用户名: 密码: 验证码:
基于背景噪声的地下结构随时间变化监测和成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用近年来迅速发展的基于背景噪声的方法,本文开展了地下介质随时间变化监测和地下结构层析成像两方面的研究工作。
     在基于背景噪声监测地下介质结构随时间变化的研究方面,本文发展了基于三分量资料的方法技术,并应用该方法对汶川Ms8.0地震震中区、芦山Ms7.0级地震震中区及周边的地下结构随时间变化进行了研究,获得了速度结构变化的时空特征,取得了如下认识:
     1、发展的基于三分量背景噪声的波速变化测量方法,使噪声互相关的分量组合由只用垂直分量资料时的单分量组合增加到九个,通过多分量组合的叠加极大地提高了波速变化的测量精度和计算结果的稳定性;采用分周期(频带)测量的方法,可以有效约束波速变化的赋存深度;
     2、利用靠近汶川震中的紫坪铺水库台网6个台站和区域台网离震中最近的YZP台2004年-2011年的三分量波形,测量了1-8s周期(反映地下约数百米至10km深度)的波速变化,结果表明,在汶川地震前长达4年的时间里波速变化一直保持平稳;
     3、在汶川地震发生时所有的周期(1-2s、2-4s和4-8s)均观测到了明显的同震波速降低,其中2-4s周期范围(敏感深度约为1-4km)观测到的波速降低最大,约为0.2%;
     4、汶川地震后波速逐渐恢复,在震后的前几十天里波速呈现近似对数形态的快速恢复特征,之后三年(一直到观测结束时间)波速恢复过程非常缓慢,波速降低基本固定在一恒定值(周期2-4s和4-8s波速降低分别为0.13%和0.08%)可能说明断层区内部介质结构在地震中产生了永久性破坏;
     5、汶川地震震中区周边同震波速变化的空间分布结果显示,不同周期波速变化的平面分布不同,但一个基本特征是靠近汶川地震地表破裂带附近的同震波速降低较大;
     6、根据本研究结果并结合人工地震测深和小区域层析成像资料对汶川地震引起震中区介质结构波速变化的物理机制进行了分析,认为主要机制为浅层地壳和断层区内部结构破坏与震后孔隙弹性回弹;
     7、研究结果还首次观测到了与水库蓄水过程相关的波速变化,紫坪铺水库蓄水后,1-2s周期范围(约数百米至2km深度的浅层地壳)的波速变化与库区水位变化呈明显的负相关,但震后的波速变化对库区水位变化比震前更为敏感,其机制可能为:汶川地震造成浅层地壳裂隙张开,导致了岩石渗透性和水的流动性显著增强,进而引起了对水位变化更为敏感的波速变化;
     8、利用芦山地震周边约200km范围内的13个宽频带台站三分量数据研究了震中区及周边的地壳介质波速变化,结果显示,芦山地震震中区1-2s周期的同震波速降低为0.03%,远小于汶川震中区的波速降低,表明同震波速变化幅度可能在很大程度上取决于地震震级大小;
     9、在芦山震中区以外的较大范围里(震中半径200km),观测到超过震前波速扰动的小幅同震波速变化信号,其中还存在同震波速增加现象,这些同震变化是否反映真实地下介质变化信息尚需进一步确认。
     在利用背景噪声对地下结构成像的研究方面,本文应用固定和流动台网272个台站的高密度连续观测资料反演了中国东北和华北北部地区7-50s周期瑞雷波相速度和各向异性(反映从浅部地壳至约100km深度),取得了以下主要认识:
     1、周期7s相速度结构(大约反映5-10km深度)受地表地质构造影响强烈,低速异常边界不仅清晰地勾绘出松辽盆地这样的大型盆地,而且海拉尔、二连、下辽河和三江这些较小规模的盆地在速度图上也有所显示;在该层一些盆地区显示出较强的各向异性,特别是松辽和下辽河盆地区呈现出强烈的(?)NNE-NE向各向异性,这一结果可能反映上述盆地形成演化过程中的伸展构造背景;
     2、周期12-25s相速度图像反映中下地壳至上地幔顶部结构,速度异常基本呈北东向展布,与区内地表地形和断裂带展布方向一致,反映深浅结构存在对应关系;郯庐断裂带附近各向异性快波方向与断裂走向相近,揭示出深大断裂对区域构造的影响;周期为25s的瑞雷波相速度和各向异性在重力梯度带两侧均有显著差异,反映了研究区莫霍面深度的变化;
     3、更长周期相速度(35s和50s周期)反映岩石圈地幔深度结构,结果显示长白山、大同火山和松辽盆地下方为低速异常,还发现二连盆地到渤海湾区域下方存在显著弧形低速异常,该异常可能与重力梯度带的形成演化有关。华北克拉通边界南北两侧的各向异性差异减小,可能是二者中生代以来有相似构造演化史的表现。
     本文获得的研究结果有多方面的重要意义:
     1、地震引起的介质结构变化规律深化了对地震孕育、发生过程及致灾机理的认识,从而对防震减灾有着重要的科学意义;
     2、水库蓄水对地壳浅层波速变化的影响为水库诱发地震的机理提供了科学依据,从而对有效地指导人类相关的工程活动有重要的价值;
     3、中国东北地区岩石圈瑞雷波相速度结构和各向异性反演结果为研究俯冲板块对上覆岩石圈的作用打下基础。
This thesis focuses on two main types of applications related to ambient noise: monitoring the temporal changes of subsurface velocity and imaging the structures of crust and upper mantle. On noise-based seismic monitoring, a new method of measuring velocity change was developed using three-component ambient noise, and applied to the epicentral area of the Ms8.0Wenchuan earthquake and Lushan Ms7.0earthquake to investigate the spatial and temporal changes of crustal velocity. The new understandings are listed as following:
     1. In our new method based on three-component, the velocity changes are measured from nine component combinations, rather than one component combination in the case of that only vertical component data are used. The average of all nine components increases the stability and accuracy of the velocity change measurements. The measurement of velocity changes in different sub-bands gives constrains on the depth of velocity change.
