用户名: 密码: 验证码:
环境/能源催化反应中催化剂表面微结构对其活性的影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染和能源危机的不断加重,污染气体的消除和再转化已经成为当前最迫切的问题之一。因此,为了缓解能源危机和降低环境污染,科研工作者们正在寻找各种方式将空气中的污染物(如含C、N元素的有毒气体)转化为可利用的再生能源。近年来,随着理论计算方法和电脑科技的不断发展,已经有越来越多的科研工作者从原来盲目的实验探索转向理论模拟,因为这可以为实验研究提供合理的微观预测和理论指导。上述转化反应的主要难题之一便是高效催化剂的选择和合成。针对此难点,目前比较新颖的也是比较有效的合成方式便是表面微结构调控。在本论文中,我们将用密度泛函的方法对表面微结构调控的两种主要方式(控制暴露高效表面和负载助催化剂)来进行理论模拟研究。这也可以为实验上合成此类高效催化剂提供很好的理论指导。对控制暴露高效表面的方法,我们选择的是小分子(H2O、CO2和NH3)在两种典型的尖晶石体系(ZnGa2O4和MgAl2O4)上的吸附和降解为模型来进行研究。目的是为了探索催化剂的微观表面原子、电子结构(尤其是表面态)对催化活性的影响。对催化剂负载的方法,我们选择的是CO在Au负载Mg(OH)2催化剂上的氧化过程为模型来进行研究。此项研究是为了探究载体对催化剂团簇的催化活性的影响。我们的主要研究内容和结论如下:
     在第一章的绪论中,我们主要介绍了下本论文的研究背景和意义,其中包括半导体光催化技术的机理及研究进展、暴露表面可控催化剂和贵金属团簇负载催化剂的研究现状和不足之处等。最后,我们阐述了本论文的选题原因、研究思路和大体内容。
     在第二章中,我们主要对密度泛函理论、局域密度近似理论和广义梯度理论进行了详细阐述,并且还介绍了在论文中使用的主要量化计算软件包。
     在第三章我们用密度泛函的方法研究了H2O和CO2在尖晶石体系ZnGa2O4的三个低指数完美和有氧缺陷的表面((100)、(110)和(111)面)上的单独吸附和共吸附行为。通过计算我们发现水在化学计量比的完美表面上吸附时,最稳定的分子吸附更容易发生在能够产生氢键的位点。对解离吸附来说,在完美的(111)面上的吸附能是其他两个表面的4倍以上,这表明水的最佳解离面是(111)面。经过对此三个表面的详细比较我们发现导致上述现象的主要原因是在(111)面上的特殊表面结构。当水在(111)面上解离时,由Ga的4s和4p态杂化而成的在费米能级处的特殊表面态将会有个明显的负移。这种负移释放的能量将会促进水的解离。由于在(100)和(110)表面上O3c空位的形成能够增强解离吸附态的稳定性并且对反应能垒影响不大,因此这种空位的形成能够促进水的降解。然而在(111)面上,空位的形成将会降低水解离态的稳定性并且能够明显的增加反应能垒。因此在有缺陷的(111)面上水的解离比完美表面要差。比较完水的单独吸附之后接下来我们看下二氧化碳的吸附。在完美的(100)面上,最稳定的分子吸附发生在Zn-O-Ga的桥位上,吸附能为-0.16eV。而在(110)和(111)面上,最稳定的吸附发生在Zn-O位点,吸附能较差(分别为0.22eV和0.35eV)。此外,完美的表面只显示出对二氧化碳很强的活化能力,但是解离吸附不能发生。氧缺陷的产生会导致:(1)空位附近的金属原子所带正电荷量下降并且进一步使得在这些金属上吸附能下降;(2)形成二氧化碳分子吸附甚至解离吸附的有效位点。最稳定的分子吸附和解离吸附都发生在有缺陷的(100)面上,并且这些吸附行为都是自发吸附,吸附能分别为-0.74eV和-0.80eV。当水吸附在完美表面和缺陷表面上时,氢键的形成将会增强水和二氧化碳的共吸附态的稳定性(除了(111)-Vo3c面)使得其热力学有利。然而二者的共吸附也会增加在缺陷表面二氧化碳降解的反应能垒,使得反应动力学不利。此外,水在空位处也可以很好的吸附和降解。因此,当水和二氧化碳在表面共吸附时将会竞争表面空位,从而降低二氧化碳降解的活性位点数目,导致催化活性下降。这就意味着如果我们想合成一种镓酸锌催化剂用于水的降解,我们需要让催化剂主要暴露高活性的(111)面,并且产生较少的氧缺陷;如果我们想把镓酸锌催化剂用于二氧化碳的降解反应得到一氧化碳和氧气,我们应该把反应体系放于洁净无水的环境中;如果我们想用镓酸锌催化剂来催化二氧化碳和水重整反应得到碳氢化合物,我们需要及时的将产物与水分子分离开来以维持催化剂的高活性。因此我们的研究可以为设计合成表面可控的高效镓酸锌催化剂提供一种新颖的思路。
     在第四章中我们进一步研究了小分子NH3在另一种典型尖晶石催化剂MgAl2O4上的吸附和降解。我们用密度泛函的方法分别计算了氨分子在低指数的(100)、(110)和(111)面上的吸附和解离。在完美的和有缺陷的表面上,我们获得了氨分子在不同位点的吸附的不同构型。比较了这三个表面的吸附行为之后,我们发现在(100)和(110)面上氨分子的分子吸附比解离吸附更有利,然而在(111)面上我们却得到了相反的结果。我们进一步比较分析表明这是一个结构敏感的反应。在表面镁原子上最稳定的吸附态出现在(100)面,而在表面铝原子上最稳定的吸附态出现在(111)面。我们计算结果显示导致不同金属原子上不同吸附态稳定性不同的原因是费米能级处的特殊表面态。这个特殊表面态分别出现在(100)面的不饱和镁原子和(111)面的不饱和铝原子上。对分子吸附来说,当分子吸附在表面上时(100)面上镁的2s轨道和(111)面上铝的2s和2p轨道在费米能级处形成的特殊表面态将会发生明显的负移从而可以显著的增强氨分子的解离态的稳定性。此外在有特殊表面态的(100)面和(111)面上的氨分子的解离吸附也比没有表面态的(110)面要稳定很多。由于在(111)面的铝原子上特殊表面态是由2s和2p轨道杂化而成这就使得在(111)面上的吸附比在只由2s轨道形成的特殊表面态的(100)面上的吸附更加稳定。氧空位的形成将使得吸附变得不稳定(尤其是(111)面)。这就是说完美的(111)面是氨吸附和降解的最佳表面。我们的研究很好的模拟了氨分子在铝酸镁催化剂上的降解或合成过程,从而可以为为实验上合成用于氨分子的降解或合成的高效且形貌可控的铝酸镁催化剂提供理论指导。
