用户名: 密码: 验证码:
西藏尼木—那曲地热带典型高温地热系统形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究区位于尼木—那曲高温地热带,处在当雄—羊八井—多庆错活动构造带的中北段。区内分布的高温地热显示类型多种多样,蕴藏着丰富的地热资源。但区内仅对羊八井和羊易地热田进行过系统的调查及研究工作,本文选取研究区11个未开发的地热田,收集并采集区内地热流体数据,与喜马拉雅地热带其他典型高温地热系统进行对比研究,对完善区内高温地热系统成因机理,为后期勘探及钻探提供重要的参考意义。本文从热源、地热流体流体运移通道、地热流体来源及热储特征4个方面对区内典型高温系统进行了研究,得到了如下认识:
     研究区高温地热系统的热源主要是壳内局部熔融层的贡献,活动断裂及深部构造对区内热水活动有明显的控制作用,青藏高原腹地地表断裂、地震活动、地热分布存在密切关系,与深部地质过程具有动力学成因联系。
     从水化学数据分析,高温地下热水主要为Cl-Na、Cl·HCO3-Na水,中高温地下热水主要为HCO3-Na水,地下热水中Li、F、SiO2、HBO2与C1大体上存在正相关关系,显示可能有岩浆水的混入;用地下热水地球化学温标及气体温标,估算重点地热田热储温度为90~270℃;利用氯焓及硅焓图解估算地下热水中有25%-75%比例不等的冷水混入。
     从氢氧同位素数据分析,地下热水主要为大气降水补给,在董翁、宁中高温地热田发生轻微的氧-18漂移,谷露地热田氧-18漂移较其他地热田明显,宁中、谷露及罗玛地下热水中氚含量小于1TU,主要是次现代水的补给,月腊处氚含量为8.4TU,主要为现代水的补给,其他地热田地下热水是次现代和最近补给之间的混合;地下热水中碳硫同位素特征的研究,揭示区内地下热水碳源和硫源主要来源于沉积层的淋滤作用,随着冷水混入大气成因来源不断增加,多数介于二者的过渡类型,部分有深部物质的来源。
     地热气体以CO:和N2为主,二者呈现良好的负相关,从CO2气体碳同位素、He同位素比值及综合指标分析,气体来源主要为壳源;在宁中及玉寨地热田,R/Ra值大于1,存在明显的幔源物质释放现象,幔源He所占比例为2.73%-30.93%。
     上述研究显示高温地热系统热源和热水组分主要为壳内局部熔融体的贡献,地热流体向上运移过程中不断有大气降水成分混入;气体He同位素数据显示,在宁中及玉寨地热田存在幔源物质侵位。
     最后,结合区内地质资料、深部探测、重点地热田物探成果及地热流体地球化学分析成果,概括区内典型高温地热田的成因模式,提出了玉寨高温地热系统的概念模型,为后期地热田深入研究及开发利用提供重要的科学依据。
Study areas were located in Nimu-Naqu high-temperature geothermal belt, in the Middle-North section of Dangxiong-Yangbajing-Duoqingcuo activity structure. Various high temperature geothermal manifestations were distributed in study area, there were rich in geothermal resources in Tibet. However, the geothermal field of Yangbajing and Yangyi have been investigated and researched systematically. In the paper, we choose11untapped geothermal fields along Nimu-Naqu in Tibet. Collected and gathered hydrochemistry, hydrogen and oxygen isotopes data, geothermal gases and its isotopes data in the study area, comparison of other typical high-temperature geothermal systems in Himalaya geothermal belt. It was significance to improve the genesis of high-temperature geothermal systems and provide guidance on exploration and drilling in the area. From the heat source, geothermal fluid migration pathways, geothermal fluid sources and thermal storage area features four aspects, this article reasearched typical high-temperature system, obtained the following understanding:
     High-temperature geothermal heat source system in the study area was generally considered to be partial melting of the crust layer contributions. It was obviously that active faults and deep tectonic activity controlled geothermal activity. There was a close relationship with surface rupture, seismic activities, geothermal distribution in Qinghai-Tibet Plateau hinterland; they were relationship with the deep geological processes that have genetic relationship dynamics.
     Analysis hydrochemistry of geothermal fluids, the chemistry type of high-temperature thermal water were mainly Cl-Na or CIHCO3-Na, moderate and high-temperature thermal water were mainly HC03-Na, there was a positive correlation Cl, Li, F, SiO2, HBO2with Cl, indicated possible mixing of magmatic water. With chemical geothermometer of thermal water and gas geothermometer, estimated the geothermal reservoir temperature were90to270℃; there were25%to75%cold water mixed with thermal water, estimated with chlorine and silicon enthalpy diagrams.
     From stable isotopes data, thermal water showed mainly meteoric recharge, thermal water presence slight "Oxygen-18drift" in Dongweng, Ningzhong high-temperature geothermal fields, the phenomenon was obvious in Gulu geothermal field than other geothermal fields; the tritium contents were less than1TU in Ningzhong, Gulu and Luoma, mainly sub-modern water recharge, Yuela was8.4TU, inferred to modern water recharge, others were mixed sub-modern with recent hybrid water recharge. Analysis carbon and sulfur stable isotopic characteristics of thermal water, revealed carbon and sulfur sources in thermal water mainly from leaching of the deposited layer, atmospheric source increased with cold water mixed, most of between the two types, part of material may from deep source.
     Geothermal gases were mainly carbon dioxide and nitrogen; there was a good negative correlation between carbon dioxide and nitrogen. From carbon isotopes from carbon dioxide, helium isotopes and comprehensive index analysis, the source of gases was mainly from crust, however, monitored R/Ra values greater than1in Ningzhong and Yuzhai, there may be a significant release of mantle material phenomena, the proportion of mantle helium was2.73%to30.93%.
     The studies showed that high-temperature geothermal systems primarily for heat and thermal water components contribute partial melting body, with geothermal fluids upward migration process, there have been mixed precipitation composition of the atmosphere; Helium isotope data of geothermal gases showed emplacement of mantle-derived substances in Ningzhong and Yuzhai geothermal fields.