     2. We use seismic data recorded by six short-period stations in the Zipingpu Reservoir Seismic Network and one broadband station YZP from2004to2011to measure the velocity change in the period of1-8s (wide range of depth sensitivity from hundreds of meters to about10km). The results show that temporal velocity change has remained steady up to four years before the Wenchuan earthquake.
     3. The seismic velocity dramatically decreased at the time of the main shock in all period bands. The largest coseismic deduction,~0.2%, is observed in the period band of2-4s (approximate depth of1-4km).
     4. The seismic velocity overall recovers in approximate logarithmic form in first tens of days after the main shock. The velocity reduction is almost constant following the initial postseismic recovery. The velocity reductions for more than3years after the main shock in the period band of2-4s and4-8s are0.13%and0.08%, respectively.
     5. In different periods, the lateral distributions of coseismic velocity change are different, but the most significant coseismic changes occurred around the two surface ruptures of the mainshock.
     6. Based on our measurements and seismic reflection and local tomography data, we infer that the observed temporal changes in the top4km are likely associated with a combined effect of damages in shallow sedimentary rocks and around active faults.
     7. In this study, we first found that the variation in the seismic velocities related to the reservoir impoundment. After the start of reservoir impoundment of the Zipingpu Reservoir, a clear negative correlation between velocity change in the period of1-2s and the water level was observed. The variation in the seismic velocity after the Wenchuan earthquake is significantly increased as compared with before the main shock. We hypothesize that opening of fractures in shallow crust by strong shaking of main shock may significantly increase permeability or water mobility, which could in turn enhance the impact of water level on velocity change.
     8. We use three-component waveforms recorded by13broadband stations about200km around the epicenter of the Lushan earthquake to study the temporal and spatial velocity changes caused by this event. The results show that the seismic velocity in the period of1-2s near the Lushan epicenter is reduced about0.03%, far less than the velocity reduction in the Wenchuan epicenter, which reflect that coseismic velocity changes may largely depend on the magnitude of earthquake.
     9. We find that even far from the Lushan epicenter (about200km) there are slightly coseismic velocity changes, including the increases of velocity, which are significant compared to the preseismic velocity perturbations. Whether these changes reflect the true coseismic subsurface changes needs further confirmation.
     On noise-based imaging, we use the continuous seismic waveforms from a dense array including272broadband stations to invert the Rayleigh wave phase velocity and azimuth anisotropy at period ranging from7to50s in northeast China. We obtain following new understandings:
     1. The Rayleigh phase velocity structure in the period of7s is strongly affected by the surface geological structures. The boundaries of low-velocity anomalies not only clearly map the large basins such as the Songliao Basin, but also display small basins, such as Hailar, Erlian, Xialiaohe and Sanjiang Basin. There are strong azimuthal anisotropy in the Songliao and Xialiaohe Basin, which may reflect the background of extensional tectonics in the formation and evolution of the basins.
     2. The maps of phase velocity in the period of12-25s reflect the structure from middle-lower crust to uppermost mantle. The velocity anomalies are generally NE trending in accordance with the surface topography and fault strike. The direction of the fast wave near the Tanlu fault is similar with the strike, which may show the important effect of large fault on regional geology. The Rayleigh wave phase velocity and anisotropy both show significant differences on the two sides of the Gravity Lineament, which may reflect different Moho depths.
     3. In longer period (35s and50s), the inversion results of lithospheric mantle reveal there are low-velocity anomalies beneath the Changbaishan and Datong volcanoes and Songliao Basin. We also find there is a significant arc-like low-velocity body beneath from Erlian Basin to Bohai Bay, which may be associated with the formation and evolution of the Gravity Lineament. The difference of the azimuthal anisotropy between two sides of the north boundary of North China Craton is reduced, which may manifest the similar evolution history of both sides since the Mesozoic.
     The results obtained in this paper have some important implications:
     1. The results of temporal-spatial variations of seismic velocity caused by earthquakes could deepen the understanding of the preparation, occurrence, interaction and hazards of earthquakes.
     2. The study of seismic velocity changes around reservoir area can provide observational evidence of reservoir-induced earthquakes and also can guide human engineering practice effectively.
     3. The inversion of Rayleigh wave phase velocity and azimuthal anisotropy in northeastern China can lay a foundation for studying the effect of subducting Pacific slab on the structure of lithosphere.
引文
Ai, Y., T. Zheng, and W. Xu et al.,2003, A complex 660 km discontinuity beneath northeast China[J]. Earth Planet. Sci. Lett.,212(1-2):63-71.
    Aki K,1957, Space and time spectra of stationary stochastic waves with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute,35:415-456.
    Aki K, Richards P G.,2002, Quantitative Seismology, Second Edition[M]. Sausalito, California: University Science Books.
    An M, Feng M, Dong S, et al,2009, Seismogenic Structure around the Epicenter of the May 12, 2008 Wenchuan Earthquake from Micro-seismic Tomography[J]. Acta Geologica Sinica, 83(4):724-732.