     在第五章我们主要研究的是催化剂负载对催化活性的影响。通过对Au团簇负载的完美的Mg(OH)2表面上CO、O2的单独吸附以及CO氧化过程的计算,我们发现对完美的表面来说,CO和O2在Au团簇表面以及Au团簇和Mg(OH)2(0001)表面的界面处都能吸附和活化,其中CO更容易吸附在界面处,O2的分子吸附更容易发生在Au团簇上,而02的解离吸附更容易发生在界面处,当二者共吸附时,在Au团簇上的分子吸附和氧化产物的稳定性比界面处要强,导致反应能垒和C02的活化能变高。而通过对Au团簇负载的有羟基缺陷的Mg(OH)2表面上CO、02的单独吸附以及CO氧化过程的计算,我们发现对有羟基缺陷的表面,在缺陷处CO的吸附能与完美表面比都有所下降,(甚至在Vo-2位点处CO的吸附都无法发生),O2的吸附和解离在空位Vo-1和Vo-3处都有很大提升而在Vo-2和Vo-4处吸附提升不大甚至降低,二者共吸附时与02的吸附相似也是在Vo-1和Vo-3处稳定性有很大提升,在Vo-2和Vo-4处吸附提升不大甚至降低。因此,某些空位(离Au团簇较近的空位)的形成对02的吸附和CO的氧化有比较强的促进作用,而在离团簇较远的空位处影响较小甚至会产生副作用。通过对计算结果的分析,我们发现CO、O2分子的吸附和CO的氧化在Au团簇负载Mg(OH)2(0001)表面有很强的结构依赖性,并且表面羟基空位的形成对它们的吸附都有很大的影响。我们的研究对理解Au团簇负载Mg(OH)2(0001)表面的原子和电子结构以及CO、O2分子的吸附和CO的氧化过程能够起到很好的指引作用,并且能够在理论上为科研工作者合成高效的形貌可控的Au团簇负载Mg(OH)2催化剂提供很好指导。
     最后,在第六章我们对本论文的主要结论和创新点作了总结和归纳,并对此研究方向提出了展望。
As the environmental pollution and energy crisis deepening, elimination of pollutants and turns them to clean resources has become one of the most pressing problem. Therefore, in order to relieve the energy crisis and reduce the environment pollution, the scientific research workers are looking for available ways to translate the pollutants in the air (such as poisonous gas containing elements of C, N) into the renewable energy. In recent years, with the continuous development of theoretical calculation method and computer technology, there have been more and more researchers doing theory research rather than just imitating experiments, because it can provide experimental research with reasonable microcosmic forecast and theoretical guidance. One of the main problems of the transformation pollutants is the choice and synthesis of high efficiency catalysts. For this difficulty, a new and very effective synthesis method is surface microstructure control. In this work, we will use density functional theory method to study the two main ways of surface microstructure control (exposure effective surface and loading co-catalyst). It can also provide good theoretical guidance for the scientists synthesising of such high efficiency catalyst. For the method of exposure effective surface, we choose the small molecules (H2O, CO2and NH3) adsorbed and dissociated on two kinds of typical spinel catalysts (ZnGa2O4and MgAl2O4as model for research. The purpose of this work is to explore how the microcosmic surface atomic and electronic structure (especially the surface states) effect on the catalytic activity. For the method of loading co-catalyst, we choose the CO oxidation process on the Au16supported Mg(OH)2catalyst as the model for research. This study is aim at exploring the carrier's influence on the catalytic activity of catalyst. Our main research contents and conclusions are shown as follows:
     In chapter one, we mainly introduced the research background and significance of our work, including the mechanisms of semiconductor photo-catalysis technology and the present situation and deficiency of surface controllable catalysts and precious metal load catalysts etc. Finally, we elaborated the reason we select this topic, as well as the research train of thought and the general content of this work.
     In chapter two, we mainly described the density functional theory, the local density approximation theory and the generalized gradient theory in detail, and also introduced the main quantitative calculation software package used in this work.
