluded thathydrothermal vein-type tungsten deposits in Eastern Jilin and Heilongjiang Provincesformed at island-arc active continental margin in Late Permian-Triassic period, when thesubduction of Paleo Asian Ocean to the northeast block groups played an important role intectonic evolution of this area. Early Jurassic skarn deposits, represented by Cuihongshanand Baishilazi, occurred at island-arc active continental margin, with diagenetic andmetallogenetic material from crust-mantle mixed source, formed under the subduction ofthe Pacific plate to the Eurasian Plate including the study area in early Jurassic. EarlyPaleozoic skarn deposit represented by Yangbishan formed under the tectonic setting ofsyn-collisional, with diagenetic and metallogenetic material from crust, and is closelyrelated to the continental collision between the Jiamusi Massif and Songnen Massif inEarly Ordovician.
引文
[1] Baksi, A.K., Archibald, D.A., Farrar, E., Intercalibration of40Ar/39Ar dating standards[J]. ChemGeol,1996,129,307-324.
    [2] Begbie M J. Normal fault hosted quartz-scheelite lodes and associated vein swarm, Glenorchy,NW Otago. In: The Australasian Institute of Mining and Metallurgy New Zealand Branch34thannual conference[J].2001,34:131-140.
    [3] Bell K, Anglin C D, Franklin J M. Sm-Nd and Rb-Sr isotope systematics of scheelites: Possibleimplications for the age and genesis of vein-hosted gold deposits[J]. Geology,1989,17(6):500-504.
    [4] BERAN A, GATZINGER M, ZEMANN J. A scheelite mineralization in calc-silicate rocks of theMoldanubicum (Bohemian Massif) in Austria [J]. Mineralium Deposita,1985,20:16-22.
    [5] Bowers, T. S. The deposition of gold and other metals: pressure-induced fluid immiscibility andassociated stable isotope signatures. Geochimica et Cosmochimica Acta,1991,55(9),2417-2434.
    [6] Brugger J, Lahaye Y, Costa S, et al.. Inhomogeneous distribution of REE in scheelites and thedynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, WeaternAustralia)[J]. Contrib Mineral Petrol,2000,139(3):251-264.
    [7] Brugger J, Maas R, Lahaye Y, et al.. Origins of Nd-Sr-Pb isotopic variations in single scheelitegrains from Archaean golddeposits, western Australia[J]. Chem. Geol.,2002,182(2-4):203-225.
    [8] Chen Y., Pei R., Zhang H., et al. The Geology of Non-ferrous and Rare Metal Deposits Related toMesozoic Granitoids in Nanling Region[M]. Geological Publishing House,1989.
    [9] Dostal, J., Kontak, D. J., Chatterjee, A. K.. Trace element geochemistry of scheelite and rutilefrom metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada:genetic implications[J]. Mineralogy and Petrology,2009,97(1-2),95-109.
    [10] Ghaderi M, Palin J M, Campbell I H, et al. Rare earth element systematics in scheelite fromhydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia[J]. Econ. Geol.,1999,94:423-438.
    [11] Gladkochub, D. P., Donskaya, T. V., Wingate, M. T., et al. Petrology, geochronology, andtectonic implications of c.500Ma metamorphic and igneous rocks along the northern margin ofthe Central Asian Orogen (Olkhon terrane, Lake Baikal, Siberia). Journal of the GeologicalSociety,2008,165(1),235-246.
    [12] Groves D I and Bierlein F P. Geodynamic settings of mineral deposit systems[J]. Journal of theGeological Society,2007, Vol.164:19-30.
    [13] Guo, F., Fan, W.M., Li, C.W.,et al. Early Paleozoic subduction of the Paleo-Asian Ocean:evidence from the geochronology and geochemistry of Dashizhai basalts from the Nei Mongoliaregion, NE China[J]. Science in China (Series D—Earth Sciences),2009,52,940–951.
    [14] Hofmann A W. Chemical differentiation of the earth: the relationship between mantle, continentalcrust, and oceanic crust[J]. Earth Planet Sci Lett,1988,90:297-314.
    [15] Hu, Z. C., Gao, S., Liu, Y. S., et al. Signal enhancement in laser ablation ICP-MS by addition ofnitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry,2008,23,1093–1101.
    [16] Jason G Y, Kevin L S, Hendrik F, et al.. Origin of high-grade quartz-scheelite veins in theCantung Mine, Northwest Territories, Canada[C]. In: Geological Society of America,2004annualmeeting,2004,36(5):355.
    [17] Jian, P., Liu, D.Y., Kr ner, et al. Time scale of an early to mid-Paleozoic orogenic cycle of thelong-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continentalgrowth[J]. Lithos,2008,101:233–259.
    [18] Jian, P., Liu, D.Y., Kr ner, A., et a. Devonian to Permian plate tectonic cycle of the Paleo-TethysOrogen in southwest China (II): insights fromzircon ages of ophiolites, arc/back-arc assemblagesand withinplate igneous rocks and generation of the Emeishan CFB province[J]. Lithos,2009,113:767–784.
