用户名: 密码: 验证码:
石墨烯材料的化学调控、组装及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化石墨烯(GO)为大规模制备石墨烯基材料提供了可能,还原GO制备还原石墨烯(rGO)是一个重要而充满挑战的课题。在本论文的第二章中,我们以DMAc/H2O混合溶剂分散GO,研究了其溶剂热还原的效果,常规的油浴加热以及微波加热作为热源分别进行了研究。反应温度不超过160°C。采用FT-IR,XRD,AFM,XPS, Raman和TGA测试表明在该温度下,GO已经发生脱氧,生产了热还原石墨烯。以微波为加热源条件下,反应可以在10min内完成。制备的石墨烯材料可以再经过超声分散到DMAc溶剂中形成稳定的分散液。抽滤获得热还原石墨烯纸的电导率达~200S/m,比原料GO纸要高104倍。该工作为在加热条件下使用氧化石墨烯材料的小组提供很好的参考价值。
     为了能进一步提高GO的还原效果,我们采用化学还原剂还原。在第三章中,采用了一系列含硫化合物诸如NaHSO3, SOC12和S02替代水合肼用于还原GO制备还原石墨烯。FT-IR,TGA和XPS等测试表明经过95℃下化学还原生产了石墨烯,并且NaHSO3的还原能力与水合肼相当。我们提出了NaHSO3还原过程可能存在的还原机理。NaHSO3还原石墨烯,经抽滤制备的石墨烯纸电导率达到6500S/m,而相同条件下水合肼还原的样品为5100S/m。因而NaHSO3有可能替代水合肼作为还原GO的还原剂。
     在GO还原过程中,如果处在强还原条件下有可能会在GO上发生氢化现象,生产C-H结构。在第四章中,我们发现了一种制备氢化石墨烯的新方法。将GO溶液置于60Co产生的γ射线下,在室温下经过辐照就可以生成氢化的还原石墨烯。该过程中GO被水合电子(eaq-)以及H自由基还原并加氢。制得的氢化还原石墨烯中最大氢化程度达到5.27wt.%,即H/C=0.76。该过程可以大规模制备出氢化的还原石墨烯。制备的氢化石墨烯作为离子电池负极材料使用,性能表现良好。
     如何将微米级别的石墨烯片拼接组装成宏观尺度上的结构体,这对于开发石墨烯材料的应用非常重要。其中的一个发展方向便是应用范围广泛的三维石墨烯材料。在第五章中,我们在95℃常压下,原位还原自组装制备出了3D石墨烯材料-石墨烯水凝胶。该过程无需另加化学或者物理交联剂。制备的石墨烯水凝胶经过冷冻干燥处理获得石墨烯气凝胶,通过控制反应器形状可以达到控制3D石墨烯形状的目的。石墨烯水凝胶可应用于超级电容器,测试表明比电容高达160F/g。而石墨烯气凝胶具有质量轻、强度高、热稳定性好以及导电率高等优点。3D结构的石墨烯在超级电容器、油吸附材料以及催化剂载体等方面有巨大潜在用途。
     3D石墨烯结构的独特性来自于基本组成单元——2D结构的石墨烯片,赋予该材料巨大的表面积可以与其他材料复合。以GO溶液为原料,可以方便地制备出3D石墨烯复合结构体。在第六章中,采用一步还原自组装的方法,以化学还原中收缩的石墨烯片层网络富集Fe304纳米颗粒,制得了石墨烯/Fe304复合气凝胶,该过程像撒网捕鱼一般。获得的材料具有多孔、质量轻和超顺磁性的特点。将石墨烯/Fe304复合材料用于锂离子电池负极,表现出了优异的电化学性能,在经过50次充放电循环后比容量依然高达1100mAh g-1。该方法也适用于其他3D石墨烯复合材料的制备。
     通过控制石墨烯气凝胶的多孔结构我们可以获得不同的石墨烯结构体。在第七章中,我们采用冰模板的方法,制备了柔性大孔结构的3D石墨烯海绵。通过控制结冰的速率,可以达到控制3D石墨烯孔径结构的目的。在低结冰速率下,石墨烯水凝胶中的片层进行了再组装,形成多层次结构,冷冻干燥后获得多大孔结构海绵。制备的石墨烯海绵具有良好弹性能从50%形变中复原。将该石墨烯海绵应用于微生物燃料电池阳极,最大输出能量密度达427Wm-3,表现超过了相同条件下的碳毡。
     如何将微米基本的GO片组装成宏观的膜结构材料一直是石墨烯加工领域所面临的挑战。从材料的角度来看泡泡膜,它们其实是很好的超薄膜模板。在第八章中,我们发展了一种制备自支撑GO超薄膜的新方法,维持GO泡泡膜稳定下干燥获得。制备的GO膜可以方便地转移到需要基底上。在经过化学还原和高温还原后,所制备rGO膜表现出了良好的电导率(920Ω□-1),该材料有望用于替代ITO和FTO,此外化学还原rGO膜可以用于柔性导电透明材料。该方法也望用于其他类石墨烯二维材料自支撑超薄膜的制备。
     通常GO的还原在加热条件下进行,需要输入能量。事实上,溶液中GO的还原是一个消耗电子和质子脱氧的过程,GO扮演了去极化剂的作用。那么我们能否再还原GO的过程中导出能量呢?在第九章中,以锌片为负极,GO为正极,构建了Zn-GO的原电池。在还原GO的过程中可以同时导出电子对外做功。测得的电池容量与GO的氧化程度相关,在平均电压超过0.6V时,电容量在216到642mAh g-1之间。阻抗谱测试表明,放电过程中Zn/GO电池电阻在减小。GO膜的放电过程中存在着类似多米诺效应的现象。组装的原电池可以点亮LED灯,表明其有实际应用的可能。
     受GO膜还原中的多米诺效应启发,在第十章中我们发现可以采用电化学方法来对GO结构体的进行还原。在此过程中,由于存在移动的三相界线,点或者线接触都可以触发GO结构体的整体还原,通常认为的面面接触并不是必要条件。我们制备了从1D石墨烯复合线,2D石墨烯复合纸与石墨烯透明导电膜(64%透光率,1.8KΩ□-1),3D石墨烯复合海绵,都展现了良好的导电性。测得还原后的石墨烯膜电导率为28200S/m,媲美HI和高温热还原。
Graphene oxide (GO) provides possible to prepare graphene based materials in large scale. Reduction of graphene oxide to reduced graphene oxide (rGO) is one important and challenging topic. In Chapter II, we studied the solvent thermal reduction of graphene oxide in mixture DMAc/H2O solvent under atmosphere press, both bath heating and microwave heating were employed, respectively. The reaction temperature is below160℃. FT-IR, XRD, AFM, XPS, Raman, and TGA measurements reveal that deoxygenation of GO occurs under the mild thermal conditions, yielding rGO. For micarowave as heating source, the reduction time is within10minutes, and the as-prepared rGO can be well dispersed in DMAc to form a stable suspension. The conductivity of reduced graphene paper was measured about200S/m,104times higher than that of GO paper.
     For a more high extent of reduction for graphene oxide, chemical reducing agents are used. In Chapter III, instead of hydrazine, sulfur-containing compounds such as NaHSO3, SOCl2and SO2et al. were used to reduce graphene oxide to chemical reduced graphene oxide. FT-IR, TGA, XPS et al. measurements confirmed the formation of rGO under chemical reduction at95℃. The results reveal that the reducing ability of NaHSO3is comparable to that of hydrazine. A possible mechanism of the reduction has been suggested. The electrical conductivity of the rGO paper prepared using a NaHSO3reducing agent is found to be6500Sm-1while it is observed to be5100Sm-1for hydrazine reduced graphene paper. These studies confirm that NaHSO3can be a good candidate as a reducing agent to compete with hydrazine
     Hydrogenation of GO also may occur during its reduction at strong reducing conditions, forming C-H group in GO plane. In Chapter IV, we found a novel method to prepare hydrogenated graphene (HG) via a direct synchronal reduction and hydrogenation of graphene oxide (GO) in aqueous suspension under60Co gamma rays irradiation at room temperature. GO can be reduced by the aqueous electron (eaq-) while the hydrogenation takes place by the hydrogen radicals formed in-situ under irradiation. The maximum hydrogen content of the as-prepared highly hydrogenated graphene (HHG) is found to be5.27wt%with H/C=0.76. The yield of the target product is in gram scale and is promising for large scale prepartion. The as prepared HHG also shows high performance as anode materials for lithium ion batteries.