     In chapter three, we mainly studied the H2O and CO2separate and common adsorption behaviors on the perfect and oxygen defective low index ((100),(110) and (111) surface) ZnGa2O4catalysts. Our calculations show that on the stoichiometrically perfect surface, the most stable molecular adsorption that could take place involved the generation of hydrogen bonds. For dissociative adsorption, the adsorption energy of the (111) surface was more than four times the energies of the other two surfaces, indicating it to be the best surface for water decomposition. A detailed comparison of these three surfaces showed that the primary reason for this observation was the special electronic state of the (111) surface. When water dissociated on the (111) surface, the special Ga3c-4s and4p hybridization states at the Fermi level had an obvious downshift to the lower energies. This large energy gain greatly promoted the dissociation of water. Because the generation of O3c-vcancy defects on the (100) and (110) surfaces could increase the stability of the dissociative adsorption states with few changes to the energy barrier, this type of defect would make the decomposition of water molecules more favorable. However, for the (111) surface, the generation of vacancy defects could decrease the stability of the dissociative adsorption states and significantly increase their energy barriers. Therefore, the decomposition of water molecules on the oxygen vacancy defective (111) surface would be less favorable than the perfect (111) surface. After discussed the adsorption behavior of water, now we will turn to the discussion of the adsorption behavior of CO2. On the perfect (100) surface, the most stable adsorption state involved the Zn-O-Ga bridge site, with an adsorption energy of-0.16eV. In the case of the (110) and (111) surfaces, the strongest binding occurred on the Zn-O bridge sites, with much lower adsorption energies of0.22eV and0.35eV, respectively. In addition, the perfect surfaces showed CO2activation ability, but dissociation adsorption could not proceed. The oxygen vacancies on these three surfaces (1) made the metal sites beside them carry less positive charge and further reduced the adsorption energies on these metal sites, and (2) created efficient adsorption sites that allowed even dissociative adsorption. The most favorable molecular and dissociative adsorption states both involved the O30vacancy site of the (100) surface, and these two processes were spontaneous with adsorption energies of-0.74eV and-0.80eV, respectively. When H2O molecules are present on the perfect and defective surfaces, the generation of hydrogen bonds between H2O and CO2would slightly enhance the stability of adsorption (except for that on the (111)-Vo3c surface), making it energetically favorable. However, the co-adsorption of H2O could also increase the energy barriers for the decomposition reactions on the defective surfaces, making them kinetically unfavorable. Furthermore, the oxygen vacancy defects showed good activity for H2O adsorption and decomposition, as well. Thus, when H2O and CO2were both present in the adsorption system, H2O would compete with CO2for the oxygen vacancy sites and further decrease the amount of CO2adsorption and decomposition, and further reduce the reactivity of the catalyst. This means that if we want to use ZnGa2O4catalyze the decomposition of H2O, we need to let the catalyst mainly exposed the (111) surface and generate less oxygen defects; if we want to use ZnGa2O4catalyze CO2decomposition into CO and O2, we should be sure that the reaction system is in a dry environment; if we want to use ZnGa2O4to catalyze the reaction between CO2and H2O yielding hydrocarbons, we need to separate and remove water from the product stream to maintain the high activity of the catalysts. Our research can provide a new design idea for the synthesis of high efficient and surface controllable ZnGa2O4catalysts.
     In the fourth chapter, we further studied the adsorption and decomposition behavior of small molecule NH3on another typical spinel catalyst (MgAl2O4). Adsorption and dissociation of NH3on the low-index (100),(110) and (111) surface were investigated using density functional theory. On the perfect and defective surfaces, different configurations were achieved for NH3molecules on various sites. Comparing these three surfaces, we found that on the (100) and (110) surfaces the NH3molecular adsorption is more favorable than the dissociative adsorption, while on the (111) surface we obtained the opposite consequence. Our further analysis indicates that this is a surface-structure-sensitive reaction. The most stable adsorption state on Mg atom occurs on the (100), while the most stable adsorption state on Al atom occurs on the (111) surface. Our results shows that the main reason for the different stability of the adsorption states on different metal atoms is caused by the surface special electronic states at the Fermi level which emerged on the Mg2c atom of (100) surface and the Al3c atom of (111) surface. For molecular adsorption, the special Mg2c-2s state of (100) surface and Al3c-2s and2p states of (111) surface at the Fermi level will have a distinct downshift to the lower energies and significantly enhance the stability of the adsorption states. In addition, the dissociative adsorption states on the (100) and (111) surfaces which have special surface states are much more stable than the (110) surface as well. Because the special surface state on the (111) surface is generated by the hybridization of Al3c-2s and2p states, the enhancement of the adsorption states on the (111) surface is larger than the (100) surface whose special surface state is generated by only one state (Mg2c-2s). The generation of oxygen vacancy will make the adsorption states less stable, especially for the (111) surface. This means that the perfect (111) surface will be the most favorable surface for NH3adsorption and decomposition. These findings have an important implication for the decomposition or synthesis of NH3on the MgAl2O4surfaces and can provide theoretical guidance for chemists to synthesize high-efficiency MgAl2O4catalysts. These findings have an important implication for the decomposition or synthesis of NH3on the MgAl2C4surfaces and can provide theoretical guidance for chemists to synthesize high-efficiency MgAl2O4catalysts.
     In the fifth chapter we mainly studied the catalyst load effect on the catalytic activity. Through the calculation of the separate and common adsorption of CO and O2on the Aui6supported perfect Mg(OH)2(0001) surface, we found that on the perfect surface, CO and O2can be adsorbed and activated both on the surface of the Au clusters and the interface between Au clusters and Mg(OH)2(0001) surface (CO molecule is more easily adsorbed on the interface; O2molecular adsorption is more likely to happen on the Au clusters and dissociative adsorption is more likely to happen on the interface; when they co-adsorbed, the molecule adsorption states and oxidation products on Au clusters are both stable than the that on the interface, which will make the reaction energy barrier and the CO2activation energy become higher). Through the calculation of the separate and common adsorption of CO and O2on the Aui6supported defective Mg(OH)2(0001) surface, we found that on the surface with hydroxyl defects, the defect can reduce CO adsorption compared to the perfect surface (the CO adsorption on the Vo-2sites even can not happen), O2adsorption on the Vo-1and Vo-3sites have very big improvements, however, on the Vo-2and Vo-4sites the adsorption states are much less stable than that on the perfect surface, the co-adsorption of CO and O2is similar to O2adsorption (on the Vo-1and Vo-3site the adsorption states have very big promotion and on the Vo-2and Vo-4site the adsorption states are very unstable). As a result, some hydroxyl defects (the hydroxyl defects near the Au clusters) can promote the adsorption and activation of O2and CO, but the generation of the hydroxyl defects that are far away from the Au clusters will make the adsorption state become unstable. Our results showed that the oxidation reaction of CO and the adsorption of O2and CO on the Au clusters supported Mg(OH)2(0001) surface has a strong surface-dependence, and the formation of surface hydroxyl space has great influence on it. Our research can have very good guidance for us to understand the Au clusters supported Mg(OH)2catalysts, the atomic and electronic structure of the surface and the oxidation reaction of CO, the adsorption behavior of O2and CO, and further guide the researchers to synthesis the morphology controlled Au clusters supported Mg(OH)2catalysts.