    [19] Kent A J R, Campbell I H and McCulloch M T. Sm-Nd systematics of hydrothermal scheelitefrom the Mount Charlotte Mine, Kalgoorlie, Western Australia: An isotopic link between goldmineralization and komatiites[J]. Economic Geology,1995,90:2329-2335.
    [20] Khain, E. V., Bibikova, E. V., Salnikova, E. B., et al. The Palaeo-Asian ocean in theNeoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonicreconstructions[J]. Precambrian Research,2003,122(1):329-358.
    [21] Li H., Mao J., Sun Y., et al. Re-Os isotopic geochronology of the Shizhuyuan polymetallictungsten deposit, Southern Huanan[J]. Geolog. Rev.,1996,42:261–267.
    [22] Li, J.Y., Permian geodynamic setting of Northeast China and adjacent regions: closure of thePaleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences,2006,26,207–224.
    [23] Liu, Y., Gao, S., Hu, Z., Gao, C., et al. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and traceelements in zircons of mantle xenoliths[J]. Journal of Petrology,2010,51,537-571.
    [24] Liu, Y. S., Hu, Z. C., Gao, S., et al. In situ analysis of major and trace elements of anhydrousminerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008,257,34-43.
    [25] Mao J., Li H.. Evolution of the Qialishan granite stock and its relation to the Shizhuyuanpolymetallic tungsten deposit[J]. Internat. Geolog. Rev.,1995,37, pp.63–80.
    [26] Mao Jingwen, Zhang Zhaochong, Zhang Zuoheng, et al. Re-Os isotopic dating of molybdenites inthe Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J].Geochimica et Cosmochimica Acta,1999,63(11–12):1815–1818.
    [27] McDougal. I., Harrison, T.M.. Geochronology and Thermochronology by the40Ar/39Ar Method[M],2nd ed. Oxford University Press, USA.1999.
    [28] Meng, E., Xu, W. L., Pei, F. P., et al. Detrital-zircon geochronology of Late Paleozoicsedimentary rocks in eastern Heilongjiang Province, NE China: implications for the tectonicevolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics,2010,485(1),42-51.
    [29] Miao, L.C., Fan, W.M., Liu, D.Y., et al. Geochronology and geochemistry of the Hegenshanophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia–Daxinganling orogenic belt, China[J]. Journal of Asian Earth Sciences,2008,32,348–370.
    [30] Pan, Y., and Fleet, M.E., Intrinsic and external controls on the incorporation of rare-earth elementsin calc-silicate minerals[J]. The Canadian Mineralogist,1996,34:147-159.
    [31] Pichavant M, Ramboz C and Weisbrod A. Fluid immiscibility in natural processes: use and misuseof fluid inclusion data: I, phase equilibria analysis-a theoretical and geometrical approach[J].Chemical Geology,1982,37(1-2):1-27.
    [32] Plimer I. R The association of tourmalinite with stratiform scheelite deposits[J]. MineraliumDeposita,1987,22(4):282-291.
    [33] PlLMER I R. Strata-bound Scheelite in Meta-evaporites, Broken Hill, Australia [J]. EconmicGeology,1994,89(3):423-437.
    [34] Potter, R. W., CLYNNE, M. A., BROWN, D. L. Freezing point depression of aqueous sodiumchloride solutions[J]. Economic Geology,1978,73(2):284-285.
    [35] Qi L, Zhou M F. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of PermianEmeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology,2008,248:83-103.
    [36] RAMBOZ, Claire; PICHAVANT, Michel; WEISBROD, Alain. Fluid immiscibility in naturalprocesses: use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in termsof immiscibility[J]. Chemical Geology,1982,37.1:29-48.
    [37] Ren Yunsheng, Ju Nan, Zhao Hualei, et al. Geochronology and Geochemistry of MetallogeneticPorphyry Bodies from the Nongping Au‐Cu Deposit in the Eastern Yanbian Area, NE China:Implications for Metallogenic Environment[J]. Acta Geologica Sinica-English Edition,2012,86(3),619-629.
    [38] Richards JP. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J].Economic Geology,2003,98:1515–1533.
    [39] Robinson, P.T., Zhou, M.F., Hu, X.F., et al. Geochemical constraints on the origin of theHegenshan ophiolite, Inner Mongolia, China[J]. Journal of Asian Earth Sciences,1999,17,423–442.
    [40] Roland E, Urs S and Rudolf H. Age and evolution of scheelite-hosting rocks in the Felbertaldeposit (Eastern Alps): U-Pb geochronology of zircon and titanite[J]. Contrib Mineral Petrol.,1995,119:377-386.
    [41] Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation. LongmanScientific Technical,1993, Harlow, UK,80–142.