     It is important to assembly the micrometers size graphene sheets into macroscopic architechures for more applications. Three-dimensional (3D) architecture of graphene is significant important. In Chapter V, a mild method for preparation of3D architectures of graphene is developed via an in situ self-assembly of rGO nanosheets that were in-situ formed by a mild chemical reduction at95℃under atmosphere pressure without stirring. No chemical or physical cross-linkers and high press are required. Graphene aerogels can be prepared by freeze-drying of graphene hydrogels, and the shapes of the3D architectures can be controlled by changing the types of the reactors. The graphene hydrogel shows high specific capacitance(~160F/g) in supercapacitor. Graphene aerogels are in low density, high mechanical properties, thermal stability and high electrical conductivity.3D graphene architectures are good candidates for potential application in supercapacitors, oil sorbents and catalysts supports.
     The unique structure of3D graphene architectures comes from the building units-2D graphene sheets, providing extremely large area for combination with other components. Hybrid3D graphene architectures can be easily prepared during self-assembly in aqueous from the well dispersed GO sheets. In Chapter VI, electrical conductive magnetic graphene/Fe3O4aerogel has been successfully prepared by the one-step reduction and self-assembly of the mixture of GO in the present of Fe3O4nanoparticles, and the assembly process looks like the fishing process. The obtained gel is superparamagnetic, porous and light weight. Graphene/Fe3O4composite can be used as anode materials for LIBs, and it shows good electrochemical performance,1100mAh g-1after50cycles of charging/discharging. This study is a base for developing new3D graphene/nanoparticles for wide applications in near future.
     More different graphene architectures can be prepared if we control the porous structure of graphene aerogels. A simple and effective method for the fabrication of flexible macroporous3D graphene sponge using ice template is developed in Chapter Ⅶ. It is found that the porous structures of the3D graphene architecture depended on the rate of ice crystal formation. At a low cooling rate, the inner walls of the graphene hydrogel are re-assembled into hierarchical macroporous structure by the as-formed ice crystals, resulting in the formation of macroporous graphene sponge after freeze-drying. The as-prepared graphene sponge is flexible and can recover from a50%deformation. As the graphene sponge is used as the anode of a microbial fuel cell (MFC), the maximum power density reaches427.0W m-3, which is higher than that of the MFC fabricated using carbon felt as the anode material.
     Assembling micrometers size graphene oxide sheets into macroscopic film is another challenge for graphene fabrication. Foam film acts as template for ultrathin film fabrication if it is seen in a material view. In Chapter Ⅷ, we developed a novel method for the fabrication of macroscopic free-standing ultrathin films of GO through the route of the preparation dried foam films. The prepared GO thin film can be easily transferred to any substrates. After chemical or thermal reduction, the relative rGO film with highly electrical conductivity (920Ω□-1) was prepared, which has potential application as electrode materials to replace of ITO or FTO in flexible photoelectric devices. This method is also suitable for2D graphene-like material free-standing ultrathin films fabrication.
     Generally, the reduction of graphene oxide is conducted in heating condition, where energy is put-in. In fact, the reduction of GO in aqueous is a deoxygenation process with cost of electron and proton, during which GO plays the role of depolarizer. Can we out-put the energy during the reduction of GO? In Chapter IX, a primary battery has been fabricated, where Zn plate as anode and graphene oxide (GO) as cathode, and the electron-output has been achieved while a reduced graphene oxided (rGO) film was obtained synchronously. The output capacities of the batteries depend on the oxygenated degree and the amount of GO, and their specific capacity ranged from216to642mAh g-1while the average voltage is up0.6V. Electrochemical impedance spectroscopy (EIS) measurements reveal the decreasing resistance of Zn/GO cell during discharging process. And a domino-like process was observed during the discharging of GO film. A LED lamp can be ignited by the battery, indicating its potential for practical application.
     Inspired by the domino-like process during the chemical reduction of dried GO foam film in Zn-GO primary cell, we found electrochemical reduction method can be a general route for highly reduction of GO architectures in Chapter X. Point or line contacting can lead to the overall reduction of GO architectures for the moving three phase lines (3PIs), where face contact is not necessary. We fabricated1D graphene/cellulose line,2D graphene film/paper composite and3D graphene/sponge composite, and all showed excellent conductivity. The reduced graphene film gains conductivity of28200S/m, comparable with reduced by HI or thermal annealing, while this method is mild and green. We also prepared flexible graphene film on PET of large area, showing64%transparency with low resistance of1.8KΩ□-1.
引文
[1].刘明非,炭素材料的定义及分类原则.炭赛发术2005,24,(1),1-5.
    [2]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004,306, (5696),666-669.
    [3]. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007,6, (3),183-191.
    [4]. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The structure of suspended graphene sheets. Nature 2007,446, (7131), 60-63.
    [5].中国石墨烯产业技术创新战略联盟标准,石墨烯材料的名词术语和定义.Q/LM01CGS001-2013 2014.
    [6]. Brodie, B. C., On the Atomic Weight of Graphite. Phil. Trans. R. Soc. Lond. 1859,149,249-259.
    [7]. Staudenmaier, L., Verfahren zur Darstellung der Graphitsaure. Ber Dtsch Chem Ges 1898, (31),1481-1487.
    [8]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80, (6),1339-1339.
    [9]. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010,39, (1),228-240.
    [10]. Xu, Y.; Shi, G., Assembly of chemically modified graphene:methods and applications. Journal of Materials Chemistry 2011,21, (10),3311-3323.
    [11]. Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S., Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Science 2009,323, (5914),610-613.
    [12]. Pumera, M.; Wong, C. H. A., Graphane and hydrogenated graphene. Chemical Society Reviews 2013,42, (14),5987-5995.
    [13]. Nair, R. R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S.; Katsnelson, M. I.; Cheng, H.-M.; Strupinski, W.; Bulusheva, L. G.; Okotrub, A. V.; Grigorieva, I. V.; Grigorenko, A. N.; Novoselov, K. S.; Geim, A. K., Fluorographene:A Two-Dimensional Counterpart of Teflon. Small 2010,6, (24),2877-2884.
    [14]. Zhang, S. S.; Foster, D.; Wolfenstine, J.; Read, J., Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell. Journal of Power Sources 2009,187, (1),233-237.
    [15]. Si, Y.; Samulski, E. T., Synthesis of water soluble graphene. Nano Letters 2008, 8,(6),1679-1682.
    [16]. Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y., Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry 2010,20, (35),7491-7496.
    [17]. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008,320, (5881),1308-1308.
    [18]. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321, (5887),385-388.
    [19]. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008,146, (9-10),351-355.
    [20]. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Letters 2008,8, (3),902-907.
    [21]. Jeon, I.-Y.; Shin, Y.-R.; Sohn, G.-J.; Choi, H.-J.; Bae, S.-Y.; Mahmood, J.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Chang, D. W.; Dai, L.; Baek, J.-B., Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences of the United States of America 2012,109, (15),5588-5593.
    [22].Hernandez,Y.; Nicolosi,V.; Lotya,M.; Blighe,F.M.; San,Z.; De,S.; McGovern,I.T.; Holland,B.; Byrne,M.; Gun'ko,Y.K.;Boland,J.J.;Niraj,P.; Duesberg,G.; Krishnamurthy,S.; Goodhue,R.; Hutchison,J.; Scardaci,V.; Ferrari,A.C.; Coleman,J.N.,High-yield production of graphene by liquid-phase exfoliation of graphite.Nature Nanotechnology 2008,3,(9),563-568.
    [23].Behabtu,N.; Lomeda,J.R.; Green,M.J.; Higginbotham,A.L.; Sinitskii,A.; Kosynkin,D.V.; Tsentalovich,D.; Parra-Vasquez,A.N.G.; Schmidt,J.; Kesselman,E.; Cohen,Y.; Talmon,Y.; Tour,J.M.; Pasquali,M.,Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotechnology 2010,5,(6),406-411.
    [24].Su,C.-Y.; Lu,A.-Y.; Xu,Y.; Chen,F.-R.; Khlobystov,A.N.;Li,L.-J.,High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation.Acs Nano 2011,5,(3),2332-2339.
    [25].Li,X.; Cai,W.; An,J.; Kim,S.; Nah,J.; Yang,D.; Piner,R.; Velamakanni,A.; Jung,I.; Tutuc,E.; Banerjee,S.K.;Colombo,L.; Ruoff,R.S.,Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009,324,(5932),1312-1314.
