用户名: 密码: 验证码:
流域水文建模及预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域水文预报是水文学研究领域的重要研究内容,对于水资源规划管理和可持续利用具有重要的支撑作用。在我国,独特的地理位置和气候条件决定了水资源时空分布的极度不均性,同时由于受人类活动和全球气候变暖的影响,当前的水资源时空分布特性及其演化规律正在发生深刻变化,特别是近年来随着我国大型水利枢纽工程的规划、建设和投运,流域水文时空变化特性日趋复杂,从而给流域水文建模与预报提出了更高的要求。
     本文围绕流域水资源开发及优化利用中面临的关键科学问题,研究流域水文建模与预报的先进理论与方法,研究工作对减低水旱灾害损失和实现水资源安全高效可持续利用具有重要的理论意义和工程实用价值。相关成果可在工程实践中推广应用,具有良好的工程应用前景。本文的主要研究内容和创新性成果包括:
     (1)针对集总式水文模型无法精细反映流域下垫面条件和流域水文循环各要素空间分布不均性,且难以描述水文系统特征相应的响应规律的问题,基于集总式新安江水文模型计算的基本原理,结合流域气候条件和下垫面时空变异规律,充分考虑流域下垫面空间分布的异质性和不同水文单元间的水平联系,将流域划分成若干个具有水平联系和垂向联系的栅格单元,并用严格的数学物理方程表述各栅格单元水文循环的子过程以及栅格单元间的水量交换关系,提出并建立了分布式栅格新安江水文预报模型。
     (2)基于两种典型的系统理论水文模型建模方法——神经网络和支持向量回归,建立了两种系统理论短期水文预报模型,研究结果表明,系统理论水文模型同样可以有效模拟流域水文系统径流过程的时间变化规律,支持向量回归模型表现出与神经网络模型相当的预报性能,有些典型条件下预报性能甚至优于神经网络模型,是神经网络模型的一种替代方法,同时,支持向量回归模型参数少,且相比神经网络模型建模步骤简单并具有较强地非线性拟合能力,具有良好的工程应用前景。
     (3)为求解水文模型率定的多目标复杂优化问题,提出了一种多目标文化混合复形差分进化算法MOCSCDE,MOCSCDE算法将SCE-UA置于文化进化的框架中,利用种群进化过程中提取的各种知识指导算法的搜索,提高算法的运行效率,同时考虑到SCE-UA中单纯形算子不能充分利用种群个体信息的不足,采用全局搜索能力强的差分进化算法替代单纯形算子,充分利用种群个体信息指导演化计算,进一步提高了算法的计算效率,为水文模型优化率定提供了一种高效的解决方法。
     (4)针对传统基于单一目标的水文模型参数优化率定方法不能充分全面挖掘水文系统不同动态行为特征的缺陷,将本文提出的多目标优化算法MOCSCDE用于集总式和分布式水文模型优化率定,有效避免了基于单目标优化率定产生的均化效应,显著提高模型预报性能,同时,将MOCSCDE算法应用于系统理论模型输入优选和模型参数优化,既可克服模型输入优选的难题,又能根据不同的水文特性自动优选不同模型结构,提高水文预报精度。
     (5)结合SCEM-UA算法分析了集总式和分布式水文模型参数不确定性和模型预报不确定性,同时首次证明了神经网络水文预报模型中存在的“过参数化”现象,并针对神经网络模型参数不确定性分析结果,提出了有效降低模型预报不确定性的方法,一定程度上提升了模型预报性能,提高了预报可靠性,并为全面评估模型预报性能提供决策依据。
     相关研究成果应用于国家科技支撑计划、国家973基础研究计划、水利部公益性行业专项等项目,为项目研究工作和工程实践运行提供重要的理论依据与数据支撑。
Watershed hydrological forecasting is one of the most important issues in the field ofhydrology. It plays a vital role in water resources management and sustainable utilization.As a result of unique geographical position and the climatic conditions of China, spatialand temporal distribution of water resources is extremely uneven in our country. Also dueto the impact of human activity and global warming, temporal and spatial distributioncharacteristics and evolution of current water resource is undergoing profound change.Especially the construction of large water control projects is increasing the complex ofwatershed hydrological characteristics in recent years. This puts forward highrequirements on hydrological modeling and forecasting.
     In this thesis, the main attention is focused on watershed hydrological modeling andforecasting. This research can provide essential scientific support for optimal use of waterresources, and is of great theoretical significance and practical value for reducing floodlosses and achieving safe and efficient sustainable use of water resources. The main workand innovation of this thesis can be summarized as follows:
     (1) The lumped conceptual hydrological models cannot reflect the uneven distributionof watershed underlying surface and elements of the watershed water cycle. To overcomethis drawback, a novel distributed hydrological model named XAJGrid model is proposedin this research. XAJGrid model is an extension of classic lumped Xinanjiang model. Thisnovel model divides the watershed into several grids. The horizontal and verticalrelationship between each grid and its adjacent grids are described by physical equations.The XAJGrid model can fully take account of temporal and spatial variation of climateconditions and underlying surface.
     (2) Two typical system theoretic models are constructed based on Artificial NeuralNetwork and Support Vector Machine. The models’ feasibility is demonstrated throughseveral case studies. And the results show that both models can be capable of modelingthe dynamic characteristics of streamflow processes. Moreover, the Support VectorMachine model seems to be with better performance. Meanwhile, this model has strongnon-linear fitting capability and easy to implement. It can be seen as a valuable alternativeto Artificial Neural Network model.
     (3) A novel multi-objective algorithm named culture shuffled complex differentialevolution (MOCSCDE) algorithm is proposed to make model calibration based on multi-objective functions. In MOCSCDE algorithm, the culture evolution is taken as theevolving framework and the SCE-UA algorithm is employed as the core evolutionalgorithm for the population space. This evolution strategy can make use of the knowledgeobtained along with the evolution process to guide the algorithm toward the optimizationdirection. Meanwhile, the differential evolution algorithm is employed as a substitute ofthe simplex search operator in SCE-UA to enhance the efficiency of algorithm.
     (4) Traditional hydrological model calibration is always done with single objectivefunction. It cannot properly measure all characteristics of the hydrological system. Tocircumvent this problem, the proposed MOCSCDE algorithm is applied to optimize theparameters of hydrological models under the multi-objective optimization framework.This mechanism can significantly avoid the homogenization phenomenon existing intraditional hydrological model calibration. Besides, the MOCSCDE algorithm is adoptedto optimize the model structure and model parameters of a theoretic model based onSupport Vector Machine. This form of optimization can effectively improve the predictaccuracy by automatically choose the best model structure according differenthydrological characteristics.