     Finally, in chapter six we summarized the main conclusions and the innovation points of our work, and put forward the outlook in this research direction.
引文
[1]Houghton, J. Rep. Prog. Phys., Global Warming.2005,68,1343-1403.
    [2]Karl T. R.; Trenberth, K. E. Modern Global Climate Change. Science,2003,302, 1719-1723.
    [3]Heisey, L. V. Energy and Environment:Four Energy Crises (Miller, G Tyler, Jr.). J. Chem. Educ.,1977,54, A130-A132.
    [4]Preti, D.; Resta, C.; Squarcialupi S.; Fachinetti, G Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angew. Chem., Int. Ed.,2011,50, 12551-12554.
    [5]Yoo, C. S. Physical and Chemical Transformations of Highly Compressed Carbon Dioxide at Bond Energies. Phys. Chem. Chem. Phys.,2013,15,7949-7966.
    [6]Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced Activation of CO2 on Ti-based Heterogeneous Catalysts:Current State, Chemical Physics-based Insights and Outlook. Energy Environ. Sci.,2009,2,745-758.
    [7]Ernst, K. H.; Schlatterbeck, D. Adsorption of Carbon Dioxide on Cu(110) and on Hydrogen and Oxygen Covered Cu(110) Surfaces. Phys. Chem. Chem. Phys.,1999,1, 4105-4112.
    [8]Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.; Havecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.et al. The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts. Science,2012,336,893-897.
    [9]Liu, Q.; Zhou, Y; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel. J. Am. Chem. Soc., 2010,132,14385-14387.
    [10]Rasko, J.; Solymosi, F. Infrared Spectroscopic Study of the Photoinduced Activation of CO2 on TiO2 and Rh/TiO2 Catalysts. J. Phys. Chem.,1994,98,7147-7152.
    [11]Seiferth, O.; Wolter, K.; Kuhlenbeck, H.; Freund, H. J. CO2 Adsorption on Na Precovered Cr2O3(0001). Surf. Sci.,2002,505,215-224.
    [12]Wang, Y.; Lafosse, A.; Jacobi, K. Adsorption and Reaction of CO2 on the RuO2(110) Surface. J. Phys. Chem. B.,2002,106,5476-5482.
    [13]Hansen, T. W.; Hansen, P. L.; Dahl, S.; Jacobsen, C. J. H. Support Effect and Active Sites on Promoted Ruthenium Catalysts for Ammonia Synthesis. Catal Lett 2002,84,7-12.
    [14]Emeline, A. V.; Abramkin, D. A.; Zonov, I. S.; Sheremetyeva, N. V.; Rudakova, A. V.; Ryabchuk, V. K.; Serpone, N. Photoinduced Radical Processes on the Spinel (MgAl3O4) Surface Involving Methane, Ammonia, and Methane/Ammonia. Langmuir 2012,28, 7368-7373.
    [15]Roberts, M. W. Heterogenous Catalysis Since Berezelius:Some Personal Reflections-Foreword. Catal. Lett.2000,67,1-1.
    [16]Ertl, G. Reactions at Surfaces:From Atoms to Complexity (Nobel Lecture). Angew. Chem., Int. Ed.2008,47,3524-3535.
    [17]Semagina, N.; Kiwi-Minsker, L. Recent Advances in the Liquid-Phase Synthesis of Metal Nanostructures with Controlled Shape and Size for Catalysis. Catal. Rev.2009,57, 147-217.
    [18]Goesmann, H.; Feldmann, C. Nanoparticulate Functional Materials. Angew. Chem. Int. Ed.2010,49,1362-1395.
    [19]Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem.Rev.2005,105,1025-1102.
    [20]Xiong, Y. J.; Wiley, B. J.; Xia, Y. N. Nanocrystals with Unconventional Shapes-A Class of Promising Catalysts. Angew. Chem., Int. Ed.2007,46,7157-7159.
    [21]Haruta, M. Catalysis-Gold Rush. Nature 2005,437,1098-1099.
    [22]Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.;Delmon, B. Low-Temperature Oxidation of CO over Gold Supported on TiO2, a-Fe2O3, and Co3O4. J. Catal.1993,144,175-192.
    [23]Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold Catalysts Prepared by Coprecipitation for Low-temperature Oxidation of Hydrogen and of Carbon Monoxide. J. Catal.1989,115,301-309.
    [24]Boccuzzi, F.; Chiorino, A. FTIR study of CO Oxidation on Au/TiO2 at 90 K and Room Temperature. An Insight into the Nature of the Reaction Centers. J. Phys. Chem. B.2000, 104,5414-5416.
    [25]Haruta, M. Catalysis of Gold Nanoparticles Deposited on Metal Oxides. CATECH. 2002,6,102-115.
    [26]Li, W. C.; Comotti, M.; Schuth, F. Highly Reproducible Syntheses of Active Au/TiO2 Catalysts for CO Oxidation by Deposition-precipitation or Impregnation. J. Catal.2006, 237,190-196.
    [27]Herring, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science.2008,321, 1331-1335.
    [28]Carrettin, S.; Concepcion, P.; Corma, A.; Lopez Nieto, J. M.; Puntes, V. F. Nanocrystalline CeO2 Increases the Activity of an for CO Oxidation by two Orders of Magnitude. Angew. Chem., Int. Ed.2004,43,2538-2540.
    [29]Comotti, M.; Li, W. G.; Spliethoff, B.; Schuth, F. Support Effect in High Activity Gold Catalysts for CO Oxidation. J. Am. Chem. Soc.2006,128,917-924.