    Anggono T, Nishimura T, Sato H, et al,2012, Spatio-temporal changes in seismic velocity associated with the 2000 activity of Miyakejima volcano as inferred from cross-correlation analyses of ambient noise[J]. J. Volcanol. Geotherm. Res.,247-248:93-107.
    Baptie B J,2010, Lava dome collapse detected using passive seismic interferometry[J]. Geophys. Res. Lett.,37:L00E10.
    Behr Y, Townend J, Bannister S, et al,2010, Shear velocity structure of the Northland Peninsula, New Zealand, inferred from ambient noise correlations[J]. J. Geophys. Res.,115:B05309.
    Bensen G D, Ritzwoller M H, Shapiro N M,2008, Broad-band ambient noise surface wave tomography across the United States[J]. J. Geophys. Res.,113:B5306.
    Bensen G D, Ritzwoller M H, Yang Y,2009, A 3-D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise[J]. Geophys. J. Int., 177(8):1177-1196.
    Beroza G C, Ide S,2011, Slow Earthquakes and Nonvolcanic Tremor[J]. Annu. Rev. Earth Planet. Sci.,39:271-296.
    Boue P, Poli P, Campillo M, et al,2013, Teleseismic correlations of ambient seismic noise for deep global imaging of the Earth[J]. Geophys. J. Int.,194(2):844-848.
    Brenguier F, Shapiro N M, Campillo M, et al,2008a, Towards forecasting volcanic eruptions using seismic noise[J]. Nat. Geosci.,1:126-130.
    Brenguier F, Campillo M, Hadziioannou C, et al,2008b, Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations[J]. Science, 321:1478-1481.
    Brenguier F, Clarke D, Aoki Y, et al,2011, Monitoring volcanoes using seismic noise correlations[J]. C. R. Geoscience,343:633-638.
    Brenguier F, Shapiro N M, Campillo M, et al,2007,3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations[J]. Geophys. Res. Lett.,34:L02305.
    Campillo M, Roux P,2014, Seismic Imaging and Monitoring with Ambient Noise Correlations[J]. in press.
    Campillo M, Paul A,2003, Long-Range Correlations in the Diffuse Seismic Coda[J]. Science, 299(5606):547-549.
    Chen J H, Froment B, Liu Q,2010, Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake[J]. Geophys. Res. Lett.,37:L18302.
    Chen L,2009, Lithospheric structure variations between the eastern and central North China Craton from S-and P-receiver function migration[J]. Phys. Earth Planet. Int.,173(3-4):216-227.
    Cheng C, Chen L, Yao H, et al,2013, Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications[J]. Gondwana Research,23(1):25-38.
    Cheng X, Niu F, Wang B,2010, Coseismic Velocity Change in the Rupture Zone of the 2008 Mw 7.9 Wenchuan Earthquake Observed from Ambient Seismic Noise[J]. Bull. Seismol. Soc. Am.,100(5B):2539-2550.
    Chouet B A,1996, Long-period volcano seismicity its source and use in eruption forecasting[J]. Nature,380:309-316.
    Claerbout J F,1968, Synthesis of a layered medium from its acoustics transmission response[J]. Geophysics,33:264-269.
    Deng K, Zhou S, Wang R, et al,2010, Evidence that the 2008 Mw 7.9 Wenchuan Earthquake Could Not Have Been Induced by the Zipingpu Reservoir[J]. Bull. Seismol. Soc. Am., 100:2805-2814.
    Duvall T L, Jefferies S M, Harvey J W, et al,1993, Time distance helioseismology[J]. Nature, 362:430-432.
    Dziewonski A M, Romanowicz B. Overview of Volume I:Seismology and structure of the earth[M]//Treatise of Geophysics. Elsevier,2007.
    Ekstrom G,2014, Love and Rayleigh phase-velocity maps,5-40 s, of the western and central USA from USArray data[J]. Earth Planet. Sci. Lett., in press.
    Einstein A,1906,Zur Theorie der Brownschen Bewegung[J]. Ann.Phys.,19:371-381.
    Froment B, Campillo M, Chen J H, et al,2013, Deformation at depth associated with the May 12, 2008 Mw 7.9 Wenchuan earthquake from seismic ambient noise monitoring[J]. Geophys. Res. Lett.,40:78-82.
    Fry B, Deschamps F, Kissling E, et al,2010, Layered azimuthal anisotropy of Rayleigh wave phase velocities in the European Alpine lithosphere inferred from ambient noise[J]. Earth Planet. Sci. Lett.,297:95-102.
    Fry B, Davey F, Eberhart-Phillips D, et al,2014, Depth variable crustal anisotropy, patterns of crustal weakness, and destructive earthquakes in Canterbury, New Zealand[J]. Earth Planet. Sci. Lett.,392:50-57.
    Ge S, Liu M, Lu N, et al,2009, Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake[J]. Geophys. Res. Lett.,36:L20315.
    Guo Z, Gao X, Wang W, et al,2012, Upper-and mid-crustal radial anisotropy beneath the central Himalaya and southern Tibet from seismic ambient noise tomography[J]. Geophys. J. Int., 189:1169-1182.
    Hao K X, Si H, Fujiwara H, et al,2009, Coseismic surface-ruptures and crustal deformations of the 2008 Wenchuan earthquake Mw 7.9, China[J]. Geophys. Res. Lett.,36:L11303.
    Hillers G, Graham N, Campillo M, et al,2012, Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models[J]. Geochem. Geophys. Geosyst., 13:Q1021.
    Hobiger M, Wegler U, Shiomi K, et al,2012, Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan[J]. J. Geophys. Res., 117:B9313.