     Finally, comprehensive analysis of regional geological data, deep exploration, mainly geothermal field geophysical results and the analyze results of geothermal fluid geochemical, obtained high-temperature geothermal field's genesis model in the study area, and proposed conceptual model of Yuzhai high-temperature geothermal systems, for the latter depth research and development and utilization provided an important scientific basis.
引文
[1]Von Knebel, W. Studien in den Thermengebieten Islands[M]. Naturwiss. Rundsch, 1906.
    [2]Wright F E. The Hot Springs of Iceland[J]. The Journal of Geology, 1924,32(6):462-464.
    [3]Ingersoll, L.R., Zobel, O.J. Mathematical theory of heat conduction[M]. Ginn, Waltham, Massachusetts, 1913.
    [4]Einarsson T. Uber das Wesen der heissen Quellen Islands:mit einer Ubersicht uber die Tektonik des mittleren Nordislands[M]. Prentverk odds Bjornssonar,1942.
    [5]White D E. Magmatic, connate, and metamorphic waters[J]. Geological Society of America Bulletin, 1957,68(12):1659-1682.
    [6]Ellis A J, Wilson S H. The geochemistry of alkali metal ions in the Wairakei hydrothermal system[J]. New Zealand Journal of Geology and Geophysics,1960,3(4):593-617.
    [7]Ellis AJ, Mahon WAJ. Chemistry and geothermal systems[M]. Academic, New York, 1977, p 392.
    [8]White D E. Some principles of geyser activity, mainly from Steamboat Springs, Nevada[J]. American Journal of Science,1967,265(8):641-684.
    [9]Giggenbach W F. Geothermal solute equilibria, derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et cosmochimica acta,1988,52(12):2749-2765.
    [10]Truesdell A H, Fournier R O. Conditions in the deeper parts of the hot spring systems of Yellowstone National Park, Wyoming[M]. US Geological Survey, 1976.
    [11]Verma S P, Santoyo E. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection[J]. Journal of Volcanology and Geothermal Research,1997,79(1): 9-23.
    [12]Nieva D, Barragan R M, Arellano V. Hydrothermal Systems hydrothermal system, Geochemistry hydrothermal system geochemistry of[M]//Renewable Energy Systems. Springer New York,2013: 1118-1134.
    [13]Truesdell AH, Fournier RO. Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy[J]. USGS J Res,1977,5:49-52.
    [14]Fournier R O, Potter R W. Revised and expanded silica (quartz) geothermometer[J]. Bull., Geotherm. Resour. Counc.(Davis, Calif.);(United States),1982,11(10):3-12.
    [15]Fournier RO, Potter RW. A revised and expanded silica (quartz) geothermometer[J]. Geoth Res Counc Bull,1982,11:3-12.
    [16]Fournier RO, Truesdell AH. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochim Cosmochim Acta,1973,37:1255-1275.
    [17]Truesdell AH. Geochemical techniques in exploration. In:National Energy Authority (ed) Proc. 2nd. UN Symp. on the development and use of geothermal resources, San Francisco, 1975, vol 1. National Energy Authority, Reykjavik, pp 53-86.
    [18]Mercado. Movement of geothermal fluids and temperature distribution in the Cerro Prieto geothermal field, Baja California, Mexico. In: United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco,1975, vol 1. U. S. Government Printing Office, Washington, 1975, pp 487-494.
    [19]Fournier RO, Potter RW. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochim Cosmochim Acta,1979,43:1543-1550.
    [20]Arnorsson S, Gunnlaugsson E, Svavarsson H. The chemistry of geothermal waters in Iceland Ⅲ. Chemical geothermometry in geothermal investigations[J]. Geochim Cosmochim Acta,1983,42: 567-577
    [21]Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH. Isotopic and chemical composition of Parbati Valley geothermal discharges, NW-Himalaya, India[J]. Geothermics,1983,12:199-222.
    [22]Nieva D, Nieva R. Developments in geothermal energy in Mexico-part twelve. A cationic geothermometer for prospecting of geothermal resources [J]. Heat recovery systems and CHP, 1987, 7(3):243-258.
    [23]Fouillac C, Michard G. Sodium/lithium ratios in water applied to geothermometry of geothermal reservoirs[J]. Geothermics,1981,10:55-70.
    [24]Kharaka YK, Mariner RH. Chemical geothermometers and their application to formation waters from sedimentary basins. In:Naeser ND, McCollon TH (eds) Thermal history of sedimentary basins[M]. Springer, New York, 1989, pp 99-117.
    [25]Sanjuan B, Millot R, Brach M, et al. Use of a new Sodium/Lithium (Na/Li) geothermometric relationship for High-Temperature dilute geothermal fluids from Iceland[C]//Proceedings World Geothermal Congress 2010:1-12.
    [26]Arnorsson S, D'Amore F, Gerardo-Abaya J. Isotopic and chemical techniques in geothermal exploration, development and use[M]. International Atomic Energy Agency, 2000.
    [27]Nordstrom D K, Jenne E A. Fluorite solubility equilibria in selected geothermal waters[J]. Geochimica et Cosmochimica Acta,1977,41(2):175-188.
    [28]Ballantyne J M, Moore J N. Arsenic geochemistry in geothermal systems[J]. Geochimica et Cosmochimica Acta,1988,52(2):475-483.
    [29]Truesdell A H, Haizlip J R, Armannsson H, et al. Origin and transport of chloride in superheated geothermal steam[J]. Geothermics,1989,18(1):295-304.
    [30]Janik C J, Truesdell A H, Goff F, et al. A geochemical model of the Platanares geothermal system, Honduras[J]. Journal of Volcanology and Geothermal Research,1991,45(1):125-146.
    [31]Arnorsson S, Andresdottir A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta,1995,59(20):4125-4146.
    [32]Carvalho M R, Forjaz V H, Almeida C. Chemical composition of deep hydrothermal fluids in the Ribeira Grande geothermal field (Sao Miguel, Azores)[J]. Journal of volcanology and geothermal research,2006,156(1):116-134.