    [30]Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238,37-38.
    [31]Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold Catalysts Prepared by Coprecipitation for Low-temperature Oxidation of Hydrogen and of Carbon Monoxide. J. Catal.1989,115,301-309.
    [32]Park, E.D.; Lee, J. S. Effects of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts. J. Catal.1999,186,1-11.
    [33]Date, M.; Haruta, M. Moisture Effect on CO Oxidation over Au/TiO2 Catalyst. J. Catal. 2001,201,221-224.
    [34]Date,M.; Okumura, M..; Tsubota, S.; Haruta, M. Vital Role of Moisture in the Catalytic Activity of Supported Gold Nanoparticles. Angew. Chem. Int. Ed.2004,43, 2129-2132.
    [35]Costello, C.K.; Kung, M.C.; Oh, H.-S.; Wang, Y; Kung, H.H. Nature of the Active Site for CO Oxidation on Highly Active Au/gamma-Al2O3. Appl. Catal. A.2002,232,159-168.
    [36]Costello, C.K.; Yang, J.H.; Law, H.Y.; Wang, Y.; Lin, J.-N.; Marks, L.D.; Kung, M.C.; Kung, H.H. On the Potential Role of Hydroxyl Groups in CO Oxidation over Au/Al2O3. Appl. Catal. A 2003,243,15-24.
    [37]Kung, H.H.; Kung, M.C.; Costello, C.K. Supported Au Catalysts for Low Temperature CO Oxidation. J. Catal.2003,216,425-432.
    [38]Sanchez-Castillo, M.A.; Couto, C.; Kim, W. B.; Dumesic, J. A. Gold-nanotube Membranes for the Oxidation of CO at Gas-water Interfaces. Angew. Chem. Int. Ed.2004, 43,1140-1142.
    [39]Kim, W. B.; Rodriguez-Rivera, G. J.; Evans, S. T.; Voitl, T.; Einspahr, J. J.; Voyles, P. M.; Dumesic, J. A. Catalytic Oxidation of CO by Aqueous Polyoxometalates on Carbon-supported Gold Nanoparticles. J. Catal.2005,235,327-332.
    [40]Calla, J. T.; Davis, R. J. Influence of Dihydrogen and Water Vapor on the Kinetics of CO Oxidation over Au/Al2O3. Ind. Eng. Chem. Res.2005,44,5403-5410.
    [41]Daniells, S. T.; Makkee, M. Moulijn, J. A. The effect of High-temperature Pre-treatment and Water on the Low Temperature CO Oxidation with Au/Fe2O3 Catalysts. Catal. Lett.2005,100,39-47.
    [42]Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    [43]Hagfeldt, A.; Gratzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev.1995,95,49-68.
    [44]Fox, M. A.; Dulay, M. T. Heterogeneous Photocatalysis. Chem. Rev.1993,93, 341-357.
    [45]Pamfilov, A.V.; Lopushanskaya, A.I.; Tsvetkova, L.B. A Useful Function in the Thermodynamics of Irreversible Processes. Tech. Phys.1974,19,535-537.
    [46]Muller, H. D.; Steinbach, F. Decomposition of Isopropyl Alcohol Photosensitized by Zinc Oxide. Nature 1970,225,728-729.
    [47]Steinbach, F. Influence of Metal Support and Ultraviolet Irradiation on the Catalytic Activity of Nickel Oxide. Nature 1969,221,657-658.
    [48]Doerfler, W. Hauffe, K. Heterogeneous Photocatalysis Ⅱ. The Mechanism of the Carbon Monoxide Oxidation at Dark and Illuminated Zinc Oxide Surfaces. J. Catal.1964, 3,171-178.
    [49]Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results. Chem. Rev.1995,95,735-758.
    [50]Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced Amphiphilic surfaces. Nature 1997,388, 431-432.
    [51]Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis:A Historical Overview and Future Prospects. Jpn. J. Appl. Phys.2005,44,8269-8258.
    [52]Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 2010,4, 1259-1278.
    [53]Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides. Science 2001,293,269-271.
    [54]In, S.; Orlov, A.; Berg, R.; Garcia, F.; Pedrosa-Jimenez, S.; Tikhov, M. S.; Wright, D. S.; Lambert, R. M. Effective'Visible Light-activated B-Doped and B,N-Codoped TiO2 Photocatalysts. J.Am. Chem. Soc.2007,129,13790-13791.
    [55]Hu, C. C.; Teng, H. S. Structural Features of p-type Semiconducting NiO as a Co-catalyst for Photocatalytic Water Splitting. J. Catal.2010,272,1-8.
    [56]Li, Q. Y.; Kako, T.; Ye, J. H. WO3 Modified Titanate Network Film:Highly Efficient Photo-mineralization of 2-propanol Under Visible Light Irradiation. Chem. Commun.2010, 46,5352-5354.
    [57]Jang, J. S.; Choi, S. H.; Park, H.; Choi, W.; Lee, J. S. A composite Photocatalyst of CdS Nanoparticles Deposited on TiO2 Nanosheets. J. Nanosci.Nanotechno.2006,6, 3642-3646.
    [58]Feng, J. M.; Han, J. J.; Zhao, X. J. Synthesis of CuInS2 Quantum Dots on TiO2 Porous Films by Solvothermal Method for Absorption Layer of Solar Cells. Prog. Org. Coat.2009, 64,268-273.
    [59]Dibbell, R. S.; Youker, D. G; Watson, D. F. Excited-State Electron Transfer from CdS Quantum Dots to TiO2 Nanoparticles via Molecular Linkers with Phenylene Bridges. J. Phys. Chem. C.2009,113,18643-18651.
    [60]Nakahira, T.; Inoue, Y; Iwasaki, K.; Tanigawa, H.; Kouda, Y; Iwabuchi, S.; Kojima, K.; Gratzel, M. Visible Light Sensitization of Platinized TiO2 Photocatalyst by Surface-coated Polymers Derivatized with Ruthenium Tris(bipyridyl). Makromol.Chem.-Rapid.1988,9,13-17.