    Huang H, Yao H, van der Hilst R D,2010, Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry[J]. Geophys. Res. Lett.,37:L21310.
    Huang J, Zhao D,2006, High-resolution mantle tomography of China and surrounding regions[J]. J. Geophys. Res.,111:B09305.
    Huang, J., and D. Zhao,2009, Seismic imaging of the crust and upper mantle under Beijing and surrounding regions[J]. Phys. Earth Planet. Int.,173(3-4):330-348
    Huang Z, Su W, Peng Y, et al,2003, Rayleigh wave tomography of China and adjacent regions[J]. J. Geophys. Res.,108:2073.
    Huang Z, Peng Y, Luo Y, et al,2004, Azimuthal anisotropy of Rayleigh waves in East Asia[J]. Geophys. Res. Lett.,31:L15617.
    Hubbard J, Shaw J H, Klinger Y,2010, Structural Setting of the 2008 Mw 7.9 Wenchuan, China, Earthquake[J]. Bull. Seismol. Soc. Am.,5B(100):2713-2735.
    Ito Y, Shiomi K,2012, Seismic scatterers within subducting slab revealed from ambient noise autocorrelation[J]. Geophys. Res. Lett.,39:L19303.
    Ji C, Hayes G.2008.Preliminary result of the May 12,2008 Mw 7.9 eastern Sichuan, China earthquake:http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/us2008ryan/finite_fault.ph P-
    Jiang Z, Wang M, Wang Y, et al,2014, GPS constrained coseismic source and slip distribution of the 2013 Mw6.6 Lushan, China, earthquake and its tectonic implications [J]. Geophys. Res. Lett.,41(2):407-413.
    Kohler A, Weidle C, Maupin V,2012, Crustal and uppermost mantle structure of southern Norway:results from surface wave analysis of ambient seismic noise and earthquake data[J]. Geophys. J. Int.,191(3):1441-1456.
    Koppers A A P, Morgan J P, Morgan J W, et al,2001, Testing the fixed hotspot hypothesis using sup 40Ar/39Ar age progressions along seamount trails[J]. Earth Planet. Sci. Lett.,185:237-252.
    Laske G, Masters G, Ma Z, et al. Update on CRUST1.0-A 1-degree Global Model of Earth's Crust:Abstract EGU2013-2658,2013[C].
    Lei, J,2012, Upper-mantle tomography and dynamics beneath the North China Craton[J]. J. Geophys. Res.,117:B06313.
    Li H, Xu X, Ma W, et al,2011, Seismic Structure of Local Crustal Earthquakes beneath the Zipingpu Reservoir of Longmenshan Fault Zone[J]. International Journal of Geophysics, 2011:1-6.
    Li H, Su W, Wang C, et al,2009, Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet[J]. Earth Planet. Sci. Lett.,282:201-211.
    Li J, Niu F,2010, Seismic anisotropy and mantle flow beneath northeast China inferred from regional seismic networks[J]. J. Geophys. Res.,115:B12327.
    Li Y,2010, Fault Damage in the 2008 M8 Wenchuan Earthquake Epicentral Region[J]. Academic Prospective.6 (1):2-16.
    Li Y, Wu Q, Pan J, et al,2012, S-wave velocity structure of northeastern China from joint inversion of Rayleigh wave phase and group velocities[J]. Geophys. J. Int.,190:105-115.
    Liang C, Langston C A,2008, Ambient seismic noise tomography and structure of eastern North America[J]. J. Geophys. Res.,113:B3309.
    Liang C, Langston C A,2009, Three-dimensional crustal structure of eastern North America extracted from ambient noise[J]. J. Geophys. Res.,114:B3310.
    Liang C, Song X, Huang J,2004, Tomographic inversion of Pn travel times in China[J]. J. Geophys. Res.,109:B11304.
    Lin F, Moschetti M P, Ritzwoller M H,2008, Surface wave tomography of the western United States from ambient seismic noise:Rayleigh and Love wave phase velocity maps[J]. Geophys. J. Int.,173(2):281-298.
    Lin F, Ritzwoller M H, Townend J, et al,2007, Ambient noise Rayleigh wave tomography of New Zealand[J]. Geophys. J. Int.,170(9):649-666.
    Lin F, Ritzwoller M H, Yang Y, et al,2010, Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States[J]. Nat. Geosci.,4:55-61.
    Lin F, Tsai V C, Schmandt B, et al,2013, Extracting seismic core phases with array interferometry[J]. Geophys. Res. Lett.,40:1049-1053.
    Liu Z, Huang J, Li J,2010, Comparison of four techniques for estimating temporal change of seismic velocity with passive image interferometry[J]. Earthq. Sci.,23:511-518.
    Luo Y, Xu Y, Yang Y,2013, Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography[J]. Geophys. J. Int,195:1149-1164.
    Ma S,2008, A physical model for widespread near-surface and fault zone damage induced by earthquakes[J]. Geochem. Geophys. Geosyst.,9:Q11009.
    Mainsant G, Larose E, Bronnimann C, et al,2012, Ambient seismic noise monitoring of a clay landslide Toward failure prediction[J]. J. Geophys. Res.,117:F1030.
    Margerin L, Sato H,2011, Reconstruction of multiply-scattered arrivals from the cross-correlation of waves excited by random noise sources in a heterogeneous dissipative medium[J]. Wave Motion,48:146-160.
    McNamara D E, Buland R P,2004, Ambient Noise Levels in the Continental United States[J]. Bull. Seismol. Soc. Am.,94(4):1517-1527.
    Meier U, Shapiro N M, Brenguier F,2010, Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise[J]. Geophys J Int, 181:985-996.