     (5) The SCEM-UA algorithm is employed to analyze the parameter and predictiveuncertainty of lumped and distributed models. Simultaneously, the uncertainty of atheoretic model based on Artificial Neural Network is also discussed. The results showthat overparameterisation is very likely to be existed in this type of models. Furthermore,based on the results of uncertainty assessment, a method is proposed to reduce the modeluncertainty. It provides a new way of analyzing and reducing the uncertainty of theoreticmodels.
     Several relevant research results have been applied to National Science and TechnologySupport Program, National Basic Research Program of China (973Program) and SpecialResearch Foundation for the Public Welfare Industry of the Ministry of Science andTechnology. This can provide important theoretical basis and data support for theseprojects.
引文
[1]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告.北京:中国水利水电出版社,2001.
    [2]王顺久,张欣莉,倪长键,等.水资源优化配置原理及方法.北京:中国水利水电出版社,2007.
    [3]沈冰,黄红虎,薛淼森.水文学原理.北京:中国水利水电出版社,2008.
    [4]郭海晋,王政祥,邹宁.长江流域水资源概述.人民长江,2008,39(17):3-5,11.
    [5]《气候变化国家评估报告》编写委员会.气候变化国家评估报告.北京:科学出版社,2007.
    [6]国家防汛抗旱总指挥部,中华人民共和国水利部.中国水旱灾害公报(2006).北京:中国水利水电出版社,2007.
    [7]陈仁升,康尔泗,杨建平,等.水文模型研究综述.中国沙漠,2003,23(3):221-229.
    [8]金鑫,郝振纯,张金良.水文模型研究进展及发展方向.水土保持研究,2006,13(4):197-199,202.
    [9] Linsley R. K, Crawford N H. Computation of a synthetic streamflow record on adigital computer. Hydrological Sciences Bulletin,1960,51:526-538.
    [10] McCuen R. H. A Guide to Hydrologic Analysis Using SCS Methods. Prentice-Hall, Englewood Cliffs,1982.
    [11] Sugawara M. Tank Model with Snow Component. National Research Center forDisaster Prevention, Kyoto, Japan,1974.
    [12] Metcalf&Eddy, Inc., University of Florida, Water Resources Engineers, Inc.Storm Water Management Model, VolumeⅠ-Final Report,11024DOC07/71, WaterQuality Office, Environmental Protection Agency, Washington DC,1971.
    [13] Nielsen S. A., Hansen E. Numerical simulation of the rainfall-runoff process on adaily basis. Nordic Hydrology,1973,4:171-190.
    [14] Bergstrom S. Development and application of a conceptual runoff model forScandinavian catchments, SMHI Report NO.7, Norrkoping,1976.
    [15]赵人俊.流域水文模拟——新安江模型和陕北模型.北京:水利电力出版社,1984.
    [16]江西省水文总站站网科.“新四”流域模型及其参数的地理规律.江西水利科技,1985,3:77-89.
    [17]霍勇,张国威.萨克拉门托模型在乌鲁木齐河流域上的应用及改进.干旱区地理,1992,15(1):77-83.
    [18]胡效宁,路全福,左海凤,等.半干旱地区水库洪水预报中对水箱模型改进的研究和应用.海河水利,1999,1:3-6,46.
    [19] Hu C., Guo S., Xiong L., et al. A modified Xinanjiang model and its application innorthern China. Nordic Hydrology,2005,36:175-192.
    [20] Freeze R. A., Harlan R. L. Blueprint of a physically-based digitally-simulatedhydrological response model. Journal of Hydrology,1969,9:237-258.
    [21] Beven K. J., Kirkby M. J. A Physically Based Variable Contributing Area Model ofBasin Hydrology. Hydrological Sciences Bulletin,1979,24(1):43-69.
    [22] Beven K J. Topmodel. Compute Models of Watershed Hydrology, Warer ResourcePublications, Littleton, Colorado,1995.
    [23]王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述.自然资源学报,2003,18(2):168-173.
    [24] Abbott M. B., Bathurst J. C., Cunge J. A., et al. Introduction to the EuropeanHydrological System-Systeme Hydrologique European, SHE,2.Structure of aPhysically-based distributed Modelling System. Journal of Hydrology,1986,87(1):61-67.
    [25] Bathurst J. C., Wicks J. M., O'Connell P. E. The SHE/SHESED basin scale waterflow and sediment transport modelling system. In: Computer Models of WatershedHydrology, Water Resource Publications, Littleton, Colorado,1995.
    [26] Refsgaard C., Storm B. MIKE SHE. In: Computer Models of Watershed Hydrology,Water Resource Publications, Littleton, Colorado,1995.
    [27] Morris E. M. Forecasting flood flows in grassy and forested basins using adeterministic distributed mathematical model. IAHS Publication,1980,129:247-265.
    [28] Arnold J. G., Williams J. R., Srinivasan R., et al. Large area hydrologic modelingand assessment part I: model developmet. Journal of the American WaterResources Association,1998,34(1):73-89.
    [29] Srinivasan R., Ramanarayanan T. S., Arnold J. G., et al. Large area hydrologicmodeling and assessment part II: Model application. Journal of the American WaterResources Association,1998,34(1):91-101.
    [30] Liang X., Lettenmaier D. P., Wood E. F., et al. A simple hydrologically basedmodel of land surface water and energy fluxes for general circulation models.Journal of Geophysical Research,1994,99(7):14415-14428.
    [31] Yang D., Herath S., Musiake K. Development of a geomorphology-basedhydrological model for large catchments. Annual Journal of Hydraulic Engineering,JSCE,1998,42:169-174.
    [32] Todini E., Ciarapica L. The TOPKAPI model. In: Mathematical Models of LargeWatershed Hydrology, Water Resource Publications, Littleton, Colorado,2001.
    [33]沈晓东,王腊春,谢顺平.基于栅格数据的流域降雨径流模型.地理学报,1995,50(3):264-271.
    [34]黄平,赵吉国,林少礼.山坡地分布型降雨下渗数学模型.中山大学学报(自然科学版),2000,39(6):107-111.
    [35]郭生练,熊立华,杨井,等.基于DEM的分布式流域水文物理模型.武汉水利电力大学学报,2000,33(6):1-5.
    [36]张成才,马双梅,孙喜梅.基于DEM模型的流域参数识别方法研究.灌溉排水,2000,21(1):33-35,40.
    [37]熊立华,郭生练.分布式流域水文模型.北京:水利水电出版社,2004.
    [38]杨大文,李翀,倪广恒,等.分布式水文模型在黄河流域的应用.地理学报,2004,59(1):143-154.
    [39]贾仰文,王浩,王建华,等.黄河流域分布式水文模型开发和验证.自然资源学报,2005,20(2):300-308.