    [33]Dotsika E, Leontiadis Ⅰ, Poutoukis D, et al. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece[J]. Journal of volcanology and geothermal research,2006,154(3):237-250.
    [34]Dotsika E, Poutoukis D, Raco B. Fluid geochemistry of the Methana Peninsula and Loutraki geothermal area, Greece[J]. Journal of Geochemical Exploration,2010,104(3):97-104.
    [35]Planer-Friedrich B, London J, McCleskey R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance[J]. Environmental science & technology, 2007,41(15):5245-5251.
    [36]Majumdar N, Mukherjee A L, Majumdar R K. Mixing hydrology and chemical equilibria in Bakreswar geothermal area, Eastern India[J]. Journal of Volcanology and Geothermal Research,2009, 183(3):201-212.
    [37]Saibi H, Ehara S. Temperature and chemical changes in the fluids of the Obama geothermal field (SW Japan) in response to field utilization[J]. Geothermics, 2010,39(3):228-241.
    [38]Asta M P, Gimeno M J, Auque L F, et al. Hydrochemistry and geothermometrical modeling of low-temperature Panticosa geothermal system (Spain)[J]. Journal of Volcanology and Geothermal Research,2012,235:84-95.
    [39]Avsar O, Gulec N, Parlaktuna M. Hydrogeochemical characterization and conceptual modeling of the Edremit geothermal field (NW Turkey)[J]. Journal of Volcanology and Geothermal Research, 2013, 262:68-79.
    [40]Armienta M A, Rodriguez R, Ceniceros N, et al. Groundwater quality and geothermal energy. The case of Cerro Prieto Geothermal Field, Mexico[J]. Renewable Energy,2014,63:236-254.
    [41]Grassi S, Amadori M, Pennisi M, et al. Identifying sources of B and As contamination in surface water and groundwater downstream of the Larderello geothermal-industrial area (Tuscany-Central Italy)[J]. Journal of Hydrology,2014,509: 66-82.
    [42]陈墨香.华北地热[M].北京:科学出版社,1988.
    [43]陈墨香,汪集旸,邓孝.中国地热资源:形成特点和潜力评估[M].北京:科学出版社,1994.
    [44]汪集肠,熊亮萍,庞忠和.中低温对流型地热系统[M].北京:科学出版社,1993.
    [45]廖志杰,赵平.滇藏地热带—地热资源和典型地热系统[M].北京:科学出版社,1999.
    [46]佟伟,章铭陶,张知非,等.西藏地热[M].北京:科学出版社,1981.
    [47]张知非,朱梅湘,刘时彬,等.西藏水热地球化学的初步研究[J].北京大学学报(自然科学版),1982,3:88-96.
    [48]安可士,张锡根,何世春.羊八井地热田地球化学特征[J].水文地质工程地质,1980,1:14-18.
    [49]朱梅湘,佟伟,由懋正.西藏水热区的盐华及其地质意义[J].北京大学学报(自然科学版),1982,1:107-114.
    [50]朱梅湘,徐勇.西藏羊八井地热田水热蚀变[J].地质科学,1989,2:162-175.
    [51]何世春.羊八井地热田水文地球化学特征[J].中国地质,1983,6:19-21.
    [52]何世春.西藏羊八井地热田泉华结垢及腐蚀问题[J].水文地质技术方法,1990(21):21-28.
    [53]Grimaud D, Huang S, Michard G, et al. Chemical study of geothermal waters of Central Tibet (China)[J]. Geothermics,1985,14(1):35-48.
    [54]姚足金,张锡根,安可士,等.西藏羊八井地热资源评价[M].中国地质科学院水文地质工程地质研究所所刊(第2号),1986.
    [55]西藏地热地质大队.西藏羊八井地热田[M].拉萨:西藏人民出版社,1988.
    [56]朱梅湘,徐勇,任湘,等.羊易地热田的水热蚀变及其热田演化[C]//.中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:125-133.
    [57]贾疏源.西藏朗久地热田热储结构特征及开发前景[C]//.中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:146-153.
    [58]梁廷立.羊易地热田勘探工作方法的初步研究[C]//.中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:154-159.
    [59]梁廷立.羊八井地热田北部热流体的升流部位[C]//.中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:29-153.
    [60]梁廷立,陈琳.西藏羊八井地热田北区深部水文地球化学特征[J].西藏地质,1996(1):43-49.
    [61]赵平,金建,张海政,等.西藏羊八井地热田热水的化学组成[J].地质科学,1998,33(01):61-72.
    [62]宫崎真一,曾毅,蒋勇等.日本国际协力机构(JICA)援助西藏羊八井地热资源开发计划调查项目情况分析之一—调查井(CJZK3001)的钻探[A].全国地热产业可持续发展学术研讨会论文集[C].北京:化学工业出版社,2005:106-112.
    [63]Guo Qinghai, Wang Yanxin, Liu Wei. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research,2007, 166,255-268.
    [64]伍坤宇.冈底斯—喜马拉雅造山系中部热泉地球化学特征及典型地热区COz脱气通量研究[D].重庆:西南大学,2012.
    [65]周立.西藏中部典型温泉特征[D].北京:中国地质大学,2012.
    [66]Nier A O, Gulbransen E A. Variations in the relative abundance of the carbon isotopes[J]. Journal of the American Chemical Society, 1939,61(3): 697-698.
    [67]Nier A O. Amass spectrometer for isotope and gas analysis[J]. Review of Scientific Instruments, 1947, 18(6):398-411.
    [68]Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (Resumed),1947:562-581.
    [69]Arnold J R, Libby W F. Age determinations by radiocarbon content: checks with samples of known age[J]. Science,1949,110(2869):678-680.
    [70]Libby W F. The potential usefulness of natural tritium[J]. Proceedings of the National Academy of Sciences of the United States of America,1953,39(4):245-247.
    [71]Dansgaard W. The abundance of O18 in atmospheric water and water vapour[J]. Tellus, 1953,5(4): 461-469.