    Molnar P, Tapponnier P,1975, Cenozoic Tectonics of Asia:Effects of a Continental Collision[J]. Science,189(4201):419-426.
    Montagner J P,1986, Regional three dimensional structures using long period surface waves[J]. Ann. Geophys.,4:283-294.
    Mordret A, Jolly A D, Duputel Z, et al,2010, Monitoring of phreatic eruptions using Interferometry on Retrieved Cross-Correlation Function from Ambient Seismic Noise Results from Mt. Ruapehu, New Zealand[J]. J. Volcanol. Geotherm. Res.,191:46-59.
    Moschetti M P, Ritzwoller M H, Lin F C, et al,2010, Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data[J]. J. Geophys. Res.,115:B10306.
    Nadeau R M, Dolenc D,2005, Nonvolcanic tremors deep beneath the San Andreas Fault[J]. Science,307:389.
    Nicolson H, Curtis A, Baptie B, et al,2012, Seismic interferometry and ambient noise tomography in the British Isles[J]. Proceedings of the Geologists'Association,123:74-86.
    Nishida K,2013, Global propagation of body waves revealed by cross-correlation analysis of seismic hum[J]. Geophys. Res. Lett.,40:1-6.
    Niu F, Li J,2011, Component azimuths of the CEArray stations estimated from P-wave particle motion[J]. Earthq. Sci.,24:3-13.
    Obara K,2002, Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan[J]. Science,296:1679-1681.
    Obermann A, Froment B, Campillo M, et al,2014, Seismic noise correlations to image structural and mechanical changes associated with the Mw 7.9 2008 Wenchuan earthquake[J]. J. Geophys. Res.,119(4):3155-3168.
    Payero J S, Kostoglodov V, Shapiro N, et al,2008, Nonvolcanic tremor observed in the Mexican subduction zone[J]. Geophys. Res. Lett.,35:L7305.
    Peltzer G, Rosen P, Rogez F,1998, Poroelastic rebound along the Landers 1992 earthquake surface rupture[J]. J. Geophys. Res.,103:30,130-131,145.
    Peng Z, Ben-Zion Y,2006, Temporal Changes of Shallow Seismic Velocity Around the Karadere-Duzce Branch of the North Anatolian Fault and Strong Ground Motion[J]. Pure and Applied Geophysics,163:567-600.
    Peng Z, Chao K,2008, Non-volcanic tremor beneath the Central Range in Taiwan triggered by the 2001Mw 7.8 Kunlun earthquake[J]. Geophys. J. Int.,175(2):825-829.
    Poli P, Pedersen H A, Campillo M,2012a, Emergence of body waves from cross-correlation of short period seismic noise[J]. Geophys. J. Int.,188(2):549-558.
    Poli P, Campillo M, Pedersen H,2012b, Body-Wave Imaging of Earths Mantle Discontinuities from Ambient Seismic Noise[J].Science,338:1063-1065.
    Poli P, Pedersen H A, Campillo M,2013, Noise directivity and group velocity tomography in a region with small velocity contrasts the northern Baltic shield[J]. Geophys. J. Int.,192:413-424.
    Poupinet G, Ellsworth W L, Frechet J,1984, Monitoring velocity variations in the crust using earthquake doublets:An application to the Calaveras fault, California[J]. J Geophys Res, 89(B7):5719-5731.
    Priestley K, Debayle E, McKenzie D, et al,2006, Upper mantle structure of eastern Asia from multimode surface waveform tomography [J]. J. Geophys. Res.,111:B 10304.
    Ratdomopurbo A, Poupinet G,1995, Monitoring a Temporal Change of Seismic Velocity in a Volcano:Application to the 1992 Eruption of Mt. Merapi (Indonesia)[J]. Geophys. Res. Lett., 22(7):775-778.
    Ren J, Tamaki K, Li S, et al,2002, Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics,344:175-205.
    Rhie J, Romanowicz B,2004, Excitation of Earth's continuous free oscillations by atmosphere-ocean-seafloor coupling[J]. Nature,431:552-556.
    Rivet D, Campillo M, Radiguet M, et al,2013, Seismic velocity changes, strain rate and non-volcanic tremors during the 2009-2010 slow slip event in Guerrero, Mexico[J]. Geophys. J. Int.,196(1):447-460.
    Rogers G, Dragert H,2003, Episodic tremor and slip on the Cascadia subduction zone The chatter of silent slip[J]. Science,300:1942-1943.
    Roux P, Kuperman W A,2004, Extracting coherent wavefronts from acoustic ambient noise in the ocean[J]. Journal of the Acoustical Society of America,116:1995-2003.
    Roux P, Sabra K G, Gerstoft P, et al,2005, P-waves from cross-correlation of seismic noise[J]. Geophys. Res. Lett.,32:L19303.
    Rubinstein J L, Beroza G C,2004, Evidence for Widespread Nonlinear Strong Ground Motion in the MW 6.9 Loma Prieta Earthquake[J]. Bull. Seismol. Soc. Am.,94(5):1595-1608.
    Rubinstein J L, Uchida N, Beroza G C,2007, Seismic velocity reductions caused by the 2003 Tokachi-Oki earthquake[J]. J. Geophys. Res.,112:B05315.
    Sabra K G, Gerstoft P, Roux P, et al,2005, Extracting time-domain Green's function estimates from ambient seismic noise[J]. Geophys. Res. Lett.,32:L3310.
    Sato H, Fehler M C, Maeda T.,2012, Seismic Wave Propagation and Scattering in the Heterogeneous Earth:the Second Edition[M].Berlin Hidelberg:Springer Verlag,494.