    [40]都金康,谢顺平,许有鹏,等.分布式降雨径流物理模型的建立和应用.水科学进展,2006,17(5):637-644.
    [41]许继军.分布式水文模型在长江流域的应用研究[博士学位论文].北京:清华大学,2007.
    [42]许继军,杨大文,刘志雨,等.长江上游大尺度分布式水文模型的构建及应用.水利学报,2007,38(2):182-190.
    [43]石朋,芮孝芳,瞿思敏,等.一个网格型松散结构分布式水文模型的构建.水科学进展,2008,19(5):662-670.
    [44]雷晓辉,廖卫红,蒋云钟,等.分布式水文模型EasyDHM(Ⅰ):理论方法.水利学报,2010,41(7):786-794.
    [45]雷晓辉,蒋云钟,王浩,等.分布式水文模型EasyDHM(Ⅱ):应用实例.水利学报,2010,41(8):893-899,907.
    [46]罗鹏,宋星原.基于栅格式SCS模型的分布式水文模型研究.武汉大学学报(工学版),2011,44(2):156-160.
    [47]李致家,姚成,汪中华.基于栅格的新安江模型的构建和应用.河海大学学报(自然科学版),2007,35(2):131-134.
    [48]李致家,姚成,章玉霞,等.栅格型新安江模型的研究.水力发电学报,2009,28(2):25-34.
    [49] Yao C., Li Z., Bao H., et al. Application of a Developed Grid-Xinanjiang Model toChinese Watersheds for Flood Forecasting Purpose. Journal of HydrologicEngineering,2009,14(9):923-934.
    [50] Yao C., Li Z., Yu Z., et al. A priori parameter estimates for a distributed, grid-basedXinanjiang model using geographically based information. Journal of Hydrology,2012,468(1):47-62.
    [51]徐宗学,罗睿. PDTank模型及其在三川河流域的应用.北京师范大学学报(自然科学版),2010,46(3):337-343.
    [52] Jain A., Srinivasulu S. Development of effective and efficient rainfall-runoffmodels using integration of deterministic, real-coded genetic algorithms andartificial neural network techniques. Water Resource Research,2004,40, W04302.
    [53] Yule G U. On a method of investigating periodicities in disturbed series, withspecial reference to Wofer's sunspot numbers. Philosophical Transactions of theRoyal Society of London Series A,1927,127(226):267-298.
    [54] Walker G. On periodicity in series of related terms. Philosophical Transactions ofthe Royal Society of London Series A,1931,131:518-532.
    [55] Carlson R. F., MacCormick A. J. A., Watts D. G. Application of linear models tofour annual streamflow series. Water Resources Research,1970,6(4):1070-1078.
    [56] Box G. E., Jenkins G. M. Time Series Analysis: Forecasting and Control. RevisedEdition, Holden-Day, San Francisco, California,1976.
    [57] Salas J. D., Tabios III G. Q., Bartolini P. Approaches to multivariate modeling ofwater resources time series. Journal of the American Water Resources Association,1985,21:683-708.
    [58] Haltiner J. P., Salas J. D. Short-term forecasting of snowmelt runoff using ARMAXmodels. Journal of the American Water Resources Association,1988,24:1083-1089.
    [59] Yu P. S., Tseng T. Y. A model to forecast flow with uncertainty analysis.Hydrological Sciences Journal,1996,41(3):327-344.
    [60] Kothyari U. C., Singh V. P. A multiple-input single-output model for flowforecasting. Journal of Hydrology,1999,220(1-2):12-26.
    [61] Abrahart R. J., See L. Comparing neural network and autoregressive movingaverage techniques for the provision of continuous river flow forecasts in twocontrasting catchments. Hydrological Processes,2000,14(11-12):2157-2172.
    [62] Xiong L, O'Connor K. M. Comparison of four updating models for real-time riverflow forecasting. Hydrological Science Journal,2002,47(4):621-640.
    [63]刘冀.径流分类组合预报方法及其应用研究[博士学位论文].大连:大连理工大学,2008.
    [64] Hsu K. L., Gupta H. V., Sorooshian S. Artificial neural network modeling of therainfall runoff process. Water Resources Research,1995,31(10):2517-2530
    [65] Raman H., Sunilkumar N. Multivariate modeling of water resources time seriesusing artificial neural networks. Hydrological Science Journal,1995,40(2):145-163.
    [66]钟登华,王仁超,皮钧.水文预报时间序列神经网络模型.水利学报,1995,2:69-75.
    [67]蔡煌东,姚林声.径流长期预报的人工神经网络方法.水科学进展,1995,6(1):61-65.
    [68] Jain S. K., Das A., Srivastava D. K. Application of ANN for reservoir inflowprediction and operation. Journal of Water Resources Planning and Management,1999,125(5):263-271.
    [69] Thirumalaiah K., Deo M. C. Hydrological forecasting using neural networks.Journal of Hydrologic Engineering,2000,5(2):180-189.
    [70] Abrahart R. J., See L. Multi-model data fusion for river flow forecasting: Anevaluation of six alternative methods based on two contrasting catchments.Hydrology and Earth System Sciences,2002,6(4),655-670.
    [71]李鸿雁,刘寒冰,苑希民,等.人工神经网络峰值识别理论及其在洪水预报中的应用.水利学报,2002,6:15-20.
    [72]覃光华,丁晶,刘国东.自适应BP算法及其在河道洪水预报上的应用.水科学进展,2002,13(1):37-41.
    [73]覃光华,丁晶,李眉眉,等.敏感型人工神经网络及其在水文预报中的应用.水科学进展,2003,14(2):163-166.
    [74] Kisi O. River flow modeling using artificial neural networks. Journal of HydrologicEngineering,2003,9(1):60-63.
    [75] Kisi O. Daily river flow forecasting using artificial neural networks andauto-regressive models. Turkish Journal of Engineering and EnvironmentalSciences,2005,29(1):9-20.
    [76] Kisi O. Streamflow Forecasting Using Different Artificial Neural NetworkAlgorithms. Journal of Hydrologic Engineering,2007,12(5):532-539.
    [77] Kisi O. Neural Networks and Wavelet Conjunction Model for IntermittentStreamflow Forecasting. Journal of Hydrologic Engineering,2009,14(8):773-782.
    [78] Castellano-Mendez M., Gonzalez-Manteiga W., Febrero-Bande M., et al.Modelling of the monthly and daily behaviour of the runoff of the Xallas Riverusing Box-Jenkins and neural networks methods. Journal of Hydrology,2004,296(1-4):38-58.
    [79]袁晶,张小峰.基于遗忘因子的BP神经网络水文实时预报方法.水科学进展,2004,15(6):787-792.