    [72]Epstein S, Mayeda T. Variation of 018 content of waters from natural sources[J]. Geochimica et cosmochimica acta,1953,4(5):213-224.
    [73]Friedman I. Deuterium content of natural waters and other substances[J]. Geochimica et Cosmochimica Acta,1953,4(1):89-103.
    [74]Craig H. Isotopic variations in meteoric waters[J]. Science, 1961,133(3465):1702-1703.
    [75]Craig H. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta,1953, 3(2):53-92.
    [76]Craig H, Boato G, White D E. Isotopic geochemistry of thermal waters[J]. Geol. Soc. Am., Bull.;(United States),1954,65(12 Pt 2).
    [77]Craig H. The isotopic geochemistry of water and carbon in geothermal areas[J]. Nuclear geology on geothermal areas,1963:17-53.
    [78]Craig H. Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines[J]. Science, 1966,154(3756): 1544-1548.
    [79]Sakai H. Isotopic properties of sulfur compounds in hydrothermal processes[J]. Geochem. J,1968, 2(1):29-49.
    [80]Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic geology,1974,69(6):843-883.
    [81]Clayton R N, SteinerA. Oxygen isotope studies of the geothermal system at Wairakei, New Zealand[J]. Geochimica et Cosmochimica Acta,1975,39(8):1179-1186.
    [82]Truesdell A H, Nathenson M, Rye R O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters[J]. Journal of Geophysical Research,1977,82(26): 3694-3704.
    [83]Giggenbach W F. The isotopic composition of waters from the El Tatio geothermal field, Northern Chile[J]. Geochimica et Cosmochimica Acta,1978,42(7):979-988.
    [84]Panichi C, Gonfiantini R. Environmental isotopes in geothermal studies[J]. Geothermics, 1977,6(3): 143-161.
    [85]Panichi, C., Gonfiantini, R.. Geothermal waters. In: Gat, J.R., Gonfiantini, R. (Eds.), Stable Isotope Hydrology, Deuterium and Oxygen-18 in the Water Cycle. IAEA Tech. 1981, Report Series 210, pp. 241-271.
    [86]Giggenbach W F, Glover R B. Tectonic regime and major processes governing the chemistry of water and gas discharges from the Rotorua geothermal field, New Zealand[J]. Geothermics, 1992,21(1): 121-140.
    [87]Wilkinson M, Crowley S F, Marshall J D. Model for the evolution of oxygen isotope ratios in the pore fluids of mudrocks during burial[J]. Marine and petroleum geology, 1992,9(1):98-105.
    [88]Ghomshei M M, Clark I D. Oxygen and hydrogen isotopes in deep thermal waters from the South Meager Creek geothermal area, British Columbia, Canada[J]. Geothermics,1993,22(2):79-89.
    [89]Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences,1996,24(1):225-262.
    [90]Diamond R E, Harris C. Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape, South Africa:Recharge at high altitude?[J]. Journal of African Earth Sciences,2000, 31(3):467-481.
    [91]Majumdar N, Majumdar R K, Mukherjee A L, et al. Seasonal variations in the isotopes of oxygen and hydrogen in geothermal waters from Bakreswar and Tantloi, Eastern India:implications for groundwater characterization [J]. Journal of Asian Earth Sciences,2005,25(2): 269-278.
    [92]Pope E C, Bird D K, Arnorsson S. Stable isotopes of hydrothermal minerals as tracers for geothermal fluids in Iceland[J]. Geothermics,2014,49:99-110.
    [93]Dotsika E. Isotope and hydrochemical assessment of the Samothraki Island geothermal area, Greece. Journal of Volcanology and Geothermal Research,2012.233-234: 18-26.
    [94]Sanliyuksel D, Baba A. Hydrogeochemical and isotopic composition of a low-temperature geothermal source in northwest Turkey: case study of Kirkgecit geothermal area[J]. Environmental Earth Sciences,2011,62(3):529-540.
    [95]Tan Hongbing, Zhang Wenjie, Chen Jiansheng, et al. Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan Plateau[J]. Geothermics,2012,42:47-55.
    [96]于津生,张鸿斌,虞福基,等.西藏东部大气降水氧同位素组成特征[J].地球化学,1980,(02):113-121.
    [97]佟伟,朱梅湘,陈民扬.西藏水热区硫同位素组成和深源热补给的研究[J].北京大学学报(自然科学版),1982,(2):79-85.
    [98]卫克勤,林瑞芬,王志祥.西藏羊八井地热水的氢、氧稳定同位素组成及氚含量[J].地球化学,1983,(4):338-346.
    [99]郑淑蕙,张知非,倪葆龄,等.西藏地热水的氢氧稳定同位素研究[J].北京大学学报(自然科学版),1982,(1):99-106.
    [100]Piovesana F, Scandiffio G, Zheng K, et al. Geochemistry of thermal fluids in the Yangbajain area (Tibet/China) [C]//International symposium on the use of isotope techniques in water resources development. 1987:47-70.
    [101]张锡根.同位素地球化学在地热勘探中的应用[J].水文地质工程地质,1988(1):8-31.
    [102]Guo Qinghai, Wang Yanxin, Liu Wei. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China [J]. Environmental Earth Sciences.2010,59, 1589-1597.
    [103]Guo Q. Hydrogeochemistry of high-temperature geothermal systems in China:A review[J]. Applied Geochemistry,2012,27:1887-1898
    [104]Mazor E, Wasserburg G J. Helium, neon, argon, krypton and xenon in gas emanations from Yellowstone and Lassen volcanic National Parks[J]. Geochimica et Cosmochimica Acta, 1965,29(5): 443-454.
    [105]Giggenbach W F, Guern F L. The chemistry of magma tic gases from Erta'Ale, Ethiopia [J]. Geochimica et Cosmochimica Acta,1976,40(1):25-30.
    [106]Gerlach T M. Investigation of volcanic gas analyses and magma outgassing from Erta'Ale lava lake, Afar, Ethiopia[J]. Journal of Volcanology and Geothermal Research,1980,7(3): 415-441.