    [42] Salnikova, E. B., Sergeev, S. A., Kotov, A. B., et al. U-Pb zircon dating of granulitemetamorphism in the Sludyanskiy Complex, eastern Siberia[J]. Gondwana Research,1998,1(2),195-205.
    [43] S ngor, A.M.C., Natal'in, B.A., Burtman, V.S., Evolution of the Altaid tectonic collage andPaleozoic crustal growth in Eurasia[J]. Nature,1993,364:299–307.
    [44] S ngor, A.M.C., Natal'in, B.A., Paleotectonics in Asia: fragments of a synthesis[C]. In: Yin, A.,Harrison, M.(Eds.), The Tectonic Evolution of Asia[M]. Cambridge University Press, Cambridge,1996, pp.486–640.
    [45] Shirey S.B., Walker R. J., Carius tube digestion for low-blank rhenium-osmium analysis[J], Anal.Chem.,1995,67:2136-2141.
    [46] Sláma J, Kosler J, Condon DJ, et al. Plesovice zircon-A new natural reference material for U-Pband Hf isotopic microanalysis[J]. Chemical Geology,2008,249:1-35.
    [47] Smoliar M.I., Walker R.J. and Morgan J.W. Re-Os ages of group IIA, IIIA, IVA and VIB ironmeteorites. Science,1996,271,1099-1102.
    [48] Song S. Mineral deposits of China (Middle Volume)[M]. Geological Publishing House.1994, pp.1–104.
    [49] Stuart F M, Burnard P, Taylor R P et al.. Resolving mantle and crustal contributions to ancienthydrothermal fluid: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization,South Korea[J]. Geochimica et Cosmochimica Acta,1995,59:4663-4673.
    [50] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications formantle composition and processes[J]. Geological Society, London, Special Publications,1989,42(1):313-345.
    [51] Taylor, S.R., and McLennan S.M.. The continental crust:its composition and evolution,anexamination of the geochemical record preserved in sedimentary rocks[M].Blackwell SciencePublisher,Oxford,UK,1985.
    [52] Taylor, S.R., Mclennan, S.M.. The geochemical evolution of the continental crust [J]. Reviews ofGeophysics,1995,33(2):241265.
    [53] U. S. Geological Survey. International Strategic Mineral Issues Summary Report—Tungsten[M].Washington: United States Government Printing Office,1998.
    [54] U. S. Geological Survey. Mineral Commodity Summaries[M].2012,176-177.
    [55] Voicu G, Bardoux M, Stevenson R et al.. Nd and Sr isotope study of hydrothermal scheelite andhost rocks at Omai, Guiana Shield: implications for ore fluid source and flow path during theformation of orogenic gold deposits[J]. Mineral. Deposita,2000,35:302-314
    [56] Wang, F, Xu, W. L., Meng, E. et al. Early Paleozoic amalgamation of the Songnen–Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian OrogenicBelt: geochronological and geochemical evidence from granitoids and rhyolites. Journal of AsianEarth Sciences,2012,49,234-248.
    [57] Wang, F., Zhou, X.H., Zhang, L.C., et al. Late Mesozoic volcanism in the Great Xing'an Range(NE China): timing and implications for the dynamic setting of NE Asia[J]. Earth and PlanetaryScience Letters,2006,251,179–198.
    [58] Weaver BL,Tarney J.Empirical approach tio estimating the composition of the continentalcrust[J].Nature,1984,310:575.
    [59] Wilde S A, Dorsett-Bain H L, Lennon R G. Geological setting and controls on the development ofgraphite, sillimanite and phosphate mineralization within the Jiamusi Massif: an exotic fragmentof Gondwanaland located in north-eastern China?[J]. Gondwana Research,1999,2(1):21-46.
    [60] Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence ofcontinental crust and oceans on the Earth4.4Gyr ago[J]. Nature,2001,409:175-178.
    [61] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in Northeastern China: SHRIMPU-Pb zircon evidence for igneous ages from the Mashan Complex[J]. Precambrian Research,2003,122:311-327.
    [62] Wilde S A, Zhang X Z, Wu F Y. Extension of a newly-identified500Ma metamorphic terrain inNortheast China: Further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province,China[J]. Tectonophysics,2000,328:115-30.
    [63] Wilde S A, Dorsett-Bain H L, Liu J L. The identification of a Late Pan-African granulite faciesevent in Northeastern China: SHRIMP U-Pb zircon dating of the Mashan Group at Liu Mao,Heilongjiang Province, China, Proceedings of the30th IGC:17Precambrian Geology andMetamorphic Petrology, VSP International[M]. Science Publishers, Amsterdam,1997:59-74.
    [64] Wood S A and Samson A I. The hydrothermal geochemistry of tungsten in granitoid environments:I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl[J].Economic Geology,2000,95:143-182.
    [65] Wu Fu-yuan, Jahn Bor-ming, Wilde, S.A., et al. Highly fractionated I-type granites in NE China(I): geochronology and petrogenesis[J]. Lithos,2003,66:241–273.