    [80] Chau K. W., Wu C. L., Li Y. S. Comparison of Several Flood Forecasting Modelsin Yangtze River. Journal of Hydrologic Engineering,2005,10(6):485-491.
    [81] Chau K. W. Particle swarm optimization training algorithm for ANNs in stageprediction of Shing Mun River. Journal of Hydrology,2006,329(3-4):363-367.
    [82] Wu C. L., Chau K. W. A flood forecasting neural network model with geneticalgorithm. International journal of environment and pollution,2006,28(3-4):261-273.
    [83] Wu C. L., Chau K. W., Li Y. S. Methods to improve neural network performance indaily flows prediction. Journal of Hydrology,2009,372(1-4):80-93.
    [84] Wu C. L., Chau K. W., Li Y. S. Predicting monthly streamflow using data-drivenmodels coupled with data-preprocessing techniques. Water Resources Research,2009,45, W08432.
    [85] Chau K. W., Wu C. L. A hybrid model coupled with singular spectrum analysis fordaily rainfall prediction. Journal of Hydroinformatics,2010,12(4):458-473.
    [86] Wu C. L., Chau K. W., Fan C. Prediction of rainfall time series using modularartificial neural networks coupled with data-preprocessing techniques. Journal ofHydrology,2010,389(1-2):146-167.
    [87]刘勇,王银堂,陈元芳,等.丹江口水库秋汛期长期径流预报.水科学进展,2010,21(6):771-778.
    [88] Machado F., Mine M., Kaviski E., et al. Monthly rainfall–runoff modelling usingartificial neural networks. Hydrological Sciences Journal,2011,56(3):349-361.
    [89] Song X., Kong F., Zhan C., et al. Hybrid Optimization Rainfall-Runoff SimulationBased on Xinanjiang Model and Artificial Neural Network.2012,17(9):1033-1041.
    [90] Vapnik V. N. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
    [91] Dibike Y. B., Velickov S., Solomatine D., et al. Model induction with supportvector machines: introduction and applications. Journal of Computing in CivilEngineering,2001,15(3):208-216.
    [92] Sivapragasam C., Liong S. Y., Pasha M. F. K. Rainfall and runoff forecasting withSSA-SVM approach. Journal of Hydroinformatics,2001,3(7):141-152.
    [93] Liong S. Y., Sivapragasm C. Flood stage forecasting with SVM. Journal of theAmerican Water Resources Association,2002,38(1):173-186.
    [94]王景雷,吴景社,孙景生,等.支持向量机在地下水位预报中的应用研究.水利学报,2003,5:122-128.
    [95] Yu X. Y., Liong S. Y., Babovic V. EC-SVM approach for realtime hydrologicforecasting. Journal of Hydroinformatics,2004,6(3):209-233.
    [96]李国庆,陈守煜.基于模糊模式识别的支持向量机的回归预测方法.水科学进展,2005,16(5):741-746.
    [97] Asefa T., Kemblowski M., McKee M., et al. Multi-time scale stream flowpredictions: The support vector machines approach. Journal of Hydrology,2006,318(1-4):7-16.
    [98] Tripathi S., Srinivas V. V., Nanjundiah R. S. Downscaling of precipitation forclimate change scenarios: A support vector machine approach. Journal ofHydrology,2006,330(3-4):621-640.
    [99] Yu P. S., Shien T. C., Fan I. C. Support vector regression for real time flood stageforecasting. Journal of Hydrology,2006,328(3-4):704-716.
    [100] Lin J., Cheng C., Chau K. W. Using support vector machines for long-termdischarge prediction. Hydrological Sciences Journal,2006,51(4):599-612.
    [101]林剑艺,程春田.支持向量机在中长期径流预报中的应用.水利学报,2006,37(6):681-686.
    [102]廖杰,王文圣,李跃清,等.支持向量机及其在径流预测中的应用.四川大学学报(工程科学版),2006,38(6):24-29.
    [103] Han D., Chan L., Zhu N. Flood forecasting using support vector machines. Journalof Hydroinformatics,2007,9(4):267-276.
    [104]刘芳,周建中,邱方鹏,等.基于相关向量回归的非线性时间序列预测方法.计算机工程,2008,34(3):1-2,5.
    [105]于国荣,夏自强.混沌时间序列支持向量机模型及其在径流预测中应用.水科学进展,2008,19(1):116-122.
    [106] Wang W. C., Chau K. W., Cheng C. T., et al. A comparison of performance ofseveral artificial intelligence methods for forecasting monthly discharge time series.Journal of Hydrology,2009,374(3-4):294-306.
    [107]刘力.三峡流域径流特性分析及预测研究[博士学位论文].武汉:华中科技大学,2009.
    [108] Behzad M., Asghari K., Eazi M., et al. Generalization performance of supportvector machines and neural networks in runoff modeling. Expert Systems withApplications,2009,36(4):7624-7629.
    [109] Zhang X., Srinivasan R., Van Liew M. Approximating SWAT model using artificialneural network and support vector machine. Journal of the American WaterResources Association,2009,45(2):460-474.
    [110]郭俊,周建中,张勇传,等.基于改进支持向量机回归的日径流预测模型.水力发电,2010,36(3):12-15.
    [111] Guo J., Zhou J., Qin H., et al. Monthly streamflow forecasting based on improvedsupport vector machine model. Expert Systems with Applications,2011,38(10):13073-13081.
    [112] Noori R., Karbassi A. R., Moghaddamnia A., et al. Assessment of input variablesdetermination on the SVM model performance using PCA, Gamma test, andforward selection techniques for monthly stream flow prediction. Journal ofHydrology,2011,401(3-4):177-189.
    [113] Kisi O., Cimen M. A wavelet-support vector machine conjunction model formonthly streamflow forecasting. Journal of Hydrology,2011,399(1-2):132-140.
    [114] Kisi O., Cimen M. Precipitation forecasting by using wavelet-support vectormachine conjunction model. Engineering Applications of Artificial Intelligence,2012,25(4):783-792.
    [115] Lin G., Chou Y., Wu M. Typhoon flood forecasting using integrated two-stageSupport Vector Machine approach. Journal of Hydrology,2013,486:334-342.
    [116] Dawdy D. R., O'Donnell T. Mathematical models of catchment behavior. Journal ofthe Hydraulics Division,1965,91(4):123-137.
    [117] Johnston P. R., Pilgrim D. Parameter optimization for watershed models. WaterResources Research,1976,12(3):477-486.
    [118] Nelder J. A., Mead R. A simplex method for function minimization. ComputerJournal,1965,7(4):308-313.
    [119] Fletcher R., Powell M. J. D. A rapidly convergent descent method for minimization.Computer Journal,1963,6(2):163-168.