    [26].Bae,S.; Kim,H.; Lee,Y.; Xu,X.; Park,J.-S.; Zheng,Y.; Balakrishnan,J.; Lei, T.; Kim,H.R.; Song,Y.I.; Kim,Y.-J.; Kim,K.S.; Ozyilmaz,B.; Ahn,J.-H.; Hong,B.H.; Iijima,S.,Roll-to-roll production of 30-inch graphene films for transparent electrodes.Nature Nanotechnology 2010,5,(8),574-578.
    [27].Li,D.; Mueller,M.B.; Gilje,S.; Kaner,R.B.; Wallace,G.G.,Processable aqueous dispersions of graphene nanosheets.Nature Nanotechnology 2008,3, (2),101-105.
    [28].Stankovich,S.; Dikin,D.A.; Piner,R.D.; Kohlhaas,K.A.; Kleinhammes,A.; Jia, Y.; Wu,Y.; Nguyen,S.T.; Ruoff,R.S.,Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.Carbon 2007, 45,(7),1558-1565.
    [29].Shin,H.-J.; Kim,K.K.; Benayad,A.; Yoon,S.-M.; Park,H.K.; Jung,I.-S.; Jin, M.H.; Jeong,H.-K.; Kim,J.M.; Choi,J.-Y.; Lee,Y.H.,Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009,19, (12),1987-1992.
    [30]. Fernandez-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D., Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C 2010,114, (14),6426-6432.
    [31]. Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S., Reduction of graphene oxide via L-ascorbic acid. Chemical Communications 2010,46, (7), 1112-1114.
    [32]. Chen, W.; Yan, L.; Bangal, P. R., Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 2010,114,(47),19885-19890.
    [33]. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H., Reduced graphene oxide by chemical graphitization. Nature Communications 2010,1.
    [34]. Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010,48, (15),4466-4474.
    [35]. Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y., Facile and controllable electrochemical reduction of graphene oxide and its applications. Journal of Materials Chemistry 2010,20, (4),743-748.
    [36]. Kim, N. H.; Khanra, P.; Kuila, T.; Jung, D.; Lee, J. H., Efficient reduction of graphene oxide using Tin-powder and its electrochemical performances for use as an energy storage electrode material. Journal of Materials Chemistry A 2013, 1,(37),11320-11328.
    [37]. Wang, J.; Liang, M. H.; Fang, Y.; Qiu, T. F.; Zhang, J.; Zhi, L. J., Rod-Coating: Towards Large-Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens. Advanced Materials 2012,24, (21),2874-2878.
    [38]. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano 2008,2, (3),463-470.
    [39]. Zhang, H.-B.; Wang, J.-W.; Yan, Q.; Zheng, W.-G.; Chen, C.; Yu, Z.-Z., Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. Journal of Materials Chemistry 2011,21, (14),5392-5397.
    [40]. Cote, L. J.; Cruz-Silva, R.; Huang, J., Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite. Journal of the American Chemical Society 2009,131, (31),11027-11032.
    [41]. Zhou, M.; Wang, Y. L.; Zhai, Y. M.; Zhai, J. F.; Ren, W.; Wang, F. A.; Dong, S. J., Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry-a European Journal 2009,15, (25), 6116-6120.
    [42]. Xu, Y.; Sheng, K.; Li, C.; Shi, G., Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. Acs Nano 2010,4, (7),4324-4330.
    [43]. Chen, W.; Yan, L., Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2010,2, (4),559-563.
    [44].Zhu, Y.; Stoller, M.'D.; Cai, W.; Velamakanni, A.; Piner, R. D.; Chen, D.; Ruoff, R. S., Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets. Acs Nano 2010,4, (2), 1227-1233.
    [45]. Chen, W.; Yan, L.; Bangal, P. R., Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010,48, (4),1146-1152.
    [46]. Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B 2004,108, (52),19912-19916.
    [47]. Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009,458, (7240),872-U5.
    [48]. Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H., Narrow graphene nanoribbons from carbon nanotubes. Nature 2009,458, (7240),877-880.
    [49]. Sohn, K.; Na, Y. J.; Chang, H.; Roh, K.-M.; Jang, H. D.; Huang, J., Oil absorbing graphene capsules by capillary molding. Chemical Communications 2012,48, (48),5968-5970.
    [50]. Chen, Y.; Guo, F.; Jachak, A.; Kim, S.-P.; Datta, D.; Liu, J.; Kulaots, I.; Vaslet, C.; Jang, H. D.; Huang, J.; Kane, A.; Shenoy, V. B.; Hurt, R. H., Aerosol Synthesis of Cargo-Filled Graphene Nanosacks. Nano Letters 2012,12, (4), 1996-2002.
    [51]. Xu, Z.; Gao, C., Graphene chiral liquid crystals and macroscopic assembled fibres. Nature Communications 2011,2.
    [52]. Zeng, F.; Kuang, Y.; Wang, Y.; Huang, Z.; Fu, C.; Zhou, H., Facile Preparation of High-Quality Graphene Scrolls from Graphite Oxide by a Microexplosion Method. Advanced Materials 2011,23, (42),4929-4932.
    [53]. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H., Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology 2008,3, (9),538-542.
    [54]. Chen, C. M.; Yang, Q. H.; Yang, Y. G.; Lv, W.; Wen, Y. F.; Hou, P. X.; Wang, M. Z.; Cheng, H. M., Self-Assembled Free-Standing Graphite Oxide Membrane. Advanced Materials 2009,21, (29),3007-+.
    [55]. Kotov, N. A.; Dekany, I.; Fendler, J. H., Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly:Transition between conductive and non-conductive states. Advanced Materials 1996,8, (8),637-&.
    [56]. Chen, W.; Yan, L., Centimeter-Sized Dried Foam Films of Graphene: Preparation, Mechanical and Electronic Properties. Advanced Materials 2012, 24, (46),6229-6233.
    [57]. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature 2007,448, (7152),457-460.
    [58]. Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F., Synthesis of Graphene Aerogel with High Electrical Conductivity. Journal of the American Chemical Society 2010,132, (40), 14067-14069.
    [59]. Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y.; Li, D., Biomimetic superelastic graphene-based cellular monoliths. Nature Communications 2012,3.
    [60]. Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials 2011,10, (6),424-428.
    [61]. Niu, Z.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X., A Leavening Strategy to Prepare Reduced Graphene Oxide Foams. Advanced Materials 2012,24, (30),4144-4150.
    [62]. Chen, C.-M.; Zhang, Q.; Huang, C.-H.; Zhao, X.-C.; Zhang, B.-S.; Kong, Q.-Q.; Wang, M.-Z.; Yang, Y.-G.; Cai, R.; Su, D. S., Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors. Chemical Communications 2012,48, (57),7149-7151.
    [63]. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S., Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011,332, (6037),1537-1541.
    [64]. Zeng, Z.; Huang, X.; Yin, Z.; Li, H.; Chen, Y.; Li, H.; Zhang, Q.; Ma, J.; Boey, F.; Zhang, H., Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Advanced Materials 2012,24, (30), 4138-4142.
    [65]. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Letters 2008,8, (10),3498-3502.
    [66]. Yang, X.; Cheng, C.; Wang, Y.; Qiu, L.; Li, D., Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage. Science 2013,341, (6145),534-537.
    [67]. Zhang, K.; Mao, L.; Zhang, L. L.; Chan, H. S. O.; Zhao, X. S.; Wu, J., Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. Journal of Materials Chemistry 2011,21, (20),7302-7307.
    [68]. Huang, Y.; Liang, J.; Chen, Y., An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small 2012,8, (12),1805-1834.
    [69]. Wang, D.-W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.-G.; Tan, J.; Wu, Z.-S.; Gentle, I.; Lu, G. Q.; Cheng, H.-M., Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. Acs Nano 2009,3, (7),1745-1752.
    [70]. Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H., Ni(OH)(2) Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society 2010,132, (21),7472-7477.
    [71]. Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-s.; Kudo, T.; Honma, I., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters 2008,8, (8),2277-2282.
    [72]. Guo, P.; Song, H.; Chen, X., Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications 2009,11, (6),1320-1324.
    [73]. Sun, Y.; Wu, Q.; Shi, G., Graphene based new energy materials. Energy & Environmental Science 2011,4, (4),1113-1132.
    [74]. Paek, S.-M.; Yoo, E.; Honma, I., Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters 2008,9, (1),72-75.