    [107]Arnorsson S, Gunnlaugsson E. Gas chemistry in geothermal systems[R]. Science Institute, University of Iceland, Reykjavik, Iceland; Reykjavik Municipal District Heating Service, Reykjavik, Iceland,1983.
    [108]Lyon G L, Hulston J R. Carbon and hydrogen isotopic compositions of New Zealand geothermal gases[J]. Geochimica et Cosmochimica Acta,1984,48(6):1161-1171.
    [109]Kennedy B M, Lynch M A, Reynolds J H, et al. Intensive sampling of noble gases in fluids at Yellowstone:Ⅰ. Early overview of the data; regional patterns[J]. Geochimica et Cosmochimica Acta, 1985,49(5):1251-1261.
    [110]Giggenbach W F. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand[J]. Applied Geochemistry,1987,2(2):143-161.
    [111]Poreda R J, Jeffrey A W A, Kaplan I R, et al. Magmatic helium in subduction-zone natural gases[J]. Chemical geology, 1988,71(1):199-210.
    [112]Armannsson H, Benjaminsson J, Jeffrey A W A. Gas changes in the Krafla geothermal system, Iceland[J]. Chemical geology,1989,76(3):175-196.
    [113]Giggenbach W F. Water and gas chemistry of Lake Nyos and its bearing on the eruptive process[J]. Journal of Volcanology and Geothermal Research,1990,42(4):337-362.
    [114]Marty B, Gunnlaugsson E, Jambon A, et al. Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland[J]. Chemical geology,1991,91(3):207-225.
    [115]Poreda R J, Craig H, Arnorsson S, et al. Helium isotopes in Icelandic geothermal systems:I.3He, gas chemistry, and 13C relations[J]. Geochimica et cosmochimica acta,1992,56(12):4221-4228.
    [116]Giggenbach W F, Sano Y, Wakita H. Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary[J]. Geochimica et cosmochimica acta,1993,57(14):3427-3455.
    [117]Sano Y, Hirabayashi J I, Oba T, et al. Carbon and helium isotopic ratios at Kusatsu-Shirane volcano, Japan[J]. Applied geochemistry, 1994,9(4):371-377.
    [118]Kennedy B M, Kharaka Y K, Evans W C, et al. Mantle fluids in the San Andreas fault system, California [J]. Science,1997,278(5341):1278-1281.
    [119]Goff F, Janik C J. Gas geochemistry of the Valles caldera region, New Mexico and comparisons with gases at Yellowstone, Long Valley and other geothermal systems[J]. Journal of volcanology and geothermal research, 2002, 116(3):299-323.
    [120]Porcelli D, Ballentine C J, Wieler R. An overview of noble gas geochemistry and cosmochemistry[J]. Reviews in mineralogy and geochemistry,2002,47(1):1-19.
    [121]Walia V, Quattrocchi F, Virk H S, et al. Radon, helium and uranium survey in some thermal springs located in NW Himalayas, India:mobilization by tectonic features or by geochemical barriers?[J]. Journal of Environmental Monitoring,2005,7(9):850-855.
    [122]Frondini F, Caliro S, Cardellini C, et al. Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy)[J]. Applied Geochemistry,2009,24(5):860-875.
    [123]Wiersberg T, Suer S, Gulec N, et al. Noble gas isotopes and the chemical composition of geothermal gases from the eastern part of the Buyuk Menderes Graben (Turkey)[J]. Journal of Volcanology and Geothermal Research, 2011,208(3):112-121.
    [124]Burton M R, Sawyer G M, Granieri D. Deep carbon emissions from volcanoes[J]. Rev Mineral Geochem,2013,75:323-354.
    [125]Yokochi R, Sturchio N C, Purtschert R, et al. Noble gas radionuclides in Yellowstone geothermal gas emissions: Areconnaissance[J]. Chemical Geology,2013(319):41-51.
    [126]蔡祖煌,石慧馨,穆松林,等.念青唐古拉山山前断裂羊八井段现今活动深度的同位素研究[J].科学通报,1985,30(24):1891-1893.
    [127]赵平,多吉,梁廷立,等.西藏羊八井地热田气体地球化学特征[J].科学通报,1998,43(07):691-696.
    [128]赵平,Mack KENNEDY,多吉,等.西藏羊八井热田地热流体成因及演化的惰性气体制约[J].岩石学报,2001,17(3):497-503.
    [129]赵平,谢鄂军,多吉,等.西藏地热气体的地球化学特征及其地质意义[J].岩石学报,2002,18(4):539-550.
    [130]Yokoyama T, Nakai S, Wakita H. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau[J]. Journal of volcanology and geothermal research,1999,88(1):99-107.
    [131]Hoke L, Lamb S, Hilton D R, et al. Southern limit of mantle-derived geothermal helium emissions in Tibet:implications for lithospheric structure[J]. Earth and Planetary Science Letters, 2000,180(3):297-308.
    [132]侯增谦,李振清,曲晓明,等.0.5 Ma以来的青藏高原隆升过程—来自冈底斯带热水活动的证据[J].中国科学(D辑),2001,31(增刊):27-33.
    [133]侯增谦,李振清.印度大陆俯冲前缘的可能位置:来自藏南和藏东活动热泉气体He同位素约束[J].地质学报,2004,78(4):482-493.
    [134]李振清.青藏高原碰撞造山过程中的现代热水活动[D].北京:中国地质科学院,2002.
    [135]李振清,侯增谦,聂凤军,等.藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据[J].地质学报,2005,79(1):68-77.
    [136]沈立成.中国西南地区深部脱气地质作用与碳循环研究[D].重庆:西南大学,2007.
    [137]沈立成,伍坤宇,肖琼,等.西藏地热异常区C02脱气研究:以朗久和搭格架地热区为例[J].科学通报,2011,56(26):2198-2208.
    [138]Becker J A, Bickle M J, Galy A, et al. Himalayan metamorphic CO2 fluxes:Quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters,2008,265(3):616-629.