    [120] Pickup G. Testing the efficiency of algorithms and strategies for automaticcalibration of rainfall-runoff models. Hydrological Sciences Bulletin,1977,22(2):257-274.
    [121] Powell M. J. D. A method for minimising the sum of squares of non-linearfunctions without calculating derivatives. Computer Journal,1965,7(4):155-162.
    [122] Rosenbrock H. H. An automatic method for finding the greatest or least value of afunction. Computer Journal,1960,3(3):175-184.
    [123] Sorooshian S., Gupta V. K., Fulton J. L. Evaluation of Maximum LikelihoodParameter Estimation Techniques for Conceptual Rainfall-Runoff Models:Influence of Calibration Data Variability and Length on Model Credibility. WaterResources Research,1983,19(1):251-259.
    [124] Hooke R., Jeeves T. A.“Direct Search” solution of numerical and statisticalproblems. Journal of the ACM,1961,8(2):212-229.
    [125] Gupta V. K., Sorooshian S. The Automatic Calibration of Conceptual CatchmentModels Using Derivative-Based Optimization Algorithms. Water ResourcesResearch,1985,21(4):473-485.
    [126] Hendrickson J., Sorooshian S., Brazil L. E. Comparison of Newton-Type andDirect Search Algorithms for Calibration of Conceptual Rainfall-runoff models.Water Resources Research,1988,24(5):691-700.
    [127] Brazil L. E., Krajewski W. F. Optimization of complex hydrologic models usingrandom Search methods. Engineering Hydrology,1987,726-731.
    [128] Wang Q. J. The genetic algorithm and its application to calibrating conceptualrainfall-runoff models. Water Resources Research,1991,27(9):2467-2471.
    [129] Holland J. H. Adaptation in Natural and Artificial Systems. Michigan: UniversityMichigan Press,1975.
    [130] Eberhart R. C., Kennedy J. A new optimizer using particle swarm theory.Proceedings of the Sixth International Symposium on Micro Machine and HumanScience,1995,39-43.
    [131] Franchini M. Use of a genetic algorithm combined with a local search method forthe automatic calibration of conceptual rainfall-runoff models. HydrologicalSciences Journal,1996,41(1):21-39.
    [132] Franchini M., Galeati G. Comparing several genetic algorithm schemes for thecalibration of conceptual rainfall-runoff models. Hydrological Sciences Journal,1997,42(3):357-379.
    [133] Wang Q. J. Using genetic algorithms to optimize model parameters. EnvironmentalModelling&Software,1997,12(1):27-34.
    [134] Ndiritu J. G., Daniell T. M. An improved genetic algorithm for rainfall-runoffmodel calibration and function optimization. Mathematical and ComputerModelling,2001,33(6-7):695-706.
    [135] Liong S. Y., Phoon K. K., Pasha M. F. K., et al. Efficient implementation of inverseapproach for forecasting hydrological time series using micro GA. Journal ofHydroinformatics,2005,7(3):151-163.
    [136] Fazal M. A., Imaizumi M., Ishida S., et al. Estimating groundwater recharge usingthe SMAR conceptual model calibrated by genetic algorithm. Journal of Hydrology,2005,303(1-4):56-78.
    [137]杨道辉,马光文,刘起方.基于粒子群优化算法的BP网络模型在径流预测中的应用.水力发电学报,2006,25(2):65-68.
    [138] Goswami M., O’Connor K. M. Comparative assessment of six automaticoptimization techniques for calibration of a conceptual rainfall-runoff model.Hydrological Sciences Journal,2007,52(3):432-449.
    [139] Kirkpatrick S., Gelatt C. D., Vecchi M. P. Optimization by simulated annealing.Science,1983,220(4598):671-680.
    [140]江燕,刘昌明,胡铁松,等.新安江模型参数优选的改进粒子群算法.水利学报,2007,38(10):1200-1206.
    [141]刘力,周建中,杨俊杰,等.基于改进粒子群优化算法的新安江模型参数优选.水力发电,2007,33(7):16-19.
    [142]刘苏宁,甘泓,魏国孝.粒子群算法在新安江模型参数率定中的应用.水利学报,2010,41(5):537-544.
    [143] Storn R., Price K. Differential evolution-a simple and efficient adaptive scheme forglobal optimization over continuous spaces. Berkeley: ICSI,1995.
    [144] Wang W. C., Cheng C. T., Chau K. W., et al. Calibration of Xinanjiang modelparameters using hybrid genetic algorithm based fuzzy optimal model. Journal ofHydroinformatics,2012,14(3):784-799.
    [145] Duan Q. Y., Sorooshian S., Gupta V. Effective and efficient global optimization forconceptual rainfall-runoff models. Water Resources Research,1992,28(4):1015-1031.
    [146] Duan Q. Y., Gupta V. K., Sorooshian S. Shuffled Complex Evolution Approach forEffective and Efficient Global Minimization. Journal of Optimization Theory andApplications,1993,76(3):501-521.
    [147] Sorooshian S., Duan Q. Y., Gupta V. K. Calibration of rainfall-runoff models:application of global optimization to the Sacramento soil moisture accountingmodel. Water Resources Research,1993,29(4):1185-1194.
    [148] Duan Q. Y., Sorooshian S., Gupta V. K. Optimal use of the SCE-UA globaloptimization method for calibrating watershed models. Journal of Hydrology,1994,158(3-4):265-284.
    [149] Luce C. H., Cundy T. W. Parameter identification for a runoff model for forestroads. Water Resources Research,1994,30(4):1057-1069.
    [150] Gan T. Y., Biftu G. F. Automatic calibration of conceptual rainfall-runoff models:optimization algorithms, catchment conditions, and model structure. WaterResources Research,1996,32(12):3513-3524.
    [151] Yapo P. O., Gupta H. V., Sorooshian S. Automatic calibration of conceptualrainfall-runoff models: Sensitivity to calibration data. Journal of Hydrology,1996,181(1-4):23-48.
    [152] Kuczera G. Efficient subspace probabilistic parameter optimization for catchmentmodels. Water Resources Research,1997,33(1):177-185.
    [153] Franchini M., Galeati G., Berra S. Global optimization techniques for thecalibration of conceptual rainfall-runoff models. Hydrological Sciences Journal,1998,43(3):443-458.
    [154] Thyer M., Kuczera G., Bates B. C. Probabilistic optimization for conceptualrainfall-runoff models: a comparison of the shuffled complex evolution andsimulated annealing algorithms. Water Resources Research,1999,35(3):767-773.
    [155] Eckhardt K., Arnold J. G. Automatic calibration of a distributed catchment model.Journal of Hydrology,2001,251(1-2):103-109.