    [61]Nakahira, T.; Gratzel, M. Visible Light Sensitization of Platinized TiO2 Photocatalyst by Surface-adsorbed Poly(4-vinylpyridine) Derivatized with Ruthenium Trisbipyridyl Complex. Makromol.Chem.-Rapid.1985,6,341-347.
    [62]Wagner, F. T.; Somorjai, G A. Photocatalytic Hydrogen Production from Water on Pt-free SrTiO3 in Alkali Hydroxide Solutions. Nature 1980,285,559-560.
    [63]Domen, K.; Naito, S.; Soma, M.; Onishi, T.; Tamaru, K. Photocatalytic Decomposition of Water Vapour on an NO-SrTiO3 Catalyst. J. Chem. Soc. Chem. Comm.1980,543-544.
    [64]Reiche, H.; Dunn, W. W.; Bard, A. J. Heterogeneous Photocatalytic and Photosynthetic Deposition of Copper on Titanium Dioxide and Tungsten(VI) Oxide Powders. J. Phys. Chem.1979,83,2248-2251.
    [65]Ouyang, S. X.; Kikugawa, N.; Zou, Z. G.; Ye, J. H. Effective Decolorizations and Mineralizations of Organic Dyes over a Silver Germanium Oxide Photocatalyst Under Indoor-illumination Irradiation. Appl. CatalA-Gen.2009,366,309-314.
    [66]Ouyang, S. X.; Kikugawa, N.; Chen, D.; Zou, Z. G.; Ye, J. H. A Systematical Study on Photocatalytic Properties of AgMO2 (M=Al, Ga, In):Effects of Chemical Compositions, Crystal Structures, and Electronic Structures. J. Phys. Chem. C.2009,113,1560-1566.
    [67]Li, X. K.; Ouyang, S. X.; Kikugawa, N.; Ye, J. H. Novel Ag2ZnGe04 Photocatalyst for Dye Degradation under Visible Light Irradiation. Appl.Catal. A-Gen.2008,334,51-58.
    [68]Ouyang, S. X.; Zhang, H. T.; Li, D. F.; Yu, T.; Ye, J. H.; Zou, Z. G Electronic Structure and Photocatalytic Characterization of a Novel Photocatalyst AgAlO2. J. Phys. Chem. B 2006,110,11677-11682.
    [69]Tang, J. W.; Zou, Z. G.; Ye, J. H. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-light Irradiation. Angew. Chem. Int. Ed.2004,43, 4463-4466.
    [70]Ye, J. H.; Zou, Z. G Matsushita, A. A novel Series of Water Splitting Photocatalysts NiM2O6 (M=Nb, Ta) Active under Visible Light. Int. J. Hydrogen Energ.2003,28, 651-655.
    [71]Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Photocatalytic Hydrogen and Oxygen Formation under Visible Light Irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) Photocatalysts. Photoch. Photobio. A.2002,148,65-69.
    [72]Zou, Z. G.; Ye, J. H.; Arakawa, H. Surface Characterization of Nanoparticles of NiOx/In0.9Ni0.1TaO4:Effects on Photocatalytic Activity. J. Phys. Chem.B.2002,106, 13098-13101.
    [73]Zou, Z. G.; Arakawa, H.; Ye, J. H. Substitution Effect of Ta5+ by Nb5+ on Photocatalytic, Photophysical, and Structural Properties of BiTa1-xNbxO4(0<= x<= 1.0). J. Mater. Res.2002,17,1446-1454.
    [74]Ye, J. H.; Zou, Z. G.; Oshikiri, M.; Matsushita, A.; Shimoda, M.; Imai, M.; Shishid, T. A Novel Hydrogen-evolving Photocatalyst InVO4 Active Under Visible Light irradiation. Chem.Phys.Lett.2002,356,221-226.
    [75]Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst. Nature 2001,414,625-627.
    [76]Kako, T.; Zou, Z. G.; Katagiri, M.; Ye, J. H. Decomposition of Organic Compounds over NaBiO3 under Visible Light Irradiation. Chem. Mater.2007,19,198-202.
    [77]Osterloh, F. E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater.2008,20,35-54.
    [78]Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A Metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater.2009,8,76-80.
    [79]Li, Q. Y; Yue, B.; Iwai, H.; Kako, T.; Ye, J. H. Carbon Nitride Polymers Sensitized with N-Doped Tantalic Acid for Visible Light-Induced Photocatalytic Hydrogen Evolution. J. Phys. Chem. C.2010,114,4100-4105.
    [80]Kamat, P. V. Meeting the Clean Energy Demand:Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 2007,111,2834.-2860
    [81]Chen, D.; Ye, J. H. SrSnO3 Nanostructures:Synthesis, Characterization, and Photocatalytic Properties. Chem. Mater.2007,19,4585-4591.
    [82]Zeng, H. B.; Liu, P. S.; Cai, W. P.; Yang, S. K.; Xu, X. X. Controllable Pt/ZnO Porous Nanocages with Improved Photocatalytic Activity. J. Phys. Chem. C 2008,112, 19620-19624.
    [83]Chen, X.; Mao, S. S. Chem. Rev. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications.2007,107,2891-2959.
    [84]Chen, D.; Ye, J. H. Selective-Synthesis of High-Performance Single-Crystalline Sr2Nb207 Nanoribbon and SrNb2O6 Nanorod Photocatalysts. Chem. Mater.2009,21, 2327-2333.
    [85]Tong, H.; Ye, J. H. Building Niobate Nanoparticles with Hexaniobate Lindqvist Ions. Eur. J. Inorg. Chem.2010,1473-1480.
    [86]Xi, G. C.; Yue, B.; Cao, J. Y.; Ye, J. H. FeO4/WO3 Hierarchical Core-Shell Structure: High-Performance and Recyclable Visible-Light Photocatalysis. Chem. Eur. J.2011,17, 5145-5154.