    [75]. Chou, S.-L.; Wang, J.-Z.; Choucair, M.; Liu, H.-K.; Stride, J. A.; Dou, S.-X., Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications 2010,12, (2),303-306.
    [76]. Ding, Y.; Jiang, Y.; Xu, F.; Yin, J.; Ren, H.; Zhuo, Q.; Long, Z.; Zhang, P., Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochemistry Communications 2010,12, (1),10-13.
    [77]. Evers, S.; Nazar, L. F., Graphene-enveloped sulfur in a one pot reaction:a cathode with good coulombic efficiency and high practical sulfur content. Chemical Communications 2011,48, (9),1233-1235.
    [78]. Ji, X.; Lee, K. T.; Nazar, L. F., A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials 2009,8, (6),500-506.
    [79]. Xiao, J.; Mei, D.; Li, X.; Xu, W.; Wang, D.; Graff, G. L.; Bennett, W. D.; Nie, Z.; Saraf, L. V.; Aksay, I. A.; Liu, J.; Zhang, J.-G., Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Nano Letters 2011,11, (11), 5071-5078.
    [80]. Yang, M.; Hou, Y.; Kotov, N. A., Graphene-based multilayers:Critical evaluation of materials assembly techniques. Nano Today 2012,7, (5),430-447.
    [81]. Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.-M., Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. Acs Nano 2010,4, (9),5245-5252.
    [82]. Su, C.-Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C.-H.; Li, L.-J., Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chemistry of Materials 2009,21, (23),5674-5680.
    [83]. King, P. J.; Khan, U.; Lotya, M.; De, S.; Coleman, J. N., Improvement of Transparent Conducting Nanotube Films by Addition of Small Quantities of Graphene. Acs Nano 2010,4, (7),4238-4246.
    [84]. Kholmanov, I. N.; Stoller, M. D.; Edgeworth, J.; Lee, W. H.; Li, H.; Lee, J.; Barnhart, C.; Potts, J. R.; Piner, R.; Akinwande, D.; Barrick, J. E.; Ruoff, R. S., Nanostructured Hybrid Transparent Conductive Films with Antibacterial Properties. Acs Nano 2012,6, (6),5157-5163.
    [85]. Chang, H.; Wang, G.; Yang, A.; Tao, X.; Liu, X.; Shen, Y.; Zheng, Z., A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode. Advanced Functional Materials 2010,20, (17),2893-2902.
    [86]. Zhao, G.; Ren, X.; Gao, X.; Tan, X.; Li, J.; Chen, C.; Huang, Y.; Wang, X., Removal of Pb(Ⅱ) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions 2011,40, (41),10945-10952.
    [87]. Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.-C.; Kim, K. S., Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. Acs Nano 2010,4, (7),3979-3986.
    [88]. Ramesha, G. K.; Kumara, A. V.; Muralidhara, H. B.; Sampath, S., Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science 2011,361, (1),270-277.
    [89]. Sun, H.; Cao, L.; Lu, L., Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Research 2011,4, (6),550-562.
    [90]. Bi, H.; Xie, X.; Yin, K.; Zhou, Y.; Wan, S.; He, L.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R. S., Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Advanced Functional Materials 2012,22, (21), 4421-4425.
    [91]. Duc Dung, N.; Tai, N.-H.; Lee, S.-B.; Kuo, W.-S., Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy & Environmental Science 2012,5, (7),7908-7912.
    [92]. Dimitrakakis, G. K.; Tylianakis, E.; Froudakis, G. E., Pillared Graphene:A New 3-D Network Nanostructure for Enhanced Hydrogen Storage. Nano Letters 2008, 8, (10),3166-3170.
    [93]. Wang, L.; Lee, K.; Sun, Y.-Y.; Lucking, M.; Chen, Z.; Zhao, J. J.; Zhang, S. B., Graphene Oxide as an Ideal Substrate for Hydrogen Storage. Acs Nano 2009,3, (10),2995-3000.
    [94]. Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L., Impermeable atomic membranes from graphene sheets. Nano Letters 2008,8, (8),2458-2462.
    [95]. Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z.; Johnson, A. T. C.; Drndic, M., DNA Translocation through Graphene Nanopores. Nano Letters 2010,10, (8),2915-2921.
    [96]. Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C., DNA Translocation through Graphene Nanopores. Nano Letters 2010,10, (8),3163-3167.
    [97]. Cohen-Tanugi, D.; Grossman, J. C., Water Desalination across Nanoporous Graphene. Nano Letters 2012,12, (7),3602-3608.
    [98]. Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K., Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 2012,335, (6067),442-444.
    [99]. Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R., Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes. Science 2014,343, (6172),752-754.
    [100]. Machado, B. F.; Serp, P., Graphene-based materials for catalysis. Catalysis Science & Technology 2012,2, (1),54-75.
    [101]. Jahan, M.; Bao, Q.; Loh, K. P., Electrocatalytically Active Graphene-Porphyrin MOF Composite for Oxygen Reduction Reaction. Journal of the American Chemical Society 2012,134, (15),6707-6713.
    [102]. Liu, S.; Wang, J.; Zeng, J.; Ou, J.; Li, Z.; Liu, X.; Yang, S., "Green" electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. Journal of Power Sources 2010,195, (15),4628-4633.
    [103]. Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Muelhaupt, R., Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction. Journal of the American Chemical Society 2009,131, (23),8262-8270.
    [104]. Huang, C.; Li, C.; Shi, G., Graphene based catalysts. Energy & Environmental Science 2012,5, (10),8848-8868.
    [105]. Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S., Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. Journal of Materials Chemistry 2010,20, (34), 7114-7117.
    [106]. Pyun, J., Graphene Oxide as Catalyst:Application of Carbon Materials beyond Nanotechnology. Angewandte Chemie-International Edition 2011,50, (1),46-48.
    [107]. Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H., Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. Acs Nano 2011,5, (6),4350-4358.
    [108]. Yuan, C.; Chen, W.; Yan, L., Amino-grafted graphene as a stable and metal-free solid basic catalyst. Journal of Materials Chemistry 2012,22, (15),7456-7460.
    [109]. Raman, R. K. S.; Banerjee, P. C.; Lobo, D. E.; Gullapalli, H.; Sumandasa, M.; Kumar, A.; Choudhary, L.; Tkacz, R.; Ajayan, P. M.; Majumder, M., Protecting copper from electrochemical degradation by graphene coating. Carbon 2012,50, (11),4040-4045.
    [110]. Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J.; Park, J.; Ruoff, R. S., Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. Acs Nano 2011, 5, (2),1321-1327.
    [111]. Chang, C.-H.; Huang, T.-C.; Peng, C.-W.; Yeh, T.-C.; Lu, H.-I.; Hung, W.-I.; Weng, C.-J.; Yang, T.-I.; Yeh, J.-M., Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012,50, (14),5044-5051.
    [112].郭金明;王梦媚;陈丽娜;王德禧,石墨烯导电复合材料应用进展.塑料工业2013,41,(z1),68-73.
    [113]. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006,442, (7100),282-286.
    [114]. Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Yang, Y.; Wang, J.-W.; Lu, Z.-H.; Ji, G.-Y.; Yu, Z.-Z., Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 2010,51, (5),1191-1196.
    [115].郭文满;李四中;陈国华,聚合物/碳基导热复合材料研究进展.塑料2013,42,(3),41-46.
    [116]. Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C., Graphite nanoplatelet-epoxy composite thermal interface materials. Journal of Physical Chemistry C 2007,111, (21),7565-7569.
    [117]. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology 2008,3, (4),210-215.
    [118]. Yavari, F.; Chen, Z.; Thomas, A. V.; Ren, W.; Cheng, H.-M.; Koratkar, N., High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network. Scientific Reports 2011,1.
    [119]. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007,6, (9),652-655.
    [120]. Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J.; Chu, D.; Ferrari, A. C., Inkjet-Printed Graphene Electronics. Acs Nano 2012,6, (4),2992-3006.
    [121]. Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C., Graphene-Based Antibacterial Paper. Acs Nano 2010,4, (7),4317-4323.
    [122]. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H., Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Research 2008,1,(3),203-212.
    [123]. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A roadmap for graphene. Nature 2012,490, (7419),192-200.
    [1]. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007,6, (3),183-191.
    [2]. Choucair, M.; Thordarson, P.; Stride, J. A., Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology 2009,4, (1),30-33.
    [3]. Lu, X. K.; Yu, M. F.; Huang, H.; Ruoff, R. S., Tailoring graphite with the goal of achieving single sheets. Nanotechnology 1999,10, (3),269-272.