    [156]李致家,周轶,哈布·哈其.新安江模型参数全局优化研究.河海大学学报(自然科学版),2004,32(4):376-379.
    [157] Ajami N. K., Gupta H., Wagener T., et al. Calibration of a semi-distributedhydrologic model for streamflow estimation along a river system. Journal ofHydrology,2004,298(1-4):2-35.
    [158]马海波,董增川,张文明,等. SCE-UA算法在TOPMODEL参数优化中的应用.河海大学学报(自然科学版),2006,34(4):361-365.
    [159] Cooper V. A., Nguyen V. T. V., Nicell J. A. Calibration of conceptual rainfall-runoffmodels using global optimization methods with hydrologic process-basedparameter constraints. Journal of Hydrology,2007,334(3-4),455-466.
    [160]宋星原,舒全英,王海波,等. SCE-UA、遗传算法和单纯形优化算法的应用.武汉大学学报(工学版),2009,42(1):6-9,15.
    [161] Wang Y. C., Yu P. S., Yang T. C. Comparison of genetic algorithms and shuffledcomplex evolution approach for calibrating distributed rainfall-runoff model.Hydrological Processes,2010,24(8):1015-1026.
    [162] Yapo P. O., Gupta H. V., Sorooshian S. Multi-objective global optimization forhydrologic models. Journal of Hydrology,1998,204(1-4):83-97.
    [163] Gupta H., Sorooshian S., Yapo P. Toward improved calibration of hydrologicmodels: Multiple and noncommensurable measures of information. WaterResources Research,1998,34(4):751-763.
    [164] Bastidas L. A., Gupta H. V., Sorooshian S., et al. Sensitivity analysis of a landsurface scheme using multicriteria methods. Journal of Geophysical Research,1999,104(16):19481-19490.
    [165] Bastidas L. A., Gupta H. V., Sorooshian S., et al. Parameter estimation of a landsurface scheme using multicriteria methods. Journal of Geophysical Research,1999,104(16):19491-19503.
    [166] Seibert J. Multi-criteria calibration of a conceptual runoff model using a geneticalgorithm. Hydrology and Earth System Sciences,2000,4(2):215-224.
    [167] Boyle D. P., Gupta H. V., Sorooshian S. Toward improved calibration of hydrologicmodels: Combining the strengths of manual and automatic methods. WaterResources Research,2000,36(12):3663-3674.
    [168] Madsen H. Automatic calibration of a conceptual rainfall–runoff model usingmultiple objectives. Journal of Hydrology,2000,235(3-4):276-288.
    [169] Cheng C. T., Ou C. P., Chau K. W. Combining a fuzzy optimal model with agenetic algorithm to solve multi-objective rainfall–runoff model calibration.Journal of Hydrology,2002,268(1-4):72-86.
    [170]张洪刚,郭生练,刘攀.概念性水文模型多目标参数自动优选方法研究.水文,2002,22(1):12-16.
    [171] Madsen H., Wilson G., Ammentorp H. C. Comparison of different automatedstrategies for calibration of rainfall-runoff models. Journal of Hydrology,2002,261(1-4):48-59.
    [172] Beldring S. Multi-criteria validation of a precipitation-runoff model. Journal ofHydrology,2002,257(1-4):189-211.
    [173] Madsen H. Parameter estimation in distributed hydrological catchment modellingusing automatic calibration with multiple objectives. Advances in Water Resources,2003,26(2):205-216.
    [174] Vrugt J., Gupta H. V., Bastidas L. A., et al. Effective and efficient algorithm formultiobjective optimization of hydrologic models. Water Resources Research,2003,39(8),1214.
    [175]张洪刚,郭生练,王才君,等.概念性流域水文模型参数优选技术研究.武汉大学学报(工学版),2004,37(3):18-22,26.
    [176] Khu S. T., Madsen H. Multiobjective calibration with Pareto preference ordering:An application to rainfall-runoff model calibration. Water Resources Research,2005,41(3), W03004.
    [177] Deb K., Agrawal S., Pratap A., et al. A fast elitist nondominated sorting geneticalgorithm for multi-objective optimization: NSGA-II. Proceedings of the ParallelProblem Solving,2000,1917,849-858.
    [178] Gill M. K., Kaheil Y. H., Khalil A., et al. Multiobjective particle swarmoptimization for parameter estimation in hydrology. Water Resources Research,2006,42(7), W07417.
    [179] Cheng C., Zhao M., Chau K. W., et al. Using genetic algorithm and TOPSIS forXinanjiang model calibration with a single procedure. Journal of Hydrology,2006,316(1-4):129-140.
    [180] Hwang C. L., Yoon K. Multiple Attributes Decision Making Methods andApplications. Berlin: Springer,1981.
    [181] Tang Y., Reed P., Wagener T. How efficient and effective are evolutionarymultiobjective algorithms at hydrologic model calibration. Hydrology and EarthSystem Sciences,2006,10(2):289-307.
    [182] Kollat J. B., Reed P. Comparing State-of-the-Art Evolutionary Multi-ObjectiveAlgorithms for Long-Term Groundwater Monitoring Design. Advances in WaterResources,2006,29(6):792-807.
    [183] Zitzler E., Laumanns M., Thiele L.: SPEA2: Improving the Strength ParetoEvolutionary Algorithm. TIK-103, Department of Electrical Engineering, SwissFederal Institute of Tech10nology, Zurich, Switzerland,2001.
    [184] Confesor R. B., Whittaker G. W. Automatic calibration of hydrologic models withmulti-objective evolutionary algorithm and Pareto optimization. Journal of theAmerican Water Resources Association,2007,43(4):981-989.
    [185] Bekele E. G., Nicklow J. W. Multi-objective automatic calibration of SWAT usingNSGA-II. Journal of Hydrology,2007,341(3-4):165-176.
    [186] Fenicia F., Savenije H. H. G., Matgen P., et al. A comparison of alternativemultiobjective calibration strategies for hydrological modeling. Water ResourcesResearch,2007,43(3), W03434.
    [187] de Vos N. J., Rientjes T. H. M. Multi-objective performance comparison of anartificial neural network and a conceptual rainfall–runoff model. HydrologicalSciences Journal,2007,52(3):397-413.
    [188] de Vos N. J., Rientjes T. H. M. Multiobjective training of artificial neural networksfor rainfall-runoff modeling. Water Resources Research,2008,44(8), W08434.
    [189] Hejazi M. I., Cai X. M., Borah D. K. Calibrating a watershed simulation modelinvolving human interference: an application of multi-objective genetic algorithms.Journal of Hydroinformatics,2008,10,97-111.
    [190] Moussa R., Chahinian N. Comparison of different multi-objective calibrationcriteria using a conceptual rainfall-runoff model of flood events. Hydrology andEarth System Sciences,2009,13(4):519-535.