    [139]Newell D L, Jessup M J, Cottle J M, et al. Aqueous and isotope geochemistry of mineral springs along the southern margin of the Tibetan plateau: Implications for fluid sources and regional degassing of CO2[J]. Geochemistry, Geophysics, Geosystems,2008,9(8):1-20.
    [140]Klemperer S L, Kennedy B M, Sastry S R, et al. Mantle fluids in the Karakoram fault: Helium isotope evidence[J]. Earth and Planetary Science Letters, 2013,366:59-70.
    [141]胡先才,孙继东,姚中华,等.西藏地热活动与开发对地质环境的影响[J].山地学报,2003,21(S1):45-48.
    [142]赵平,多吉,谢鄂军,等.中国典型高温热田热水的锶同位素研究[J].岩石学报,2003,19(3):569-576.
    [143]刘伟.西藏典型高温水热系统水文地球化学及地热利用引发的水污染问题研究[D].武汉:中国地质大学,2008.
    [144]吕苑苑,赵平,许荣华,谢烈文.西藏羊八井地热田硼同位素地球化学特征初步研究[J].地质科学,2012,47(1):251-264.
    [145]Yuan J, Guo Q, Wang Y. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China[J]. Journal of Geochemical Exploration, 2014.
    [146]Taran Y, Fischer T P, Pokrovsky B, et al. Geochemistry of the volcano-hydrothermal system of El Chichon volcano, Chiapas, Mexico[J]. Bulletin of Volcanology,1998,59(6):436-449.
    [147]Millot R, Negrel P. Multi-isotopic tracing (δ7Li, δ11B,87Sr/86Sr) and chemical geothermometry: evidence from hydro-geothermal systems in France[J]. Chemical geology,2007,244(3-4):664-678.
    [148]Fourre E, Di Napoli R, Aiuppa A, et al. Regional variations in the chemical and helium-carbon isotope composition of geothermal fluids across Tunisia[J]. Chemical geology,2011,288(1):67-85.
    [149]Barberi F, Carapezza M L, Cioni R, et al. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras) [J]. Journal of Volcanology and Geothermal Research, 2013, 257:113-134.
    [150]Joseph E P, Fournier N, Lindsay J M, et al. Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia [J]. Journal of Volcanology and Geothermal Research,2013, 254:23-36.
    [151]Pinti D L, Castro M C, Shoaukar-Stash O, et al. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes,δ18O,8D,δ13C and 87Sr/86Sr[J]. Journal of Volcanology and Geothermal Research,2013,249:1-11.
    [152]水利部水文局编.全国水文基本建设概况[M].北京:中国水利水电出版社,2004.
    [153]张荣祖,郑度,杨勤业.西藏自然地理[M].北京:科学出版社,1982.
    [154]杨逸畴,李炳元,尹泽生,等.西藏地貌[M].北京:科学出版社,1983.
    [155]高由禧,蒋世逵,张谊光,等.西藏气候[M].北京:科学出版社,1984.
    [156]戴家洗主编.青藏高原气候[M].北京:气象出版社,1990.
    [157]西藏自治区地方志编纂委员会编.西藏自治区志气象志[M].北京:中国藏学出版社,2005.
    [158]关志华,陈传友,区域雄,等.西藏河流与湖泊[M].北京:科学出版社,1984.
    [159]汤奇成,熊怡等.中国河流水文[M].北京:科学出版社,1998.
    [160]汤奇成,何希吾,赵楚年.青藏高原的水资源[M].北京:中国藏学出版社,2003.
    [161]何大明,汤奇成,等著.中国国际河流[M].北京:科学出版社,2000.
    [162]刘天仇.雅鲁藏布江水文特征[J].地理学报,1999,(S1):157-164.
    [163]潘桂棠,丁俊,姚东生,等.1:150万青藏高原及邻区地质图(1:1500000)说明书[M].成都:成都地图出版社,2004.
    [164]肖序常,李廷栋,李光岑,等.喜马拉雅岩石圈构造演化总论[M].北京:地质出版社,1988.
    [165]孙鸿烈.青藏高原的形成演化[M].上海:上海科学技术出版社,1996.
    [166]潘裕生.青藏高原的形成与隆升[J].地学前缘,1999,6(3):153-163.
    [167]潘裕生,方爱民.中国青藏高原特提斯的形成与演化[J].地质科学.2010,(1):92-101.
    [168]吴珍汉,吴中海,胡道功,等.青藏铁路沿线活动断裂与地质灾害图集[M].北京:地震出版社,2005.
    [169]韩同林.中华人民共和国地质矿产部专报(五)构造地质·地质力学第4号[A].见:喜马拉雅岩石圈构造演化:西藏活动构造.北京:地质出版社,1987.
    [170]沈显杰,张文仁,杨淑贞,等.青藏高原南北地体壳幔热结构差异的大地热流证据[J].地球学报,1990,21,203-214.
    [171]沈显杰,张文仁,杨淑贞,等.中华人民共和国地质矿产部专报(五)构造地质·地质力学第14号[A].见:亚东—格尔木岩石圈地学断面综合研究青藏热流与地体构造热演化.北京:地质出版社,1992.
    [172]西藏地热地质大队.西藏自治区那曲—尼木地热带地热调查报告[R].拉萨:西藏地热地质大队,1991.
    [173]张宗祜,李烈荣主编.中国地下水资源西藏卷[M].北京:中国地图出版社,2005.
    [174]胡先才,范珍材,谢鄂军,等.青藏铁路沿线高温地热资源调查评价2012年总结[R].拉萨:西藏地热地质大队,2012.
    [175]赵文津,江万,吴珍汉,等.西藏羊八井深部构造—地震—地热关系及机理调查研究[R].北京:中国地质科学院,2003.
    [176]吴中海.西藏当雄—羊八井盆地及邻区第四纪地质演化与活动断裂研究[D].北京:中国地质科学院,2004.
    [177]邵云惠,孙叶,李咸业,等编著.地质力学的方法与实践第五篇(下)地质力学在环境地质中的应用[M].北京:地质出版社,1997.