    [4]. Keun Soo, K.; Yue, Z.; Houk, J.; Sang Yoon, L.; Jong Min, K.; Kim, K. S.; Jong-Hyun, A.; Kim, P.; Jae-Young, C.; Byung Hee, H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, (7230),706-10.
    [5]. Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie-International Edition 2009,48, (42),7752-7777.
    [6]. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45,(7),1558-1565.
    [7]. Si, Y.; Samulski, E. T., Synthesis of water soluble graphene. Nano Letters 2008, 8,(6),1679-1682.
    [8]. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J., Facile synthesis and characterization of graphene nanosheets. Journal of Physical Chemistry C 2008,112, (22),8192-8195.
    [9]. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nature Nanotechnology 2009,4, (4),217-224.
    [10]. Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F., Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation. Advanced Materials 2008,20, (23), 4490-4493.
    [11]. McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials 2007,19, (18),4396-4404.
    [12]. Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Letters 2009,9, (4),1593-1597.
    [13]. Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J., Structure of graphite oxide revisited. Journal of Physical Chemistry B 1998,102, (23),4477-4482.
    [14]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80, (6),1339-1339.
    [15]. Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008,3, (2),101-105.
    [16]. Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D., Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir 2009,25, (10), 5957-5968.
    [17]. Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets. Chemistry of Materials 2008,20, (21),6592-6594.
    [18]. Zhu, Y.; Stoller, M. D.; Cai, W.; Velamakanni, A.; Piner, R. D.; Chen, D.; Ruoff, R. S., Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets. Acs Nano 2010, 4, (2),1227-1233.
    [19]. Chua, L.-L.; Wang, S.; Chia, P.-J.; Chen, L.; Zhao, L.-H.; Chen, W.; Wee, A. T. S.; Ho, P. K. H., Deoxidation of graphene oxide nanosheets to extended graphenites by "unzipping" elimination. Journal of Chemical Physics 2008,129, (11).
    [20]. Villar-Rodil, S.; Paredes, J. I.; Martinez-Alonso, A.; Tascon, J. M. D., Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of Materials Chemistry 2009,19, (22),3591-3593.
    [21]. Ferrari, A. C.; Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 2000,61, (20),14095-14107.
    [1]. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010,39, (1),228-240.
    [2]. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nature Nanotechnology 2009,4, (1),25-29.
    [3]. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J., Facile synthesis and characterization of graphene nanosheets. Journal of Physical Chemistry C 2008,112, (22),8192-8195.
    [4]. Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets. Chemistry of Materials 2008,20, (21),6592-6594.
    [5]. Si, Y.; Samulski, E. T., Synthesis of water soluble graphene. Nano Letters 2008, 8, (6),1679-1682.
    [6]. Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009,19, (12),1987-1992.
    [7]. Fernandez-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D., Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C 2010,114, (14),6426-6432.
    [8]. Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S., Reduction of graphene oxide via L-ascorbic acid. Chemical Communications 2010,46, (7), 1112-1114.
    [9]. Ramesha, G. K.; Sampath, S., Electrochemical Reduction of Oriented Graphene Oxide Films:An in Situ Raman Spectroelectrochemical Study. Journal of Physical Chemistry C 2009,113, (19),7985-7989.
    [10]. Gao, X.; Jang, J.; Nagase, S., Hydrazine and Thermal Reduction of Graphene Oxide:Reaction Mechanisms, Product Structures, and Reaction Design. The Journal of Physical Chemistry C 2009,114, (2),832-842.
    [11]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80, (6),1339-1339.
    [12]. Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry 2006,16, (2),155-158.
    [13]. Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Letters 2009,9, (4),1593-1597.
    [14]. Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D., Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir 2009,25, (10), 5957-5968.
    [15]. Villar-Rodil, S.; Paredes, J. I.; Martinez-Alonso, A.; Tascon, J. M. D., Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of Materials Chemistry 2009,19, (22),3591-3593.
    [16]. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006,442, (7100),282-286.
    [1]. Kaskhedikar, N. A.; Maier, J., Lithium Storage ion Carbon Nanostructures. Advanced Materials 2009,21, (25-26),2664-2680.
    [2]. Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S., Mechanisms for Lithium Insertion in Carbonaceous Materials. Science 1995,270, (5236),590-593.
    [3]. Zheng, T.; Xue, J. S.; Dahn, J. R., Lithium insertion in hydrogen-containing carbonaceous materials. Chemistry of Materials 1996,8, (2),389-393.
    [4]. Subramanian, V.; Karabacak, T.; Masarapu, C.; Teki, R.; Lu, T. M.; Wei, B. Q., Low hydrogen containing amorphous carbon films-Growth and electrochemical properties as lithium battery anodes. Journal of Power Sources 2010,195, (7), 2044-2049.
    [5]. Hu, Y. S.; Adelhelm, P.; Smarsly, B. M.; Hore, S.; Antonietti, M.; Maier, J., Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Advanced Functional Materials 2007,17, (12),1873-1878.
    [6]. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007,6, (3),183-191.
    [7]. Yoo, E.; Zhou, H. S., Li-Air Rechargeable Battery Based on Metal-tree Graphene Nanosheet Catalysts. Acs Nano 2011,5, (4),3020-3026.
    [8]. Sun, Y. Q.; Wu, Q. O.; Shi, G. Q., Graphene based new energy materials. Energy & Environmental Science 2011,4, (4),1113-1132.
    [9]. Ao, Z. M.; Peeters, F. M., Electric field:A catalyst for hydrogenation of graphene. Applied Physics Letters 2010,96, (25).
    [10]. Luo, Z. Q.; Yu, T.; Kim, K. J.; Ni, Z. H.; You, Y. M.; Lim, S.; Shen, Z. X.; Wang, S. Z.; Lin, J. Y., Thickness-Dependent Reversible Hydrogenation of Graphene Layers. Acs Nano 2009,3, (7),1781-1788.
    [11]. Luo, Z. Q.; Yu, T.; Ni, Z. H.; Lim, S. H.; Hu, H. L.; Shang, J. Z.; Liu, L.; Shen, Z. X.; Lin, J. Y., Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy. Journal of Physical Chemistry C 2011,115, (5),1422-1427.
    [12]. Ng, M. L.; Balog, R.; Hornekaer, L.; Preobrajenski, A. B.; Vinogradov, N. A.; Martensson, N.; Schulte, K., Controlling Hydrogenation of Graphene on Transition Metals. Journal of Physical Chemistry C 2010,114, (43),18559-18565.
    [13]. Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S., Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Science 2009,323, (5914),610-613.
    [14]. Jones, J. D.; Mahajan, K. K.; Williams, W. H.; Ecton, P. A.; Mo, Y.; Perez, J. M., Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene. Carbon 2010,48, (8),2335-2340.
    [15]. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. Acs Nano 2010,4, (8),4806-4814.
    [16]. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008,3, (2),101-105.
    [17]. Marignier, J. L.; Belloni, J.; Delcourt, M. O.; Chevalier, J. P., Microaggregates of Non-Noble Metals and Bimetallic Alloys Prepared by Radiation-Induced Reduction. Nature 1985,317, (6035),344-345.
    [18]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80, (6),1339-1339.
    [19]. Chen, W.; Yan, L.; Bangal, P. R., Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010,48, (4),1146-1152.
    [20]. Chen, X. Q.; Xu, Z. H.; Li, X. D.; Shaibat, M. A.; Ishii, Y.; Ruoff, R. S., Structural and mechanical characterization of platelet graphite nanofibers. Carbon 2007,45, (2),416-423.
    [21]. Zheng, L. Q.; Li, Z. R.; Bourdo, S.; Watanabe, F.; Ryerson, C. C.; Biris, A. S., Catalytic hydrogenation of graphene films. Chemical Communications 2011,47, (4),1213-1215.
    [22]. Yin, S. Y.; Zhang, Y. Y.; Kong, J. H.; Zou, C. J.; Li, C. M.; Lu, X. H.; Ma, J.; Boey, F. Y. C.; Chen, X. D., Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage. Acs Nano 2011,5, (5),3831-3838.
    [23]. Lian, P. C.; Zhu, X. F.; Liang, S. Z.; Li, Z.; Yang, W. S.; Wang, H. H., Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta 2010,55, (12),3909-3914.
    [24]. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials 2010,9, (4),353-358.
    [25]. Jang, B. Z.; Liu, C. G.; Neff, D.; Yu, Z. N.; Wang, M. C.; Xiong, W.; Zhamu, A., Graphene Surface-Enabled Lithium Ion-Exchanging Cells:Next-Generation High-Power Energy Storage Devices. Nano Letters 2011,11, (9),3785-3791.