    Saygin E, Kennett B L N,2012, Crustal structure of Australia from ambient seismic noise tomography[J]. J. Geophys. Res.,117:B1304.
    Schaff D P, Beroza G C,2004, Coseismic and postseismic velocity changes measured by repeating earthquakes[J]. J. Geophys. Res.,109:B10302.
    Scholz C H.,2002, The mechanics of earthquakes and faulting (Second Edition) [M].Cambridge, U. K.:Cambridge University Press.
    Seats K J, Lawrence J F, Prieto G A,2012, Improved ambient noise correlation functions using Welch's method[J]. Geophys. J. Int.,188:513-523.
    Sens-Schonfelder C, Wegler U,2006, Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia[J]. Geophys. Res. Lett.,33:L21302.
    Sens-Schonfelder C, Larose E,2008, Temporal changes in the lunar soil from correlation of diffuse vibrations[J]. Phys. Rev. E,78:45601.
    Shapiro N M, Campillo M,2004, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys. Res. Lett.,31:L7614.
    Shapiro N M, Ritzwoller M H, Bensen G D,2006, Source location of the 26 sec microseism from cross-correlations of ambient seismic noise[J]. Geophys. Res. Lett.,33:L18310.
    Shapiro N M, Campillo M, Stehly L, et al,2005, High-Resolution Surface-Wave Tomography from Ambient Seismic Noise[J]. Science,307:1615-1618.
    Shen Z, Sun J, Zhang P, et al,2009, Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nat. Geosci.,2(10):718-724.
    Smith M L, Dahlen F A,1973, The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium[J]. J. Geophys. Res.,78(17):3321-3333.
    Snieder R, Larose E,2013, Extracting Earths Elastic Wave Response from Noise Measurements[J]. Annu. Rev. Earth Planet. Sci.,41:183-206.
    Stehly L, Campillo M, Shapiro N M,2007, Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts[J]. Geophys. J. Int.,171(4):223-230.
    Stehly L, Fry B, Campillo M, et al,2009, Tomography of the Alpine Region from Observations of Seismic Ambient Noise[J]. Geophys. J. Int.,178:338-350.
    Takagi R, Okada T, Nakahara H, et al,2012, Coseismic velocity change in and around the focal region of the 2008 Iwate-Miyagi Nairiku earthquake[J]. J. Geophys. Res.,117:B6315.
    Tapponnier P, Molnar P,1977, Active faulting and tectonics in China[J]. J. Geophys. Res., 82(B20):2905-2930.
    Tarantola A, Valette B,1982, Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion[J]. Reviews of Geophysics and Space Physics,20(2):219-232.
    Tibuleac I M, von Seggern D,2012, Crust-mantle boundary reflectors in Nevada from ambient seismic noise autocorrelations[J]. Geophys. J. Int.,189(1):493-500.
    Trampert J, Cara M, Frogneux M,1993, SH Propagator Matrix and Qs Estimates From Borehole-and Surface-Recorded Earthquake Data[J]. Geophys. J. Int.,112(2):290-299.
    Ueno T, Saito T, Shiomi K, et al,2012, Fractional seismic velocity change related to magma intrusions during earthquake swarms in the eastern Izu peninsula, central Japan[J]. J. Geophys. Res.,117:B12305.
    Vidale J E, Li Y G,2003, Damage to the shallow Landers fault from the nearby Hector Mine earthquake[J]. Nature,421:524-526.
    Weaver R L, Lobkis O I,2001, Ultrasonics without a Source:Thermal Fluctuation Correlations at MHz Frequencies[J]. Physical Review Letters,87(13):134301.
    Wegler U, Nakahara H, Schonfelder C S, et al,2009, Sudden Drop of Seismic Velocity after the 2004 Mw 6.6 Mid-Niigata Earthquake, Japan, Observed with Passive Image Interferometry [J]. J. Geophys. Res.,114:B06305.
    Wegler U, Sens-Schonfelder C,2007a, Fault zone monitoring with passive image interferometry[J]. Geophys. J. Int.,168(23):1029-1033.
    Wu F, Hetland E. The Changbaishan, China, PASSCAL experi-ment[R]. Las Ve-gas, USA:1999.
    Xie J, Ritzwoller M H, Shen W, et al,2013, Crustal radial anisotropy across eastern Tibet and the western Yangtze craton[J]. J. Geophys. Res.,118:4226-4252.
    Xu Y, Ma J, Frey F A, et al,2005, Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton[J]. Chemical Geology,224(4):247-271.
    Xu Y,2007, Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling-Taihangshan gravity lineament[J]. Lithos,96:281-298.
    Y. S,1955, Analysis of dispersed surface waves[J]. Bull Earthq. Res. Inst. Tokyo Univ.,33:33-47.
    Yang Y, Li A, Ritzwoller M H,2008, Crustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography[J]. Geophys. J. Int., (174):235-248.
    Yang Y, Ritzwoller M H, Jones C H,2011, Crustal structure determined from ambient noise tomography near the magmatic centers of the Coso region, southeastern California[J]. Geochem. Geophys. Geosyst.,12(2):1525-2027.
    Yang Y, Ritzwoller M H, Levshin A L, et al,2007, Ambient noise Rayleigh wave tomography across Europe[J]. Geophys. J. Int.,168(3):259-274.
    Yao H, Beghein C, van der Hilst R D,2008, Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure[J]. Geophys. J. Int.,173(36):205-219.
    Yao H, van der Hilst R D, de Hoop M V,2006, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophys. J. Int., 166(2):732-744.