    [66] Wu, F.Y., Sun, D.Y., Li, H.M. A-type granites in northeastern China: age and geochemicalconstraints on their petrogenesis[J]. Chemical Geology,2002,187(1-2):143–173.
    [67] Wu Fu-Yuan,, Sun De-You, Ge Wen-Chun, et al. Geochronology of the Phanerozoic granitoids innortheastern China[J]. Journal of Asian Earth Sciences.2011,Volume41, Issue1, Pages1–30.
    [68] Wu F Y, Sun D Y, Jahn B M et al.. A Jurassic garnet-bearing granitic pluton from NE Chinashowing tetrad REE patterns[J]. Journal of Asian Earth Sciences,2004,23:731-744.
    [69] Wu, F. Y., Zhao, G. C., Sun, D. Y., et al. The Hulan Group: its role in the evolution of the CentralAsian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences,2007,30(3),542-556.
    [70] Xiao, W.J., Windley, B.F., Hao, J., et al. Accretion leading to collision and the Permian Solonkersuture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics,2003,22(6),1069-1089.
    [71] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al. Paleozoic accretionary and collisional tectonics of theeastern Tianshan (China): Implications for the continental growth of central Asia[J]. AmericanJournal of Science,2004,304,370–395.
    [72] Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partialmelting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology,2005,218:339–359.
    [73] Yang Liekun, Wang Fei, Shen Jialin, et al. Lasing on pyroclastic rocks: A case study of40Ar/39Ar dating on Moshishan Group, eastern Zhejiang Province[J]. Chinese Science Bulletin,2008,53(24):3876-3882.
    [74] Yang S X and Blum N. A fossil hydrothermal system or a source-bed in the Madiyi Formationnear the Xiangxi Au-Sb-W deposit, NW Hunan, PR China[J]. Chem. Geol.,1999,155(1-2):151-169.
    [75] Zhang Y B, Wu F Y, Wilde S A et al.. Zircon U-Pb ages and tectonic implications of ‘EarlyPaleozoic’ granitoids at Yanbian, Jilin Province, northeast China[J]. Island Arc,2004,13:484-505
    [76] Zhao, D.P., Multiscale seismic tomography and mantle dynamics[J]. Gondwana Research,2009,15:297–323.
    [77] Zhou J B, Wilde S A, Zhang X Z et al. The onset of Pacific margin accretion in NE China:evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics,2009,478:230-246.
    [78] Zhou J B, Wilde S A, Zhao G C et al. Was the easternmost segment of the Central Asian OrogenicBelt derived from Gondwana or Siberia: an intriguing dilemma?[J]. Journal of Geodynamics,2010,50:300-317.
    [79]安俊波,徐仁杰,崔贤实.延边地区白石砬子白钨矿矿床地质特征及成因探讨[J].吉林地质,2010,29(3):39-43.
    [80]陈静,孙丰月.黑龙江三道湾子金矿床锆石U-Pb年龄及其地质意义[J].黄金,2011,32(5):18-22.
    [81]陈静.黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用[D].长春:吉林大学,2011.
    [82]陈毓川,裴荣富,张宏良,等.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].1989,北京:地质出版社.
    [83]邓胜徽,万传彪,杨建国.黑龙江阿城晚二叠世安加拉-华夏混生植物群—兼述古亚洲洋的关闭问题[J].中国科学D辑:地球科学,2009,39(12):1744-1752.
    [84]董策.佳木斯地块构造演化-来自晚古生代沉积-火山岩的制约[D].长春:吉林大学,2013.
    [85]杜安道,何红蓼,殷宁万等.辉钼矿的铼-锇同位素地质年龄测定方法研究[J].地质学报,1994,68(4):339-347.
    [86]杜安道,赵敦敏,王淑贤等. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J].岩矿测试,2001,20(4):247-252.
    [87]丰成友,黄凡,屈文俊,等.赣南九龙脑矿田东南部不同类型钨矿的辉钼矿Re-Os年龄及地质意义[J].中国钨业,2011b,26(4):6-11.
    [88]丰成友,黄凡,曾载淋,等.赣南九龙脑岩体及洪水寨云英岩型钨矿年代学[J].吉林大学学报(地球科学版),2011a,41(1):111-121.
    [89]冯继承,张文,吴泰然等.甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义[J].北京大学学报(自然科学版),2012,48(1):61-70.
    [90]冯佳睿,周振华,程彦博.云南南秧田钨矿床流体包裹体特征及其意义[J].岩石矿物学杂志,2010,29(1):50-58.
    [91]高永宝,李文渊,张照伟.祁漫塔格白干湖-戛勒赛钨锡矿带石英脉型矿石流体包裹体及氢氧同位素研究[J].岩石学报,2011,27(6):1829-1839.
    [92]葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,52(20):2407-2417.
    [93]龚庆杰,韩东昱,王玉荣.4.0%NaCl水溶液临界区域内白钨矿溶解度实验测定[J].岩石学报,2006,22(12):3052-3058.