    [26]. Zhao, Y.; Chen, W.-f.; Yuan, C.-f.; Zhu, Z.-y.; Yan, L.-f., Hydrogenated Graphene as Metal-free Catalyst for Fenton-like Reaction. Chinese Journal of Chemical Physics 2012,25, (3),335-338.
    [1]. Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H., Jr.; Baumann, T. F., Synthesis of Graphene Aerogel with High Electrical Conductivity. Journal of the American Chemical Society 2010,132, (40), 14067-14069.
    [2]. Gui, X.; Cao, A.; Wei, J.; Li, H.; Jia, Y.; Li, Z.; Fan, L.; Wang, K.; Zhu, H.; Wu, D., Soft, Highly Conductive Nanotube Sponges and Composites with Controlled Compressibility. Acs Nano 2010,4, (4),2320-2326.
    [3]. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Materials 2006,5, (12),987-994.
    [4]. Worsley, M. A.; Kucheyev, S. O.; Satcher, J. H., Jr.; Hamza, A. V.; Baumann, T. F., Mechanically robust and electrically conductive carbon nanotube foams. Applied Physics Letters 2009,94, (7).
    [5]. Trancik, J. E.; Barton, S. C.; Hone, J., Transparent and catalytic carbon nanotube films. Nano Letters 2008,8, (4),982-987.
    [6]. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M., Science and technology for water purification in the coming decades. Nature 2008,452, (7185),301-310.
    [7]. Gui, X.; Wei, J.; Wang, K.; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D., Carbon Nanotube Sponges. Advanced Materials 2010,22, (5),617-+.
    [8]. Lee, S. H.; Park, J. S.; Lim, B. K.; Bin Mo, C.; Lee, W. J.; Lee, J. M.; Hong, S. H.; Kim, S. O., Highly entangled carbon nanotube scaffolds by self-organized aqueous droplets. Soft Matter 2009,5, (12),2343-2346.
    [9]. Gawryla, M. D.; Liu, L.; Grunlan, J. C.; Schiraldi, D. A., pH Tailoring Electrical and Mechanical Behavior of Polymer-Clay-Nanotube Aerogels. Macromolecular Rapid Communications 2009,30, (19),1669-1673.
    [10]. Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.; Yodh, A. G., Carbon nanotube aerogels. Advanced Materials 2007,19, (5),661-+.
    [11]. Geim, A. K., Graphene:Status and Prospects. Science 2009,324, (5934),1530-1534.
    [12]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004,306, (5696),666-669.
    [13]. Zhu, Z. P.; Su, D. S.; Weinberg, G.; Schlogl, R., Supermolecular self-assembly of graphene sheets:Formation of tube-in-tube nanostructures. Nano Letters 2004,4, (11),2255-2259.
    [14]. Tang, Z.; Zhuang, J.; Wang, X., Exfoliation of Graphene from Graphite and Their Self-Assembly at the Oil-Water Interface. Langmuir 2010,26, (11),9045-9049.
    [15]. Choi, B. G.; Park, H.; Park, T. J.; Yang, M. H.; Kim, J. S.; Jang, S.-Y.; Heo, N. S.; Lee, S. Y.; Kong, J.; Hong, W. H., Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors. Acs Nano 2010,4, (5),2910-2918.
    [16]. Wang, H.; Wang, X.; Li, X.; Dai, H., Chemical Self-Assembly of Graphene Sheets. Nano Research 2009,2, (4),336-342.
    [17]. Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y. M.; Zhang, H., Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. Acs Nano 2010,4, (9),5263-5268.
    [18]. Li, B.; Cao, X.; Ong, H. G.; Cheah, J. W.; Zhou, X.; Yin, Z.; Li, H.; Wang, J.; Boey, F.; Huang, W.; Zhang, H., All-Carbon Electronic Devices Fabricated by Directly Grown Single-Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes. Advanced Materials 2010,22, (28),3058-3061.
    [19]. He, Q.; Sudibya, H. G.; Yin, Z.; Wu, S.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H., Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films:Fabrication and Sensing Applications. Acs Nano 2010,4, (6),3201-3208.
    [20]. Bai, H.; Li, C.; Wang, X.; Shi, G., A pH-sensitive graphene oxide composite hydrogel. Chemical Communications 2010,46, (14),2376-2378.
    [21]. Satti, A.; Larpent, P.; Gun'ko, Y., Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking. Carbon 2010,48, (12),3376-3381.
    [22]. Qi, X.; Pu, K.-Y.; Li, H.; Zhou, X.; Wu, S.; Fan, Q.-L.; Liu, B.; Boey, F.; Huang, W.; Zhang, H., Amphiphilic Graphene Composites. Angewandte Chemie-International Edition 2010,49, (49),9426-9429.
    [23]. Yu, D.; Dai, L., Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. Journal of Physical Chemistry Letters 2010,1, (2),467-470.
    [24]. He, L.; Lu, J.-Q.; Jiang, H., Controlled Carbon-Nanotube Junctions Self-Assembled from Graphene Nanoribbons. Small 2009,5, (24),2802-2806.
    [25]. Xiehong, C.; Qiyuan, H.; Wenhui, S.; Bing, L.; Zhiyuan, Z.; Yumeng, S.; Qingyu, Y.; Hua, Z., Graphene oxide as a carbon source for controlled growth of carbon nanowires. Small 2011,7, (9),1199-202.
    [26]. Tang, Z.; Shen, S.; Zhuang, J.; Wang, X., Noble-Metal-Promoted Three-Dimensional Macroassembly of Single-Layered Graphene Oxide. Angewandte Chemie-International Edition 2010,49, (27),4603-4607.
    [27]. Jiang, X.; Ma, Y.; Li, J.; Fan, Q.; Huang, W., Self-Assembly of Reduced Graphene Oxide into Three-Dimensional Architecture by Divalent Ion Linkage. Journal of Physical Chemistry C 2010,114, (51),22462-22465.
    [28]. Liu, F.; Seo, T. S., A Controllable Self-Assembly Method for Large-Scale Synthesis of Graphene Sponges and Free-Standing Graphene Films. Advanced Functional Materials 2010,20, (12),1930-1936.
    [29]. Xu, Y.; Sheng, K.; Li, C.; Shi, G., Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. Acs Nano 2010,4, (7),4324-4330.
    [30]. Chen, W.; Yan, L., Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2010,2, (4),559-563.
    [31]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80, (6),1339-1339.
    [32]. Zhang, B.; Wang, T.; Liu, S.; Zhang, S.; Qiu, J.; Chen, Z.; Cheng, H., Structure and morphology of microporous carbon membrane materials derived from poly(phthalazinone ether sulfone ketone). Microporous and Mesoporous Materials 2006,96, (1-3),79-83.
    [33]. Chen, W.; Yan, L.; Bangal, P. R., Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 2010,114, (47),19885-19890.
    [34]. Hyeon-Jin, S.; Ki Kang, K.; Benayad, A.; Seon-Mi, Y.; Hyeon Ki, P.; In-Sun, J.; Mei Hua, J.; Hae-Kyung, J.; Jong Min, K.; Jae-Young, C.; Young Hee, L., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials 2009,19, (12),1987-92.
    [35]. Grieshaber, S. E.; Farran, A. J. E.; Lin-Gibson, S.; Kiick, K. L.; Jia, X., Synthesis and Characterization of Elastin-Mimetic Hybrid Polymers with Multiblock, Alternating Molecular Architecture and Elastomeric Properties. Macromolecules 2009,42, (7),2532-2541.
    [1]. Chen, W. F.; Yan, L. F., In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 2011,3, (8),3132-3137.
    [2]. Bai, H.; Li, C.; Shi, G. Q., Functional Composite Materials Based on Chemically Converted Graphene. Advanced Materials 2011,23, (9),1089-1115.
    [3]. Das, B.; Choudhury, B.; Gomathi, A.; Manna, A. K.; Pati, S. K.; Rao, C. N. R., Interaction of Inorganic Nanoparticles with Graphene. Chemphyschem 2011,12, (5),937-943.
    [4]. Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R., Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction. Journal of the American Chemical Society 2009,131, (23),8262-8270.
    [5]. Vedala, H.; Sorescu, D. C.; Kotchey, G. P.; Star, A., Chemical Sensitivity of Graphene Edges Decorated with Metal Nanoparticles. Nano Letters 2011,11, (6),2342-2347.