    [87]Chen, D. Ye, J. H. Hierarchical WO3 Hollow Shells:Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties. Adv. Func. Mater.2008,18,1922-1928.
    [88]Xi, G C.; Ye, J. H. Synthesis of Hierarchical Macro-/Mesoporous Solid-Solution Photocatalysts by a Polymerization-Carbonization-Oxidation Route:The Case of Ce0.49Zr0.37Bi0.14O1.93. Chem. Eur. J.2010,16,8719-8725.
    [89]Zeng, H. B.; Cai, W. P.; Liu, P. S.; Xu, X. X.; Zhou, H. J.; Klingshirn, C. ZnO-based Hollow Nanoparticles by Selective Etching:Elimination and Reconstruction of Metal-semiconductor Interface, Improvement of Blue Emission and Photocatalysis. ACS Nano 2008,2,1661-1670.
    [90]Scaife, D. E. Oxide Semiconductors in Photoelectrochemical Conversion of Solar Energy. Solar Energy-1980,25,41-54.
    [91]Maeda, K.; Domen, K. Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light. Chem. Mater.2010,22,612-623.
    [92]Yi, Z. G.; Ye, J. H. Band Gap Tuning of Na1-xLaxTa1-xCrxO3 for H-2 Generation from Water under Visible Light Irradiation. J. Appl. Phys.2009,106,1-5.
    [93]Wang, D. F.; Kako, T.; Ye, J. H. New Series of Solid-Solution Semiconductors (AgNbO3)1-x(SrTiO3)x with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity. J. Phys. Chem. C.2009,113,3785-3792.
    [94]Li, G Q.; Kako, T.; Wang, D. F.; Zou, Z. G.; Ye, J. H. Enhanced Photocatalytic Activity of La-doped AgNbO3 under Visible Light Irradiation. Dalton T.2009,2423-2427.
    [95]Wang, D. F.; Kako, T.; Ye, J. H. Efficient Photocatalytic Decomposition of Acetaldehyde over A Solid-solution Perovskite (Ag(0.75)Sr(0.25))(Nb(0.75)Ti(0.25))O(3) under Visible-light Irradiation. J. Am. Chem. Soc.2008,130,2724-2725.
    [96]Li, X. K.; Kikugawa, N.; Ye, J. H. Nitrogen-doped Lamellar Niobic Acid with Visible Light-responsive Photocatalytic Activity. Adv. Mater.2008,20,3816-3817.
    [97]Wang, D. F.; Ye, J. H.; Kako, T; Kimura, T. Photophysical and Photocatalytic Properties of SrTiO3 Doped with Cr Cations on Different Sites. J. Phys. Chem. B.2006,110, 15824-15830.
    [98]Thompson, T. L.; Yates, J. T. Surface Science Studies of the Photoactivation of TiO2-new Photochemical Processes. Chem. Rev.2006,106,4428-4453.
    [99]Osgood, R. Photoreaction Dynamics of Molecular Adsorbates on Semiconductor and Oxide Surfaces. Chem. Rev.2006,106,4379-4401.
    [100]Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G; Smith, S. C.; Cheng, H. M.; Lu, G Q. Anatase TiO(2) Single Crystals with a Large Percentage of Reactive Facets. Nature 2008,453,638-U4.
    [101]Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y; Ye, J. H. Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties. J. Am. Chem. Soc.2011,133,6490-6492.
    [102]Xi, G. C.; Ye, J. H. Synthesis of Bismuth Vanadate Nanoplates with Exposed{001} Facets and Enhanced Visible-light Photocatalytic Properties. Chem. Commun.2010,46, 1893-1895.
    [103]Selloni, A. Crystal Growth - Anatase Shows Its Reactive Side. Nat. Mater.2008,7, 613-615.
    [104]Liu, S. W.; Yu, J. G; Jaroniec, M. Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed{001} Facets. J. Am. Chem. Soc.2010,132,11914-11916.
    [105]Hass, K. G.; Schneider, W. F,; Curioni, A.; Andreoni. W. First-principles Molecular Dynamics Simulations of H2O on Alpha-Al2O3 (0001). J. Phys. Chem. B.2000,104, 5527-5540.
    [106]Hadidi, K.; Hancke, R.; Norby, T.; Gunnces, A. E.; Lowik. O. M. Atomistic Study of LaNbO4; Surface Properties and Hydrogen Adsorption. Int. J. Hydrogen Energy.2012,37, 6674-6685.
    [107]Pan, Y. X.; Liu, C. J.; Mei, D. H.; Ge. Q. F. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on beta-Ga2O3(100). Langnuir 2010,26,5551-5558.
    [108]Ahdjoudj, J.; Markovits, A.; Minot. C. Hartree-Fock Periodic Study of the Chemisorption of Small Molecules on TiO2 and MgO Surfaces. Catal. Today 1999,50, 541-551.
    [109]Indrakanti, V. P.; Kubicki, J. D.; Schobert. H. H. Quantum chemical modeling of ground states of CO2 chemisorbed on anatase (001), (101), and (010) TiO2 surfaces. Energy & Fuels 2008,22,2611-2618.
    [110]Takahashi, H.; Yuki, K.; Nitta. T. Chemical Modification of Rutile TiO2(110) Surface by ab Initio Calculations for the Purpose of CO2 Adsorption. Fluid Phase Equilibria 2002, 194,153-160.
    [111]Markovits, A.; Fahmi, A.; Minot. C. A theoretical Study of CO2 Adsorption on TiO2. J. Molecular Structure (Theochem) 1996,371,219-235.
    [112]Lee, D.; Kanai, Y. Role of Four-Fold Coordinated Titanium and Quantum Confinement in CO2 Reduction at Titania Surface. J. Am. Chem. Soc.2012,134, 20266-20269.