    [94]哈尔滨润泽矿业有限责任公司.黑龙江省双鸭山市羊鼻山铁矿地形地质图[R].2004.
    [95]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的矿床成矿系列及其演化[M].哈尔滨:黑龙江人民出版社.2004.
    [96]韩振哲.小兴安岭东南端早古生代花岗岩类时空演化特征与多金属成矿[D].北京:中国地质大学(北京),2011.
    [97]郝宇杰,任云生,赵华雷等.黑龙江省翠宏山钨钼多金属矿床辉钼矿Re-Os同位素定年及其地质意义[J].吉林大学学报(地球科学版),2013,43(6):1840-1850.
    [98]黑龙江省地质矿产局.黑龙江省区域地质志[M],北京:地质出版社,1993.
    [99]黑龙江省地质矿产局.黑龙江省岩石地层[M].北京:中国地质大学出版社,2008.
    [100]侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
    [101]华仁民,陈培荣,张文兰等.华南中、新生代与花岗岩类有关的成矿系统[J].中国科学D辑,2003a,33(4):335-343.
    [102]华仁民,张文兰,陈培荣等.赣南大吉山与漂塘花岗岩及有关成矿作用特征对比[J].高校地质学报,2003b,9(4):609-619.
    [103]华仁民.南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义[J].地质论评,2005,51(6):633-639.
    [104]黄兰椿,蒋少涌.江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究[J].岩石学报,2012,28(12):3887-3900.
    [105]黄小娥.我国钨矿找矿的新发现及其启示[J].中国钨业,2009,24(5):33-37
    [106]吉林省地质矿产局.全国地层多重划分对比研究-吉林省岩石地层[M].武汉:中国地质大学出版社,1997.
    [107]吉林有色勘查局六〇三队,吉林省珲春市五道沟钨矿地质普查报告[J].2006.
    [108]江思宏,聂凤军.甘肃北山红尖兵山钨矿床的40Ar/39Ar同位素年代学研究[J].矿床地质,2006,25(1):89-94.
    [109]颉颃强,张福勤,苗来成等.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义[J].岩石学报,2008b,24(6):1237-1250.
    [110]颉颃强,苗来成,陈福坤等.黑龙江东南部穆棱地区“麻山群”的特征及花岗岩锆石SHRIMPU-Pb定年—对佳木斯地块最南缘地壳演化的制约[J].地质通报,2008a,27(12):2127-2137.
    [111]鞠楠.延边天宝山矿集区立山多金属矿床的矿床成因与构造背景[D].长春:吉林大学,2013.
    [112]鞠楠.延边天宝山矿集区立山多金属矿床的矿床成因与构造背景[D].长春:吉林大学.2012.
    [113]李恩泽.伊通—舒兰断裂带(长春段)地震活动性及对长春城市发展的影响[D].长春:吉林大学,2012.
    [114]李峰,姜建军.吉林省珲春市杨金沟白钨矿床地质特征及成因机制探讨[J].吉林地质,2008,27(2):22-25.
    [115]李红霞,郭锋,李超文,赵亮.延边小西南岔铜矿区早白垩世英云闪长岩的岩石成因[J].地球化学,2012,41(6):497-514.
    [116]李洪茂,时友东,刘忠,等.东昆仑山若羌地区白干湖钨锡矿床地质特征及成因[J].地质通报,2006,25(1-2):277-281.
    [117]李锦轶.布列亚一佳木斯古板块的构成及演化[J].地学研究,第28号,96-98.
    [118]李军敏.四平—长春地区新构造运动[D].长春:吉林大学,2004.
    [119]李俊萌.中国钨矿资源浅析[J].中国钨业,2009,24(6):9-13.
    [120]李鹏,吕新彪,陈超等.国庆钨矿钾长花岗岩年代学、地球化学特征及其地质意义[J].岩石矿物学杂志,2011,30(1):13-24.
    [121]李水如,魏俊浩,邓军,等.广西大明山矿集区钨多金属矿床类型及控矿因素与找矿标志[J].中国钨业,2007.22(6):15-21.
    [122]李伟民.黑龙江杂岩带中的蓝片岩岩石学、地质年代学研究及其地质意义[D].长春:吉林大学,2008.
    [123]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999:1-290.
    [124]刘建峰,迟效国,董春艳,等.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27(4):534-544.
    [125]刘建峰.小兴安岭东部早古生代花岗岩地球化学特征及其构造意义[D].长春:吉林大学,2006.
    [126]刘建平,腾建德.江西大吉山矿区成矿(矿化)阶段的研究[J].有色金属(矿山部分),2007,59(3):16-19.
    [127]刘茂强,杨丙中等.伊通—舒兰地堑地质构造特征及其演化[M].北京:地质出版社,1993.
    [128]刘敏,张作衡,向君峰.青海大黑山钨矿黑云二长花岗岩的锆石U-Pb同位素定年及岩石地球化学特征[J].岩石学报,2014,30(1):139-151.