    [6]. Tang, Z. H.; Shen, S. L.; Zhuang, J.; Wang, X., Noble-Metal-Promoted Three-Dimensional Macroassembly of Single-Layered Graphene Oxide. Angewandte Chemie-International Edition 2010,49, (27),4603-4607.
    [7]. Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C., Nanostructured Fe3O4/SWNT Electrode:Binder-Free and High-Rate Li-Ion Anode. Advanced Materials 2010,22, (20), E145-+.
    [8]. Wang, H. L.; Cui, L. F.; Yang, Y. A.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J., Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society 2010,132, (40),13978-13980.
    [9]. Li, B. J.; Cao, H. Q.; Shao, J.; Li, G. Q.; Qu, M. Z.; Yin, G, Co3O4@graphene Composites as Anode Materials for High-Performance Lithium Ion Batteries. Inorganic Chemistry 2011,50, (5),1628-1632.
    [10]. Ji, L. W.; Tan, Z. K.; Kuykendall, T. R.; Aloni, S.; Xun, S. D.; Lin, E.; Battaglia, V.; Zhang, Y. G., Fe3O4 nanoparticle-integrated graphene sheets for high- performance half and full lithium ion cells. Physical Chemistry Chemical Physics 2011,13, (15),7139-7146.
    [11]. Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M., Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials 2010,22, (18),5306-5313.
    [12]. Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stollers, M. D.; Ruoff, R. S., Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries. Acs Nano 2011,5, (4),3333-3338.
    [13]. Wang, G.; Liu, T.; Xie, X. L.; Ren, Z. Y.; Bai, J. B.; Wang, H., Structure and electrochemical performance of Fe3O4/graphene nanocomposite as anode material for lithium-ion batteries. Materials Chemistry and Physics 2011,128, (3),336-340.
    [14]. Long, J. W.; Logan, M. S.; Rhodes, C. P.; Carpenter, E. E.; Stroud, R. M.; Rolison, D. R., Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. Journal of the American Chemical Society 2004,126, (51),16879-16889.
    [15]. Gash, A. E.; Tillotson, T. M.; Satcher, J. H.; Poco, J. F.; Hrubesh, L. W.; Simpson, R. L., Use of epoxides in the sol-gel synthesis of porous iron(Ⅲ) oxide monoliths from Fe(Ⅲ) salts. Chemistry of Materials 2001,13, (3),999-1007.
    [16]. Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P., Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chemistry of Materials 1996,8, (9),2209-&.
    [17]. Hou, C. Y.; Zhang, Q. H.; Zhu, M. F.; Li, Y. G.; Wang, H. Z., One-step synthesis of magnetically-functionalized reduced graphite sheets and their use in hydrogels. Carbon 2011,49, (1),47-53.
    [18].Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K., In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Physical Review B 1999,59, (4),3195-3202.
    [19]. Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; Lee, Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009,19, (12),1987-1992.
    [20]. Xu, L. Q.; Zhang, W. Q.; Ding, Y. W.; Peng, Y. Y.; Zhang, S. Y.; Yu, W. C.; Qian, Y T., Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes. Journal of Physical Chemistry B 2004,108, (30),10859-10862.
    [21]. Chen, W. F.; Yan, L. F.; Bangal, P. R., Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010, 48,(4),1146-1152.
    [22]. Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A., Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001,39, (4),507-514.
    [23]. Worsley, M. A.; Olson, T. Y.; Lee, J. R. I.; Willey, T. M.; Nielsen, M. H.; Roberts, S. K.; Pauzauskie, P. J.; Biener, J.; Satcher, J. H.; Baumann, T. F., High Surface Area, sp(2)-Cross-Linked Three-Dimensional Graphene Monoliths. Journal of Physical Chemistry Letters 2011,2, (8),921-925.
    [24]. Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F., Synthesis of Graphene Aerogel with High Electrical Conductivity. Journal of the American Chemical Society 2010,132, (40), 14067-14069.
    [25]. Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. Journal of Materials Chemistry 2011,21, (18),6494-6497.
    [26]. Wang, D. W.; Li, F.; Liu, M.; Lu, G Q.; Cheng, H. M.,3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie-International Edition 2008,47, (2),373-376.
    [27]. Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K., Fabrication of Cobalt and Cobalt Oxide/Graphene Composites: Towards High-Performance Anode Materials for Lithium Ion Batteries. Chemsuschem 2010,3, (2),236-239.
    [28]. Zhang, M.; Lei, D. N.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, Y G.; Wang, T. H., Magnetite/graphene composites:microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. Journal of Materials Chemistry 2010,20, (26),5538-5543.
    [1]. Logan, B. E.; Rabaey, K., Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies. Science 2012, 337, (6095),686-690.
    [2]. Chen, S. L.; Liu, Q.; He, G. H.; Zhou, Y.; Hanif, M.; Peng, X. W.; Wang, S. Q.; Hou, H. Q., Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. Journal of Materials Chemistry 2012,22, (35),18609-18613.
    [3]. Wang, X.; Cheng, S. A.; Feng, Y. J.; Merrill, M. D.; Saito, T.; Logan, B. E., Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells. Environmental Science & Technology 2009,43, (17),6870-6874.
    [4]. Deng, Q.; Li, X. Y.; Zuo, J. E.; Ling, A.; Logan, B. E., Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Sources 2010,195, (4),1130-1135.
    [5]. Geim, A. K., Graphene:Status and Prospects. Science 2009,324, (5934),1530-1534.
    [6]. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nature Nanotechnology 2009,4, (4),217-224.
    [7]. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Letters 2008,8, (3),902-907.
    [8]. Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F., Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel. Advanced Materials 2011,23, (47),5679-5683.
    [9]. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q., Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. Acs Nano 2010,4, (7),4324-4330.
    [10]. Chen, W. F.; Yan, L. F., In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 2011,3, (8),3132-3137.
    [11]. Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P.,3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. Acs Nano 2012,6, (4),3206-3213.
    [12]. Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S., Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Advanced Functional Materials 2012,22, (21),4421-4425.
    [13]. Xie, X.; Yu, G.; Liu, N.; Bao, Z.; Criddle, C. S.; Cui, Y., Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy & Environmental Science 2012,5, (5),6862-6866.
    [14]. Zhang, Y. Z.; Mo, G. Q.; Li, X. W.; Zhang, W. D.; Zhang, J. Q.; Ye, J. S.; Huang, X. D.; Yu, C. Z., A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources 2011,196, (13), 5402-5407.
    [15]. Wang, H.; Wang, G.; Ling, Y.; Qian, F.; Song, Y.; Lu, X.; Chen, S.; Tong, Y.; Li, Y., High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 2013,5, (21),10283-90.
    [16]. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials 2011,10, (6),424-428.
    [17]. Zhang, H. F.; Hussain, I.; Brust, M.; Butler, M. F.; Rannard, S. P.; Cooper, A. I., Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials 2005,4, (10),787-793.
    [18]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80, (6),1339-1339.
    [19]. Xie, X.; Zhou, Y.; Bi, H.; Yin, K.; Wan, S.; Sun, L., Large-range Control of the Microstructures and Properties of Three-dimensional Porous Graphene. Scientific Reports 2013,3.
    [20]. Huang, Y.-X.; Liu, X.-W.; Xie, J.-F.; Sheng, G.-P.; Wang, G.-Y.; Zhang, Y.-Y.; Xu, A.-W.; Yu, H.-Q., Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical Communications 2011,47, (20),5795-5797.
    [1]. Jin, J. A.; Bu, W. F.; Ichinose, I., Thermal and Mechanical Properties of Dried Foam Films and Their Incorporation of Water-Soluble Compounds. Langmuir 2010,26,(13),10506-10512.
    [2]. Sackmann, E., Supported membranes:Scientific and practical applications. Science 1996,271, (5245),43-48.
    [3]. Jin, J.; Huang, J. G.; Ichinose, I., Dried foam films:Self-standing, water-free, reversed bilayers of amphiphilic compounds. Angewandte Chemie-International Edition 2005,44, (29),4532-4535.
    [4]. Jin, J.; Wakayama, Y.; Peng, X. S.; Ichinose, I., Surfactant-assisted fabrication of free-standing inorganic sheets covering an array of micrometre-sized holes. Nature Materials 2007,6, (9),686-691.
    [5]. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007,6, (3),183-191.
    [6]. Stankovich, S.; Dikin, D. A.; Dommett, G H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006,442, (7100),282-286.
    [7]. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007,6, (9),652-655.