    Yao H, van der Hilst R D, Montagner J P,2010, Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography [J]. J. Geophys. Res.,115:B12307.
    Yao H, Xu G, Zhu L, et al,2005, Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in Western China and neighboring regions[J]. Phys. Earth Planet. Int.,148:39-54.
    Yu T, Hung S,2012, Temporal Changes of Seismic Velocity Associated with the 2006 Mw 6.1 Taitung Earthquake in an Arc-Continent Collision Suture Zone[J]. Geophys. Res. Lett., 39:L12307.
    Zaccarelli L, Shapiro N M, Faenza L, et al,2011, Variations of crustal elastic properties during the 2009 L'Aquila earthquake inferred from cross-correlations of ambient seismic noise[J]. Geophys. Res. Lett.,38:L24304.
    Zeng X, Ni S,2010, A persistent localized microseismic source near the Kyushu Island, Japan[J]. Geophys. Res. Lett.,37:L24307.
    Zhan Z, Ni S, Helmberger D V, et al,2010, Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise[J]. Geophys. J. Int.,182:408-420.
    Zhang P, Shen Z, Wang M, et al,2004, Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology,32(9):809-812.
    Zhang W, Shen Y, Chen X,2008, Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May 2008[J]. Sci. China Ser. D-Earth Sci.,51(12):1673-1682.
    Zhao D, Tian Y,2013, Changbai intraplate volcanism and deep earthquakes in East Asia:A possible link?[J]. Geophys. J. Int.,195:706-724.
    Zhao P, Peng Z,2009, Depth extent of damage zones around the central Calaveras fault from
    waveform analysis of repeating earthquakes [J]. Geophys. J. Int.,179:1817-1830.
    Zheng S, Sun X, Song X, et al,2008, Surface wave tomography of China from ambient seismic noise correlation[J]. Geochem. Geophys. Geosyst.,9:Q05020.
    Zheng T, Zhao L, Zhu R X,2009, New evidence from seismic imaging for subduction during assembly of the North China Craton[J]. Geology,37(5):395-398.
    Zheng Y, Shen W, Zhou L, et al,2011, Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography[J]. J. Geophys. Res.,116:B12312.
    陈立春,冉勇康,王虎,等,2013,芦山地震与龙门山断裂带南段活动性[J].科学通报,58(20):1925-1932.
    陈运泰,吴忠良,王培德,等.2000.数字地震学[M].北京:地震出版社.
    杜晓娟,孟令顺,张明仁,2009,利用重力场研究东北地区断裂分布及构造分区[J].地球科学与环境学报,31(2):200-206.
    房立华,吴建平,吕作勇,2009,华北地区基于噪声的瑞利面波群速度层析成像[J].地球物理学报,52(3):663-671.
    房立华,吴建平,王未来,2013,华北地区勒夫波噪声层析成像研究[J].地球物理学报,56(7):2268-2279.
    房立华,吴建平,王未来,等,2013,四川芦山Ms7.0级地震及其余震序列重定位[J].科学通报,58(20):1901-1909.
    傅维州,杨宝俊,刘财,1998,中国满洲里—绥芬河地学断面地震学研究[J].长春科技大学学报,28(2):206-212.
    高东辉,陈永顺,孟宪森,2011,黑龙江地区背景噪声面波群速度层析成像[J].地球物理学报,54(4):1043-1051.
    郭志,高星,王卫民,等,2010,采用地震背景噪音成像技术反演天山及周边区域地壳剪切波速度结构[J].科学通报,55(26):2627-2634.
    国家重大科学工程中国地壳运动观测网络项目组,2008,GPS测定的2008年汶川Ms 8.0级地震的同震位移场[J].中国科学:地球科学,38(10):1195-1206.
    贺传松,2003,用远震接收函数研究滇西地区的深部结构[D]:[博士].中国地震局地球物理研究所.
    黄忠贤,2011,华北地区地壳上地幔速度各向异性研究[J].地球物理学报,54(3):681-691.
    江为为,周立宏,肖敦清,等,2006,东北地区重磁场与地壳结构特征[J].地球物理学进展,21(3):730-738.
    康力,刘志平,盘晓东,等,2001,吉林省中部地区现今构造活动及现代地壳应力场特征的探讨[J].东北地震研究,17(1):69-75.
    雷兴林,马胜利,闻学泽,等,2008,地表水体对断层应力与地震时空分布影响的综合分析——以紫坪铺水库为例[J].地震地质,30(4):1046-1064.
    李皎皎,黄金莉,刘志坤,2012,用背景噪声和地震面波反演东北地区岩石圈速度结构[J].地震,32(4):22-32.
    李英康,锐高,姚聿涛,2014,大兴安岭造山带及两侧盆地的地壳速度结构[J].地球物理学进展,29(1):73-83.
    李昱,姚华建,刘启元,等,2010,川西地区台阵环境噪声瑞利波相速度层析成像[J].地球物理学报,53(4):842-852.
    刘嘉麒,1988,中国东北地区新生代火山幕[J]岩石学报,(1):14.
    刘晓霞,江在森,武艳强,2014,Kriging方法在GPS速度场网格化和应变率场计算中的适用性[J].武汉大学学报信息科学版,39(4):457-461.
    刘洋,刘财,杨宝俊,等,2008,松辽盆地北部纵波速度区域特征分析及深层油气问题[J].地球物理学进展,23(3):785-792.
    刘志坤,黄金莉,2010,利用背景噪声互相关研究汶川地震震源区地震波速度变化[J].地球物理学报,53(4):853-863.