    [129]刘琰,邓军,李潮峰,等.四川雪宝顶白钨矿稀土地球化学与Sm-Nd同位素定年[J].科学通报,2007,52(16):1923-1929.
    [130]刘永江,张兴洲,金巍等.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943-951.
    [131]刘志宏,黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因[D].长春:吉林大学,2009.
    [132]卢焕章.华南钨矿成因[M].1986,重庆:重庆出版社.
    [133]卢秀全,胡春亭,钟国军.吉林珲春杨金沟白钨矿床地质特征及成因初探[J].吉林地质,2005,24(3):16-21.
    [134]吕科,王勇,肖剑.西华山复式花岗岩株地球化学特征及构造环境探讨[J].东华理工大学学报(自然科学版),34(2):117-128.
    [135]毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律[J].地质学报,2011,85(5):636-658.
    [136]毛景文,谢桂青,程彦博,等.华南地区中生代主要金属矿床模型[J].地质论评,2009,55(3):347-354.
    [137]毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报,2007,23(10):2329-2338.
    [138]毛景文,杨建民,张作衡,等.甘肃肃北野牛滩含钨花岗质岩岩石学、矿物学和地球化学研究[J].地质学报,2000,74(2):142-155.
    [139]毛景文,张招祟,任丰寿,等.北祁连山西段金属矿床时空分布和生成演化[J].地质学报,1999,73(1):73-82.
    [140]门兰静.延边-东宁地区晚中生代浅成热液金铜矿床的成矿流体与成矿机理研究[D].长春:吉林大学.2011.
    [141]聂凤军,江思宏,胡朋,张义.甘肃北山红尖兵山钨矿床地质特征及成矿物质来源[J].矿床地质,2004,23(1):11-19.
    [142]聂荣峰,王旭东.赣南钨矿研究进展[J].中国钨业,2007,22(3):1-5.
    [143]牛雪,卢造勋,姜德禄.郯庐断裂北带地区主要构造单元壳幔结构特征与地震活动性[J].地震学报,2000,22(2):145-150.
    [144]逄伟,孙景贵,门兰静等.延边东部五道沟岩群的单颗粒锆石SHRIMP U-Pb年代学及其地质意义[J].中国地质,2008,35(6):1178-1184.
    [145]彭建堂,胡瑞忠,昭君红,等.湖南沃溪矿床白钨矿锶-铷同位素和REE对矿床成因的制约[J].矿物岩石地球化学通报,2004,23(增):48-49.
    [146]彭建堂,胡瑞忠,赵军红,等.湘西沃溪Au-Sb-W矿床中白钨矿Sm-Nd和石英Ar-Ar定年[J].科学通报,2003,48(18):1976-1981.
    [147]彭建堂,张东亮,胡瑞忠,等.湘西渣滓溪钨锑矿床白钨矿的Sm-Nd和Sr同位素地球化学[J].地质学报,2008,82(11):1514-1521.
    [148]彭建堂,张东亮,胡瑞忠等.湘西渣滓溪钨锑矿床白钨矿中稀土元素的不均匀分布及其地质意义[J].地质论评,2010,56(6):810-819.
    [149]彭玉鲸,齐成栋,周晓东,等.吉黑复合造山带古亚洲洋向滨太平洋构造域转换:时间标志与全球构造的联系[J].地质与资源,1997,21(3):261-265.
    [150]祁进平,陈衍景,Franco Pirajno.东北地区浅成低温热液矿床的地质特征和构造背景[J].矿物岩石,2005,25(2):47-59.
    [151]任云生,鞠楠,赵华雷,等.延边东部五道沟脉型白钨矿矿床地质特征及流体包裹体[J].吉林大学学报(地球科学版),2011,41(6):1736-1744.
    [152]任云生,雷恩,赵华雷,等.延边杨金沟大型白钨矿矿床流体包裹体特征及成因探讨[J].吉林大学学报(地球科学版),2010a,40(4):764-772.
    [153]任云生,牛军平,王辉,等.吉林四平孟家岭含钨花岗岩体锆石LA-ICP-MS年龄及其地质意义[J].矿物岩石,2009,29(3):100-105.
    [154]任云生,赵华雷,雷恩,等.延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征与矿床成因[J].岩石学报,2010b,26(12):3720-3726.
    [155]邵洁连.金矿找矿矿物学[M].武汉:中国地质大学出版社,1988.
    [156]邵军,李秀荣,杨宏智.黑龙江翠宏山铅锌多金属矿区花岗岩锆石SHRIMP U-Pb测年及其地质意义[J].地球学报,2011,32(2):163-170.
    [157]石洪召,林方成,张林奎.钨矿床的时空分布及研究现状[J].沉积与特提斯地质,2009,29(4):90-95.
    [158]宋彪,李锦轶,牛宝贵.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J].地球学报,1997,18(3):306-312.
    [159]孙德有,吴福元,高山等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275.