    [191] Zhang X., Srinivasan R., Liew M. V. On the use of multi-algorithm, geneticallyadaptive multi-objective method for multi-site calibration of the SWAT model.Hydrological Processes,2010,24(8):955-969.
    [192]郭俊,周建中,邹强,等.水文模型参数多目标优化率定及目标函数组合对优化结果的影响.四川大学学报(工程科学版),2011,43(6):58-63.
    [193] Kollat J. B., Reed P. M., Wagener T. When are multiobjective calibration trade-offsin hydrologic models meaningful. Water Resources Research,2012,48(3),W03520.
    [194] Kamali B., Mousavi S. J., Abbaspour K. C. Automatic Calibration of HEC-HMSUsing Single-objective and Multi-Objective PSO Algorithms. HydrologicalProcesses,2012, doi:10.1002/hyp.9510.
    [195]郭俊,周建中,周超,等.概念性流域水文模型参数多目标优化率定.水科学进展,2012,23(4):447-456.
    [196]郭俊,周建中,邹强,等.新安江模型参数多目标优化研究.水文,2013,33(1):1-8.
    [197] Guo J., Zhou J., Zou Q., et al. A Novel Multi-Objective Shuffled ComplexDifferential Evolution Algorithm with Application to Hydrological ModelParameter Optimization. Water Resources Management,2013,27(8):2923-2946.
    [198] Beven K. J., Binley A. M. The future of distributed models: Model calibration anduncertainty prediction. Hydrological Processes,1992,6(3):279-298.
    [199] Hornberger G. M., Spear R. C. An approach to the preliminary analysis ofenvironmental systems. Journal of Environmental Management,1981,12(1):7-18.
    [200] Freer J. E., Beven K., Ambroise B. Bayesian estimation of uncertainty in runoffprediction and the value of data: an application of the GLUE approach. WaterResources Research,1996,32(7):2161-2173.
    [201] Kuczera G., Parent E. Monte Carlo assessment of parameter uncertainty inconceptual catchment models: the Metropolis algorithm. Journal of Hydrology,1998,211(1-4):69-85.
    [202] Lamb R., Beven K., Myrabo S. Use of spatially distributed water table observationsto constrain uncertainty in a rainfall-runoff model. Advances in Water Resources,1998,22(4):305-317.
    [203] Ratto M., Tarantola S., Saltelli A. Sensitivity analysis in model calibration:GSA-GLUE approach. Computer Physics Communications,2001,136(3):212-224.
    [204] Aronica G., Bates P. D., Horritt M. S. Assessing the uncertainty in distributedmodel predictions using observed binary pattern information within GLUE.Hydrological Processes,2002,16(10):2001-2016.
    [205] Khu S. T., Werner M. G. F. Reduction of Monte-Carlo simulation runs foruncertainty estimation in hydrological modelling. Hydrology and Earth SystemSciences,2003,7(5):680-692.
    [206] Pappenberger F., Beven K., Roo A. D., et al. Uncertainty analysis of the rainfallrunoff model LisFlood within the Generalized Likelihood Uncertainty Estimation(GLUE). International Journal of River Basin Management,2004,2(2):123-133.
    [207] Muleta M. K., Nicklow J. W. Sensitivity and uncertainty analysis coupled withautomatic calibration for a distributed watershed model. Journal of Hydrology,2005,306(1-4):127-145.
    [208] McMichael C. E., Hope A. S., Loaiciga H. A. Distributed hydrological modeling inCalifornia semi-arid shrublands: MIKE SHE model calibration and uncertaintyestimation. Journal of Hydrology,2006,317(3-4):307-324.
    [209] Jacquin A. P., Shamseldin A. Y. Development of a possibilistic method for theevaluation of predictive uncertainty in rainfall-runoff modeling. Water ResourcesResearch,2007,43(4), W04425.
    [210] Choi H. T., Beven K. Multi-period and multi-criteria model conditioning to reduceprediction uncertainty in an application of TOPMODEL within the GLUEframework. Journal of Hydrology,2007,332(3-4):316-336.
    [211] Blasone R., Vrugt J. A., Madsen H., et al. Generalized likelihood uncertaintyestimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advancesin Water Resources,2008,31(4):630-648.
    [212] Blasone R., Madsen H., Rosbjerg D. Uncertainty assessment of integrateddistributed hydrological models using GLUE with Markov chain Monte Carlosampling. Journal of Hydrology,2008,353(1-2):18-32.
    [213] Jia Y., Culver T. B. Uncertainty Analysis for Watershed Modeling UsingGeneralized Likelihood Uncertainty Estimation with Multiple CalibrationMeasures. Journal of Water Resources Planning and Management,2008,134(2):97-106.
    [214]林凯荣,陈晓宏,江涛.基于Copula-Glue的水文模型参数的不确定性.中山大学学报(自然科学版),2009,48(3):109-115.
    [215] Xiong L., Wan M., Wei X., et al. Indices for assessing the prediction bounds ofhydrological models and application by generalised likelihood uncertaintyestimation. Hydrological Sciences Journal,2009,54(5):852-871.
    [216]卫晓婧,熊立华,万民,等.融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用.水利学报,2009,40(4):464-473,480.
    [217] Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministichydrologic model. Water Resources Research,1999,35(9):2739-2750.
    [218] Thiemann M., Trosset M., Gupta H. V., et al. Bayesian recursive parameterestimation for hydrologic models. Water Resources Research,2001,37(10):2521-2535.
    [219] Bates B. C., Campbell E. P. A Markov chain Monte Carlo scheme for parameterestimation and inference in conceptual rainfall-runoff modeling. Water ResourcesResearch,2001,37(4):937-947.
    [220] Vrugt J. A., Gupta H. V., Bouten W., et al. A Shuffled Complex EvolutionMetropolis algorithm for optimization and uncertainty assessment of hydrologicmodel parameters. Water Resources Research,2003,39(8),1201.
    [221] Misirli F. Improving efficiency and effectiveness of Bayesian recursive parameterestimation for hydrologic models [Ph.D. dissertation]. Tucson: University ofArizona,2003.
    [222] Montanari A., Brath A. A stochastic approach for assessing the uncertainty ofrainfall-runoff simulations. Water Resources Research,2004,40(1), W01106.
    [223] Marshall L., Nott D., Sharma A. A comparative study of Markov chain MonteCarlo methods for conceptual rainfall-runoff modeling. Water Resources Research,2004,40(2), W02501.
    [224] Maranzano C. J., Krzysztofowicz R. Identification of likelihood and priordependence structures for hydrologic uncertainty processor. Journal of Hydrology,2004,290(1-2):1-21.