    [178]Dewey J F, Shackleton R M, Chengfa C, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,327(1594):379-413.
    [179]覃昌龙,周再勇,张家诚,等.西藏自治区地热资源区划[R].拉萨:西藏地热地质大队,1991.
    [180]Brown L D, Zhao W, Nelson K D, et al. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science,1996,274(5293):1688-1690.
    [181]Alsdorf D, Makovsky Y, Zhao W, et al. INDEPTH (International Deep Profiling of Tibet and the Himalaya) multichannel seismic reflection data:Description and availability [J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1998,103(B11):26993-26999.
    [182]赵文津及INDEPTH项目组著.喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究[M].北京:地质出版社,2001.
    [183]赵文津,张肇元.喜马拉雅山及雅鲁藏布江缝合带深部结构与构造—INDEPTH项目译文集[M].北京:地质出版社,2002.
    [184]谭捍东,陈乐寿,魏文博,等.从INDEPTH MT结果探讨雅鲁藏布江缝合带的电性结构[J].现代地质,1997,11(3):375-379.
    [185]魏文博,陈乐寿,谭捍东,等.关于印度板块俯冲的探讨—据INDEPTH-MT研究结果[J].现代地质,1997,11(3):379-387.
    [186]魏文博,陈乐寿,等.西藏中、南部壳内高导体与热结构特点——INDEPTH-MT提供的证据[J].现代地质,1997,11(3):387-392.
    [187]孟令顺,高锐,周富祥,等.利用重力异常研究亚东—格尔木地壳构造[J].地球学报,1990,11(2):149-161.
    [188]孟令顺,高锐.中华人民共和国地质矿产部地质专报(五)构造地质·地质力学第13号[A].见:亚东—格尔木岩石圈地学断面综合研究,青藏高原重力测量与岩石圈构造.北京:地质出版社,1992.
    [189]Wei W, Unsworth M, Jones A, et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science,2001,292(5517):716-719.
    [190]魏文博,金胜,叶高峰,等.西藏高原中、北部断裂构造特征:INDEPTH(Ⅲ)-MT观测提供的依据[J].地球科学-中国地质大学学报,2006a,31(2):257-265.
    [191]魏文博,金胜,叶高峰,等.藏北高原地壳及上地幔导电性结构—超宽频带大地电磁测深研究结果[J].地球物理学报,2006b,49:1215-1225.
    [192]吴中海,叶培盛,吴珍汉.2008年10月6日西藏当雄Ms6.6级强震的地震烈度控震构造和发震机理[J].地质通报,2009,28(6):713-725.
    [193]傅维洲.亚东—格尔木走廊域及其邻区的地震活动特征[J].地球学报,1990,21:247-257.
    [194]崔作舟,尹周勋,高恩元,等.青藏高原地壳结构构造及其与地震的关系[J].地球学报,1990,21:215-226.
    [195]佟伟,张知非,章铭陶,等.喜马拉雅地热带[J].北京大学学报(自然科学版),1978,1:76-89.
    [196]Hochstein M P, Regenauer-Lieb K. Heat generation associated with collision of two plates:the Himalayan geothermal belt[J]. Journal of Volcanology and Geothermal Research,1998,83(1):75-92.
    [197]佟伟,廖志杰,刘时彬,等.西藏温泉志[M].北京:科学出版社,2000.
    [198]Japan International Collaboration Agency and Tibet Electric Power Company. Final report for the development program of the geothermal resource at Yangbajing, Tibet, China[R].2006.
    [199]Guo Q, Wang Y. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China[J]. Journal of Volcanology and Geothermal Research,2012,215-216: 61-73.
    [200]上官志冠,孙明良. 腾冲热海地区现代幔源岩浆气全释放特征[J]. 中国科学: D 辑,2000, 30(4):407-414.
    [201]上官志冠.腾冲热海地热田热储结构与岩浆热源的温度[J].岩石学报,2000,16(1):83-90.
    [202]Hussain S D, Ahmad M, Gonfiantini R, et al. Isotopic and chemical studies of geothermal waters of Northern Areas of Pakistan[C]//Proceedings of the Final Research Coordination Meeting on the Application of Isotope and Geochemical Techniques in Geothermal Exploration in the Middle East, Asia, the Pacific and Africa. Dumaguete City, Philippines. IAEA-TECDOC-788, Vienna, Austria. 1995:127-147.
    [203]Craig J, Absar A, Bhat G, et al. Hot springs and the geothermal energy potential of Jammu & Kashmir State, NW Himalaya, India[J]. Earth-Science Reviews,2013,126:156-177.
    [204]Navada S V, Rao S M. Isotope studies of some geothermal waters in India[J]. Isotopenpraxis Isotopes in Environmental and Health Studies,1991,27:4,153-163.
    [205]Arnorsson S. The use of mixing models and chemical geothermometers for estimating underground temperatures in geothermal systems [J]. Journal of Volcanology and Geothermal Research,1985,23(3):299-335.
    [206]Giggenbach W, Goguel R L. Collection and analysis of geothermal and volcanic water and gas discharges[R]. DSIR Chemist,1989, Report 2401,1-81.
    [207]Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics,1977,5(1):41-50.
    [208]Fournier R O. Interpretation of Na-K-Mg relations in geothermal waters[C]. Geothermal Resources Council. Transactions,1990,14:1421-1425.
    [209]Arnorsson S, Fridriksson, T, Gunnarsson I. Gas chemistry of the Krafl a geothermal field, Iceland[C]. IntlSymp Water-Rock Interaction, Auckland, New Zealand, 1998:613-616.
    [210]Giggenbach W F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin[J]. Earth and Planetary Science Letters,1992,113(4): 495-510.
    [211]陈宗宇,齐继祥,张兆吉,等.北方典型盆地同位素水文地质学方法应用[M].北京:科学出版社,2010.
    [212]顾慰祖,庞忠和,王全九,等.同位素水文学[M].北京:科学出版社,2011.
    [213]Clark,L.D.Fritz,P.著;张慧,张新基译.水文地质学中的环境同位素[M].郑州:黄河水利出版社,2006.