    [160]孙德有,吴福元,高山,等.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报,2004,25(2):213-218.
    [161]孙健,倪艳军,柏道远.湘东南瑶岗仙岩体岩石化学特征、成因与构造环境[J].华南地质与矿产,2009,03:12-18.
    [162]孙景贵,陈雷,赵俊康,等.延边小西南岔富金铜矿田燕山晚期花岗杂岩的锆石SHRIMPU-Pb年龄及其地质意义[J].矿床地质,2008,27(3):319-328.
    [163]孙珍军,孙丰月,孙国胜,于赫楠,刘善丽,杜美艳,敖冬,李超,王春光.小兴安岭北麓石林公园区钼钨矿化成矿地球化学特征及年代学[D].吉林大学学报(地球科学版),2012,42(S3):25-37.
    [164]谭成印,杜杨松,赵寒冬,郑红敏.黑龙江右岸北西向有色、贵金属构造-成矿带的确立及其地质意义[J].地质与资源,2009,18(4):256-265.
    [165]谭成印.黑龙江省主要金属矿产构造-成矿系统基本特征[D].北京:中国地质大学,2009.
    [166]唐杰,许文良,王枫等.张广才岭帽儿山组双峰式火山岩成因:年代学与地球化学证据[J].世界地质,2011,30(4):508-520.
    [167]唐文龙.黑龙江省前进地区岩浆岩地球化学特征与成矿预测[D].长春:吉林大学,2007.
    [168]汪志刚.吉林东部中生代内生金属矿床成矿作用研究[D].长春:吉林大学,2012.
    [169]王非,贺怀宇,朱日祥等.40Ar/39Ar年代学国际国内标样的对比标定[J].中国科学D辑(地球科学),2005,35(7):617-626.
    [170]王联魁,黄智龙. Li-F花岗岩液态分离作用与实验[M].2000,北京:科学出版社.
    [171]王希今,谭成印,张东才等.黑龙江省有色、贵金属矿产区域成矿特征[J].矿物岩石地球化学通报,2007,26(4):376-381.
    [172]王小凤,李中坚.陈柏林等.郯庐断裂带[M].北京:地质出版社,2000.
    [173]王晓地,汪雄武,孙传敏.甘肃后长川钨矿白钨矿Sm-Nd定年及稀土元素地球化学[J].矿物岩石,2010,30(1):64-68.
    [174]王旭东,倪培,蒋少涌等.赣南漂塘钨矿流体包裹体研究[J].岩石学报,2008,24(9):2163-2170.
    [175]王旭东,倪培,张伯声等.江西盘古山石英脉型钨矿床流体包裹体研究[J].岩石矿物学杂志,2010,29(5):539-550.
    [176]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.
    [177]魏连喜.黑龙江省有色、贵金属成矿规律及定量预测研究[D].长春:吉林大学,2013.
    [178] K. H.乌尔夫.层控矿床和层状矿床[M].(第五卷).北京:地质出版社,1980.
    [179] Simon A Wilde,吴福元,张兴洲.中国东北马山君权岩晚泛非期贬值的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,30(1):35-40.
    [180]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-189.
    [181]吴福元,S Wilde,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    [182]吴根耀,梁兴,陈焕疆.试论郯城—庐江断裂带的形成、演化及其性质[J].地质科学,2007,42(1):160-175.
    [183]吴根耀.白垩纪:中国及邻区板块构造演化的一个重要变换期[J].中国地质,2006,33(1):64-77.
    [184]武鹏飞,孙德有,王天豪,苟军,李蓉,刘玮,柳小明.延边和龙地区闪长岩的年代学、地球化学特征及岩石成因研究[J].高校地质学报,2013,19(4):600-610.
    [185]席斌斌,张德会,周利敏.江西省全南县大吉山钨矿成矿流体演化特征[J].地质学报,2008,82(7):956-965.
    [186]席斌斌,张德会,周利敏.南岭地区几个与锡钨矿化有关的岩体的岩浆演化[J].地质通报,2007,26(12):1591-1598.
    [187]熊德信,孙晓明,石贵勇,等.云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J].岩石学报,2006,22(3):733-741.
    [188]徐克勤,刘英俊,俞受钧.中国钨矿的类型及其分布规律[M].见:全国第一届矿产会议文献汇编,第三辑(下册).北京:地质出版社,1958.
    [189]徐美君,许文良,王枫,等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J],岩石学报,2013,29(2):354-368.
    [190]许文良,王枫,孟恩等.黑龙江省东部古生代—早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据[J].吉林大学学报(地球科学版),2012,42(5):1378-1389.
    [191]许文良,王枫,裴福萍等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353.
    [192]许文良,孙德有,周燕,等.满洲里—绥芬河地学断面:岩浆作用和地壳结构[M].北京:地质出版社,1994.
    [193]薛明轩.黑龙江省内生金矿成矿作用研究[D].长春:吉林大学,2012.