    [225] Engeland K., Xu C. Y., Gottschalk L. Assessing uncertainties in a conceptual waterbalance model using Bayesian methodology. Hydrological Sciences Journal,2005,50(1):45-63.
    [226] Todini E. A model conditional processor to assess predictive uncertainty in floodforecasting. International Journal of River Basin Management,2008,6(2):123-138.
    [227] Vrugt J. A., ter Braak C. J. F., Clark M. P., et al. Treatment of input uncertainty inhydrologic modeling: Doing hydrology backward with Markov chain Monte Carlosimulation. Water Resources Research,2008,44(12), W00B09.
    [228] Schoups G., Vrugt J. A. A formal likelihood function for parameter and predictiveinference of hydrologic models with correlated, heteroscedastic, and non-Gaussianerrors. Water Resources Research,2010,46(10), W10531.
    [229] Laloy E., Fasbender D., Bielders C. L. Parameter optimization and uncertaintyanalysis for plot-scale continuous modeling of runoff using a formal Bayesianapproach. Journal of Hydrology,2010,380(1-2):82-93.
    [230] Jeremiah E., Sisson S., Marshall L., et al. Bayesian calibration and uncertaintyanalysis of hydrological models: A comparison of adaptive Metropolis andsequential Monte Carlo samplers. Water Resources Research,2011,47(7),W07547.
    [231] Guo J., Zhou J., Song L., et al. Uncertainty assessment and optimization ofhydrological model with the Shuffled Complex Evolution Metropolis algorithm: anapplication to artificial neural network rainfall-runoff model. StochasticEnvironmental Research and Risk Assessment,2013,27(4):985-1004.
    [232] Mantovan P., Todini E. Hydrological forecasting uncertainty assessment:Incoherence of the GLUE methodology. Journal of Hydrology,2006,330(1-2):368-381.
    [233] Beven K. J., Smith P., Freer J. Comment on “Hydrological forecasting uncertaintyassessment: Incoherence of the GLUE methodology” by Pietro Mantovan and EzioTodini. Journal of Hydrology,2007,338(3-4):315-318.
    [234] Beven K. J., Smith P. J., Freer J. E. So just why would a modeler choose to beincoherent. Journal of Hydrology,2008,354(1-4):15-32.
    [235] Stedinger J. R., Vogel R. M., Lee S. U., et al. Appraisal of the generalizedlikelihood uncertainty estimation (GLUE) method. Water Resources Research,2008,44(12), W00B06.
    [236] Yang J., Reichert P., Abbaspour K. C., et al. Comparing uncertainty analysistechniques for a SWAT application to the Chaohe Basin in China. Journal ofHydrology,2008,358(1-2):1-23.
    [237] Vrugt J. A., ter Braak C. J. F., Gupta H. V., et al. Equifinality of formal (DREAM)and informal (GLUE) Bayesian approaches in hydrologic modeling. StochasticEnvironmental Research and Risk Assessment,2009,23(7):1011-1026.
    [238] McMillan H., Clark M. Rainfall-runoff model calibration using informal likelihoodmeasures within a Markov chain Monte Carlo sampling scheme. Water ResourcesResearch,2009,45(4), W04418.
    [239] Jin X., Xu C., Zhang Q., et al. Parameter and modeling uncertainty simulated byGLUE and a formal Bayesian method for a conceptual hydrological model. Journalof Hydrology,2010,383(3-4):147-155.
    [240] Li L., Xia J., Xu C., et al. Evaluation of the subjective factors of the GLUE methodand comparison with the formal Bayesian method in uncertainty assessment ofhydrological models. Journal of Hydrology,2010,390(3-4):210-221.
    [241] Nott D. J., Marshall L., Brown J. Generalized likelihood uncertainty estimation(GLUE) and approximate Bayesian computation: What's the connection. WaterResources Research,2012,48(12), W12602.
    [242]周建中.十二五国家科技支撑计划“长江上游干支流控制性水库群联合调度关键技术研究与应用示范”项目申请报告.华中科技大学,2011.
    [243] Lippmann R. P. An introduction to computing with neural nets. IEEE ASSPMagazine,1987,4(2):4-22.
    [244] Aqil M., Kita I., Yano A., et al. A comparative study of artificial neural networksand neuro-fuzzy in continuous modeling of the daily and hourly behaviour ofrunoff. Journal of Hydrology,2007,337(1-2):22-34.
    [245] Hagan M. T., Menhaj M. B. Training feedforward networks with the Marquaradtalgorithm. IEEE Transactions on Neural Networks,1994,5(6):989-993.
    [246] Reynolds R. G. An introduction to cultural algorithms. Proceedings of the ThirdAnnual Conference on Evolutionary Programming,1994,131-139.
    [247] Qin H., Zhou J., Lu Y., et al. Multi-objective Cultured Differential Evolution forGenerating Optimal Trade-offs in Reservoir Flood Control Operation. WaterResources Management,2010,24(11):2611-2632.
    [248] Yao X., Liu Y. Fast evolutionary programming. Proceedings Fifth AnnualConference Evolutionary Programming,1996,451-460.
    [249] Yao X., Liu Y. Fast evolution strategies. Proceedings of the Sixth InternationalConference Evolutionary Programming,1997,151-161.
    [250]雷德明,吴智铭.基于个体密集距离的多目标进化算法.计算机学报,2005,28(8):1320-1326.
    [251] Madavan N. K. Multiobjective optimization using a Pareto differential evolutionapproach. In: Proceeding of the Congress on Evolutionary Computation,2002,2:1145-1150.
    [252] Xue F., Sanderson A. C., Graves R. J. Pareto-based multi-objective differentialevolution. Proceedings of the Congress on Evolutionary Computation,2003,2:862-869.
    [253] Rolic T., Filipic B. DEMO: differential evolution for multi-objective optimization.Lecture notes in computer science,2005,520-533.
    [254] Qian W. Y., Li A. J. Adaptive differential evolution algorithm for multiobjectiveoptimization problems. Applied Mathematics and Computation,2008,201(1-2):431-440.
    [255] Hogue T. S., Sorooshian S., Gupta H., et al. A multi-step automatic calibrationscheme for river forecasting models. Journal of Hydrometeorology,2000,1(6):524-542.
    [256] Vrugt J. A., Robinson B. A. Improved evolutionary optimization from geneticallyadaptive multimethod search. Proceedings of the National Academy of Sciences,2007,104:708-711.
    [257] Gelman A., Rubin D. B. Inference from iterative simulation using multiplesequences. Statistical Science,1992,7(4):457-472.
    [258] Box G. E. P., Tiao G. C. Bayesian inference in statistical analysis. Massachusetts:Addison-Wesley-Longman,1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700