    [8]. Azevedo, J.; Costa-Coquelard, C.; Jegou, P.; Yu, T.; Benattar, J. J., Highly Ordered Monolayer, Multilayer, and Hybrid Films of Graphene Oxide Obtained by the Bubble Deposition Method. Journal of Physical Chemistry C 2011,115, (30),14678-14681.
    [9]. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457, (7230),706-710.
    [10]. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009,324, (5932),1312-1314.
    [11]. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 2010,5, (8),574-578.
    [12]. Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J., Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology 2008,3, (9),538-542.
    [13]. De, S.; King, P. J.; Lotya, M.; O'Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.; Coleman, J. N., Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions. Small 2010,6, (3),458-464.
    [14]. Chen, C. M.; Yang, Q. H.; Yang, Y G.; Lv, W.; Wen, Y F.; Hou, P. X.; Wang, M. Z.; Cheng, H. M., Self-Assembled Free-Standing Graphite Oxide Membrane. Advanced Materials 2009,21, (29),3007-+.
    [15]. Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S., Graphene-based liquid crystal device. Nano Letters 2008,8, (6),1704-1708.
    [16]. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano 2008,2, (3),463-470.
    [17]. Xu, Z.; Gao, C., Aqueous Liquid Crystals of Graphene Oxide. Acs Nano 2011,5, (4),2908-2915.
    [18]. Zhu, Y.; Sun, Z. Z.; Yan, Z.; Jin, Z.; Tour, J. M., Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. Acs Nano 2011, 5, (8),6472-6479.
    [19]. Wang, X.; Zhi, L. J.; Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters 2008,8, (1),323-327.
    [20]. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The structure of suspended graphene sheets. Nature 2007,446, (7131), 60-63.
    [21]. Pang, S. P.; Hernandez, Y.; Feng, X. L.; Mullen, K., Graphene as Transparent Electrode Material for Organic Electronics. Advanced Materials 2011,23, (25), 2779-2795.
    [22]. Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P., Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. Acs Nano 2010,4, (1),43-48.
    [23]. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature 2007,448, (7152),457-460.
    [24]. Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K., Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 2012,335, (6067),442-444.
    [1]. Sun, Y.; Wu, Q.; Shi, G., Graphene based new energy materials. Energy & Environmental Science 2011,4, (4),1113-1132.
    [2]. Wan, X.; Huang, Y.; Chen, Y., Focusing on Energy and Optoelectronic Applications:A Journey for Graphene and Graphene Oxide at Large Scale. Accounts of Chemical Research 2012,45, (4),598-607.
    [3]. Huang, X.; Zeng, Z.; Fan, Z.; Liu, J.; Zhang, H., Graphene-Based Electrodes. Advanced Materials 2012,24, (45),5979-6004.
    [4]. Kuila, T.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H., Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 2013,5, (1),52-71.
    [5]. Mei, X.; Ouyang, J., Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 2011,49, (15),5389-5397.
    [6]. Dey, R. S.; Hajra, S.; Sahu, R. K.; Raj, C. R.; Panigrahi, M. K., A rapid room temperature chemical route for the synthesis of graphene:metal-mediated reduction of graphene oxide. Chemical Communications 2012,48, (12),1787-1789.
    [7]. Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y., Facile and controllable electrochemical reduction of graphene oxide and its applications. Journal of Materials Chemistry 2010,20, (4),743-748.
    [8]. Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H., Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. Journal of Physical Chemistry C 2009,113, (32),14071-14075.
    [9]. Wang, Z.; Bramnik, N.; Roy, S.; Di Benedetto, G.; Zunino, J. L., Ⅲ; Mitra, S., Flexible zinc-carbon batteries with multiwalled carbon nanotube/conductive polymer cathode matrix. Journal of Power Sources 2013,237,210-214.
    [10]. Singh, S. P.; Kumari, M.; Kumari, S. I.; Rahman, M. F.; Mahboob, M.; Grover, P., Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28days of repeated oral exposure. Journal of Applied Toxicology 2013, 33,(10),1165-1179.
    [11]. Barrett, H. A.; Ferraro, A.; Burnette, C.; Meyer, A.; Krekeler, M. P. S., An investigation of heavy metal content from disposable batteries of non-U.S. origin from Butler County, Ohio:An environmental assessment of a segment of a waste stream. Journal of Power Sources 2012,206,414-420.
    [12]. Lu, W. B.; Liu, S.; Qin, X. Y.; Wang, L.; Tian, J. Q.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P., High-yield, large-scale production of few-layer graphene flakes within seconds:using chlorosulfonic acid and H2O2 as exfoliating agents. Journal of Materials Chemistry 2012,22, (18),8775-8777.
    [13]. Brodie, B. C., On the Atomic Weight of Graphite. Phil. Trans. R. Soc. Lond. 1859,149,249-259.
    [14]. Staudenmaier, L., Verfahren zur Darstellung der Graphitsaure. Ber Dtsch Chem Ges 1898, (31),1481-1487.
    [15]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80, (6),1339-1339.
    [16]. Chen, W.; Yan, L., Centimeter-Sized Dried Foam Films of Graphene: Preparation, Mechanical and Electronic Properties. Advanced Materials 2012, 24, (46),6229-6233.
    [17]. Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009,19, (12),1987-1992.
    [18]. Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets. Chemistry of Materials 2008,20, (21),6592-6594.
    [19]. Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D., Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir 2009,25, (10), 5957-5968.
    [20]. Chen, W.; Yan, L.; Bangal, P. R., Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 2010,114,(47),19885-19890.
    [21]. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45,(7),1558-1565.
    [22]. Zhang, S. S.; Foster, D.; Wolfenstine, J.; Read, J., Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell. Journal of Power Sources 2009,187,(1),233-237.
    [23]. Cheng, F. Y.; Chen, J.; Gou, X. L.; Shen, P. W., High-power alkaline Zn-MuO(2) batteries using gamma-MnO2 nanowires/nanotubes and electrolytic zinc powder. Advanced Materials 2005,17, (22),2753-+.
    [1]. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010,39, (1),228-240.
    [2]. Wan, X.; Huang, Y.; Chen, Y, Focusing on Energy and Optoelectronic Applications:A Journey for Graphene and Graphene Oxide at Large Scale. Accounts of Chemical Research 2012,45, (4),598-607.
    [3]. Guo, B. Q.; Chen, W. F.; Yan, L. F., Preparation of Flexible, Highly Transparent, Cross-Linked Cellulose Thin Film with High Mechanical Strength and Low Coefficient of Thermal Expansion. Acs Sustainable Chemistry & Engineering 2013,1,(11),1474-1479.
    [4]. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006,442, (7100),282-286.
    [5]. Chen, W.; Yan, L., Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2010,2, (4),559-563.
    [6]. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano 2008,2, (3),463-470.
    [7]. Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G, Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008,3, (2),101-105.
    [8]. Chen, W.; Yan, L.; Bangal, P. R., Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 2010,114,(47),19885-19890.
    [9]. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H., Reduced graphene oxide by chemical graphitization. Nature Communications 2010,1.
    [10]. Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010,48, (15),4466-4474.
    [11]. Mei, X.; Ouyang, J., Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 2011,49, (15),5389-5397.
    [12]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80, (6),1339-1339.
    [13]. Wang, D.; Jin, X.; Chen, G. Z., Solid state reactions:an electrochemical approach in molten salts. Annual Reports Section "C" (Physical Chemistry) 2008, 104, (0),189-234.
    [14]. Wang, J.; Liang, M. H.; Fang, Y.; Qiu, T. F.; Zhang, J.; Zhi, L. J., Rod-Coating: Towards Large-Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens. Advanced Materials 2012,24, (21),2874-2878.
    [15]. Weng, Z.; Su, Y.; Wang, D.-W.; Li, F.; Du, J.; Cheng, H.-M., Graphene-Cellulose Paper Flexible Supercapacitors. Advanced Energy Materials 2011,1, (5),917-922.
    [16]. Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K., Mechanically Flexible and Multifunctional Polymer-Based Graphene Foams for Elastic Conductors and Oil-Water Separators. Advanced Materials 2013,25, (39),5658-+.
    [17]. Chen, H.; Mueller, M. B.; Gilmore, K. J.; Wallace, G G.; Li, D., Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials 2008,20, (18),3557-+.
    [18]. Wang, S. J.; Geng, Y.; Zheng, Q.; Kim, J.-K., Fabrication of highly conducting and transparent graphene films. Carbon 2010,48, (6),1815-1823.
    [19]. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45, (7),1558-1565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700