    [214]Afsin M, Allen D M, Kirste D, et al. Mixing processes in hydrothermal spring systems and implications for interpreting geochemical data:a case study in the Cappadocia region of Turkey[J]. Hydrogeology Journal,2014,22(1):7-23.
    [215]张理刚.稳定同位素在地质科学中的应用:金属活化热液成矿作用及找矿[M].西安:陕西科学技术出版社,1985.
    [216]Ohmoto H, Goldhaber MB. Sulfur and carbon isotopes. In: Barnes HL (ed.) Geochemistry of hydrothermal ore deposits,3rd edn[M]. New York, Wiley,1997, p.435-486
    [217]Jochen Hoefs. Stable Isotope Geochemistry (Sixth Edition) [M]. Springer-Verlag Berlin Heidelberg.2009.
    [218]戴金星,戴春森,宋岩,等.中国一些地区温泉中天然气的地球化学特征及碳、氦同位素组成[J].中国科学(B辑),1994,24(4):426-433.
    [219]陈安定.地下富氮气体中氮主要来自地面大气水下渗[J].天然气地球科学,1998,9(6):30-33.
    [220]Sano Y, Nishio Y, Sasaki S, et al. Helium and carbon isotope systematics at Ontake volcano, Japan[J]. Journal of Geophysical Research: Solid Earth (1978-2012),1998,103(B10):23863-23873.
    [221]徐永昌.天然气中的幔源稀有气体[J].地学前缘,1996,3(3):63-71.
    [222]徐永昌.天然气中氦同位素分布及构造环境[J].地学前缘,1997,4(3):185-190.
    [223]朱岳年,吴新年.二氧化碳地质研究[M].兰州:兰州大学出版社,1994.
    [224]朱岳年.天然气中非烃组分地球化学研究进展[J].天然气地球科学,1994,5(1):1-29.
    [225]朱岳年,张友学.地幔脱气作用和大气圈惰性气体形成与演化[J].地学前缘,1998,5(A08):165-174.
    [226]陶明信,徐永昌,史宝光,等.中国不同类型断裂带的地幔脱气与深部地质构造特征[J].中国科学:D辑,2005,35(5):441-451.
    [227]沈立成,袁道先,丁悌平,等.中国西南地区C02释放点的He同位素分布不均一性及大地构造成因[J].地质学报,2007,81(4):475-487.
    [228]鲁雪松,宋岩,柳少波,等.幔源CO2释出机理,脱气模式及成藏机制研究进展[J].地学前缘,2008,15(6):293-302.
    [229]戴金星,胡国艺,倪云燕,等. 中国东部天然分布特征[J]. 天然气地球科学, 2009,20(4): 471-487.
    [230]魏斯禹,张致和,滕古文,等.喜马拉雅地热带的活动特征与板块构造[J].地震研究,1983,6(4):577-590.
    [231]佟伟,张知非,廖志杰,等.西藏高原的水热活动和上地壳热状态初探[J].地球物理学报,1982,1:34-40.
    [232]佟伟,穆治国,刘时彬.中国晚新生代火山和现代高温水热系统[J].地球物理学报,1990,33(3):329-335.
    [233]Lupton J E. Terrestrial inert gases-Isotope tracer studies and clues to primordial components in the mantle[J]. Annual Review of Earth and Planetary Sciences,1983,11:371-414.
    [234]Manyrin B A, Tolstikhin I N. Helium Isotopes in Nature[M]. Elsevier Amsterdam,1984, 175-179.
    [235]Andrews J N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers[J]. Chemical Geology,1985,49(1):339-351.
    [236]Jaupart C, Francheteau J, Shen X J. On the thermal structure of the southern Tibetan crust[J]. Geophysical Journal International,1985,81(1):131-155.
    [237]Zhao, W., Nelson, K.D., Project INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature,1993,366,557-559.
    [238]赵文津,吴珍汉,史大年,等.国际合作1NDEPTH项目横穿青藏高原的深部探测与综合研究[J].地球学报,2008,29(3):328-342.
    [239]Zhao W, Kumar P, Mechie J, et al. Tibetan plate overriding the Asian plate in central and northern Tibet[J]. Nature geoscience,2011,4(12):870-873.
    [240]Klemperer S L. Crustal flow in Tibet:geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow[J]. Geological Society, London, Special Publications, 2006,268(1):39-70.
    [241]Klemperer S L. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet: COMMENT and REPLY COMMENT[J]. Geology,2008,36(1):e180-e180.
    [242]Arora B R, Unsworth M J, Rawat G. Deep resistivity structure of the northwest Indian Himalaya and its tectonic implications[J]. Geophysical Research Letters,2007,34(4): L04307,1-4.
    [243]Caldwell W B, Klemperer S L, Rai S S, et al. Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion[J]. Tectonophysics,2009,477(1):58-65.
    [244]Caldwell W B, Klemperer S L, Lawrence J F, et al. Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking[J]. Earth and Planetary Science Letters,2013,367:15-27.
    [245]Makovsky Y, Klemperer S L. Measuring the seismic properties of Tibetan bright spots:Evidence for free aqueous fluids in the Tibetan middle crust[J]. Journal of Geophysical Research:Solid Earth (1978-2012),1999,104(B5):10795-10825.
    [246]Makovsky Y, Klemperer S L, Ratschbacher L, et al. Midcrustal reflector on INDEPTH wide-angle profiles:An ophiolitic slab beneath the India-Asia suture in southern Tibet?[J]. Tectonics, 1999,18(5):793-808.
    [247]Schulte-Pelkum V, Monsalve G, Sheehan A, et al. Imaging the Indian subcontinent beneath the Himalaya[J]. Nature, 2005,435(7046):1222-1225.
    [248]Battistelli, A. Calore, C. Rossi, R吴方之.西藏那曲地热田热储工程研究[C]//.中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:134-145.
    [249]多吉.典型高温地热系统—羊八井热田基本特征[J].中国工程科学,2003,5(1):42-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700