    [194]杨浩,张彦龙,陈会军,葛文春.兴凯湖花岗杂岩体的锆石U-Pb年龄及其地质意义[J].世界地质,2012,31(4):621-630.
    [195]杨言辰,韩世炯,孙德有等.小兴安岭-张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究[J].岩石学报,2012,28(2):379-390.
    [196]殷俐娟.我国钨资源可供性分析[J].中国钨业,2003,18(5):16-19.
    [197]于介江,侯雪刚,葛文春,张彦龙,柳佳成.佳木斯地块东北缘早二叠世六连岩体的岩浆混合成因:岩相学、年代学和地球化学证据[J].岩石学报,2013,29(9):2971-2986.
    [198]翟明国,樊祺诚,张宏福,等.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用[J].岩石学报.2005,21(6):1509-1526.
    [199]翟裕生.中国区域成矿特征探讨.地质与勘探[J].2002,38(5):1-4.
    [200]张宝林,贾文臣,沈晓丽,郭志华,黄雪飞,徐永生.北方造山带钨矿的分布、类型、时代与构造背景[J].矿床地质,2010,29(增):327-328.
    [201]张超,郭巍,徐仲元,刘正宏,刘永江,雷聪聪.吉林东部延边地区二长花岗岩年代学、岩石成因学及其构造意义研究[J].岩石学报,2014,30(2):512-526.
    [202]张春晓,包杰,胡忠义,唐海涛.镓元素在羊鼻山矿床中的地质特征[J].黑龙江科技信息.2010,26:28-29.
    [203]张汉成,王京彬,艾霞.杨金沟白钨矿床地质特征及找矿前景分析[J].地质与勘探,2005,41(6):42-48.
    [204]张汉成,王京彬,付水兴,艾霞.杨金沟白钨矿床围岩蚀变及组分迁移规律研究[J].地质与勘探,2006,42(5):1-7.
    [205]张磊,李秋根,史兴俊,童英,侯继尧,张建军,王涛.佳木斯地块中部二叠纪永清花岗闪长岩的锆石U-Pb年龄、地球化学特征及其地质意义[J].岩石矿物学杂志,2013,32(6):1022-1036.
    [206]张新虎,苏犁,崔学军,等.甘肃北山造山带玉山钨矿成岩成矿时代及成矿机制[J].科学通报,2008,53(9):1077-1084.
    [207]张兴洲.黑龙江岩系:古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992,22增):94-101.
    [208]张艳斌,吴福元,孙德有,李惠民.延边“早海西期”棉田花岗岩和仲坪紫苏辉石闪长岩的单颗粒锆石U-Pb定年[J].地质论评,2002,48(4):424-429.
    [209]张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].长春:吉林大学,2002,1-132.
    [210]张勇.吉林省中东部地区侏罗纪钼矿床的地质、地球化学特征与成矿机理研究[D].长春:吉林大学,2013.
    [211]张振庭.黑龙江省伊春地区铅锌多金属矿产预测[D].长春:吉林大学,2010.
    [212]赵寒冬.东北地区小兴安岭南段-张广才岭北段古生代火成岩组合与构造演化[D],北京:中国地质大学(北京),2009.
    [213]赵华雷,任云生,侯召硕,孙娇.延边汪清县白石砬子钨矿地质特征与流体包裹体研究[J].矿物学报,2011a,31(增):533-534.
    [214]赵华雷,任云生,鞠楠,等.延边白石砬子钨矿床成矿岩体的年代学与地球化学特征[J].吉林大学学报(地球科学版),2011b,41(6):1726-1735.
    [215]赵华雷,任云生,李晨辉.延边地区钨矿床类型及典型矿床特征研究[J].矿物学报,2009,270-271.
    [216]赵院冬,赵君,王奎良,车继英,吴大天,许逢明,李世超.小兴安岭西北部晚石炭世造山后达音河岩体的特征及其地质意义[J].岩石矿物学杂志,2013,32(1):63-72.
    [217]赵振华.微量元素地球化学研究进展//张本仁,傅家谟.地球化学进展.北京:化学工业出版社,2005:199–248.
    [218]周长勇,吴福元,葛文春,等.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,200521(3):763-775.
    [219]周伏洪.关于郯庐断裂和东北南部主要断裂的关系[J].地震地质,1985,7(2):1-9.
    [220]周建波,张兴洲,马志红等.中国东北地区的构造格局与盆地演化[J].石油与天然气地质,2009,30(5):530-538.
    [221]周建波,曾维顺,曹嘉麟等.中国东北地区的构造格局与演化:从500Ma到180Ma[J].吉林大学学报(地球科学版),2012,42(5):1298-1316.
    [222]朱弟成,莫宣学,王立全等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学D辑:地球科学,2009,39(7):833-848.
    [223]朱祥培,张永忠,徐九发.江西崇义塘漂孜岩体型钨矿床地质特征及其找矿意义[J].资源调查与环境,2006,27(2):450-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700