    刘志坤,黄金莉,2011,2010年玉树7.1级地震震源区及周边地震波速度变化[C],中国地球物理年会,2011,长沙
    卢显,张晓东,周龙泉,等,2010,紫坪铺水库库区地震精定位研究及分析[J].地震,30(2):9-18.
    卢造勋,夏怀宽,1993,内蒙古东乌珠穆沁旗—辽-宁东沟地学断面[J].地球物理学报,36(6):765-772.
    鲁来玉,何正勤,丁志峰,2014,基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J].地球物理学报,57(3):822-836.
    潘佳铁,吴庆举,李永华,等,2014,中国东北地区噪声层析成像[J].地球物理学报,57(3):812-821.
    裴军令,杨振宇,赵越,等,2009,中国东北及邻区白垩纪古地磁分析与块体旋转运动动力学背景[J].地质学报,83(5):617-627.
    任纪舜,王作勋,陈炳蔚,1999,从全球看中国大地构造—中国及邻区大地构造图简要说明[M].北京:地质出版社,50.
    单斌,熊熊,郑勇,等,2013,2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系[J].中国科学:地球科学,43(6):1002-1009.
    单新建,屈春燕,宋小刚,等,2009,汶川Ms8.0级地震InSAR同震形变场观测与研究[J].地球物理学报,52(2):496-504.
    苏金蓉,郑钰,杨建思,2013,2013年4月20日四川芦山M7.0级地震与余震精确定位及发震构造初探[J].地球物理学报,56(8):2636-2644.
    唐有彩,陈永顺,杨英杰,2011,华北克拉通中部地区背景噪声成像[J].地球物理学报,54(8):2011-2022.
    田有,刘财,冯(?),2011,中国东北地区地壳、上地幔速度结构及其对矿产能源形成的控制作用[J].地球物理学报,54(2):407-414.
    王卫民,赵连锋,李娟,等,2008,四川汶川8.0级地震震源过程[J].地球物理学报,51(5):1403-1410.
    吴福元,曹林,1999,东北亚地区的若干重要基础地质问题[J].世界地质,18(2):1-13.
    徐锡伟,闻学泽,韩竹军,等,2013,四川芦山7.0级强震一次典型的盲逆断层型地震[J].科学通报,58(20):1887-1893.
    徐锡伟,闻学泽,叶建青,等,2008,汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,30(3):597-629.
    徐义刚,李洪颜,庞崇进,等,2009,论华北克拉通破坏的时限[J].科学通报,54(14):1947-1989.
    杨宝俊,1999,在地学断面域内用地震学方法研究大陆地壳——以中国满洲里-绥芬河地学断面为例[M].北京:地质出版社,187.
    杨宝俊,刘万崧,王喜臣,2005,中国东部大兴安岭重力梯级带域地球物理场特征及其成因[J].地球物理学报,48(1):86-97.
    杨峰,黄金莉,杨挺,2010,应用远震有限频率层析成像反演首都圈上地幔速度结构[J].地球物理学报,53(8):1806-1816.
    姚华建,徐果明,肖翔,等,2004,基于图像分析的双台面波相速度频散曲线快速提取方法[J].地震地磁观测与研究,25(1):1-8.
    易桂喜,姚华建,朱介寿,等,2010,用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征[J].地球物理学报,53(2):256-268.
    詹艳,赵国泽,Martyn UNSWORTH,2013,龙门山断裂带西南段4.20芦山7.0级地震区的深部结构和孕震环境[J].科学通报,58:1-8.
    詹艳,赵国泽,王继军,2006,黑龙江五大连池火山群地壳电性结构[J].岩石学报,22(6):1494-1502.
    张风雪,吴庆举,李永华,2013,中国东北地区远震P波走时层析成像研究[J].地球物理学报,56(8):2690-2700.
    张风雪,吴庆举,李永华,2014,中国东北地区远震S波走时层析成像研究[J].地球物理学报,57(1):88-101.
    张广成,吴庆举,李永华,2013,利用莫霍面PS震相研究中国东北地区地壳各向异性[J].地震学报,35(4):485-497.
    张勇,许力生,陈运泰,2009,2008年汶川大地震震源机制的时空变化[J].地球物理学报,52(2):379-389.
    赵翠萍,陈章立,周连庆,等,2009,汶川Mw8.0级地震震源破裂过程研究:分段特征[J].科学通报,54(22):3475-3482.
    赵盼盼,陈九辉,Campillo,等,2012,汶川地震区地壳速度相对变化的环境噪声自相关研究[J].地球物理学报,55(1):137-145.
    赵振,1991,中国东北部及其邻近地区地震活动时空特征[J].中国地震,7(4):22-32.
    郑秀芬,欧阳飚,张东宁,等,2009,“国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J].地球物理学报,52(5):1412-1417.
    郑亚东,Davis,王琮,2000,燕山带中生代主要构造事件与板块构造背景问题[J].地质学报,74(4):289-302.
    郑勇,葛粲,谢祖军,等,2013,芦山与汶川地震震区地壳上地幔结构及深部孕震环境[J].中国科学:地球科学,43:1027-1037.
    郑永飞,吴福元,2009,克拉通岩石圈的生长和再造[J].科学通报,54(14):1945-1949.
    朱良保,熊安丽,2007,面波频散测量的频时分析法[J].地震地磁观测与研究,28(1):1-13.
    朱日祥,徐义刚,朱光,等,2012,华北克拉通破坏[J].中国科学:地球科学,42(8):1135-1159.
    朱日祥,郑天愉,2009,华北克拉通破坏机制与古元古代板块构造体系[J].科学通报,54(14):1950-1961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700