    [113]Rodriguez, M. M.; Peng, X. H. A Density Functional Theory and Experimental Study of CO2 Interaction with Brookite TiO2. J. Phys. Chem. C.2012,116,19755-19764.
    [114]Pipornpong, W.; Wanbayor, R.; Ruangpornvisuti, Adsorption CO2 on the Perfect and Oxygen Vacancy Defect Surfaces of Anatase TiO2 and Its Photocatalytic Mechanism of Conversion to CO. V. Applied Surface Science 2011,257,10322-10328.
    [115]Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced Activation of CO2 on TiO2 Surfaces:Quantum Chemical Modeling of CO2 Adsorption on Oxygen Vacancies. Fuel Process. Technol.2011,92,805-811.
    [116]Sorescu, D. C.; Lee, J.; Al-Saidi, W. A.; Jordan, K. CO2 Adsorption on TiO2(110) Rutile:Insight from Dispersion-corrected Density Functional Theory Calculations and Scanning Tunneling Microscopy Experiments. J. Chem. Phys.2011,134,104707-1-12.
    [117]Sorescu, D. C.; Lee, J.; Al-Saidi, W. A.; Jordan, K. D. Coadsorption Properties of CO2 and H2O on TiO2 Rutile (110):A Dispersion-corrected DFT Study. J. Chem. Phys.2012, 137,074704-1-16.
    [118]Sorescu, D. C.; Al-Saidi, W. A.; Jordan, K. D. CO2 Adsorption on TiO2(101) Anatase: A Dispersion-corrected Density Functional Theory Study. J. Chem. Phys.2011,135, 124701-1-17.
    [119]Indrakanti, V P.; Schobert, H. H.; Kubicki, J. F. Quantum Mechanical Modeling of CO2 Interactions with Irradiated Stoichiometric and Oxygen-Deficient Anatase TiO Surfaces:Implications for the Photocatarytic Reduction of CO2. Energy Fuels 2009,23, 5247-5256.
    [120]He, H. Y.; Zapol, P.; Curtiss, L. A. A Theoretical Study of CO2 Anions on Anatase (101) Surface. J. Phys. Chem. C 2010,114,21474-21481.
    [121]Bulatov, A. V.; Khidekel, M. L. Decomposition of Water Exposed to UV Light in the Presence of Platinized Titanium Dioxide. Izv. Akad. Nauk. SSSR. Ser.Khim.1976. 1902-1903.
    [122]Sato,S.; White, J. M. Reactions of Water with Carbon and Ethylene over Illuminated Pt/TiO2. Chem. Phys. Lett.1980,70,131-134.
    [123]Sato, S.; White, J. M. Photoassisted Hydrogen Production from Titania and Water. J. Phys. Chem.1981,85,592-594.
    [124]Yan, H.; Yang, J. Ma, G.; et al. Visible-light-driven Hydrogen Production with Extremely High Quantum Efficiency on Pt-PdS/CdS Photocatalyst. J.Catal.2009,266, 165-168.
    [125]Cox, D.M.; Reichmann, K. C.; Trevor, D. J.; Kaldor, A. CO Chemisorption on Free Gas Phase Metal Clusters. J. Phys. Chem.1988,88,111-119.
    [126]Whetten, R. L.; Cox, D. M.; Trevor, D. J.; Kaldor A. Correspondence between Electron Binding Energy and Chemisorption Reactivity of Iron Clusters. Phys. Rev. Lett. 1985,4,1494-1497.
    [127]Holmgren, L.; Andersson, M.; Rosen, A. CO Reactivity of Small Transition-metal Clusters:Nin and Nbn. Surface Science 1995,331-333,231-236.
    [128]Heiz, U.; Vayloyan, A.; Schumacher, E. NaxAu and CSxAu Bimetal Clusters:Finite Size Analogs of Sodium-gold and Cesium-gold Compounds. J. Chem. Phys.1996,105, 5574-5585.
    [129]Billas, I. M.; Chatelain, A.; de Heer, W. A. Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters. Science 1994,26,1682-1684.
    [130]Granteoer, G.; Eberhardt, W. Phys. Rev. Lett.1996,76,4975.
    [131]Winkler, A.; Yates, J. J. T. Capillary Array Dosing and Angular Desorption Distribution Measurements:A General Formalism. J. vac. Sci. Technol. A.1988,6, 2929-2932.
    [132]Boack, M. J.; Muehlhoff, L.; Russell, J. J.; Choyke, W. J.; Yates, J. J. T. Control of the surface reactivity of the Si(100) surface. J. vac. Sci. Technol. A.1987,5,1-4.
    [133]Heiz, U.; Sanchez, A.; Abbet, S.; Schneider, W. Catalytic Oxidation of Carbon Monoxide on Monodispersed Platinum Clusters:Each Atom Counts. J. Am. Chem. Soc. 1999,121,3214-3217.
    [134]Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. NOVEL GOLD CATALYSTS FOR THE OXIDATION OF CARBON-MONOXIDE AT A TEMPERATURE FAR BELOW 0-DEGREES-C. Chem. Lett.1987,4,405-408.
    [135]Valden, M.; Lai, X.; Goodman, D. W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science.1998,281,1647-1650.
    [136]Chen, M. S.; Goodman, D. W. The Structure of Catalytically Active Gold on Titania. Science.2004,306,252-255.
    [137]Min, B. K.; Friend, C. M. Heterogeneous Gold-based Catalysis for Green Chemistry: Low-temperature CO Oxidation and Propene Oxidation. Chem. Rev.2007,107,2709-2724.
    [138]Meyer, R.; Lemire, C.; Shaikhutdinov, S. K.; Freund, H. J. Surface Chemistry of Catalysis by Gold. GoldBull.2004,37,72-73.
    [139]Remediakis, I. N.; Lopez, N.; Norskov, J. K. CO Oxidation on Rutile-supported Au Nanoparticles. Angew. Chem.2005,117,1824-1826.
    [140]Hashmi, A. S. K.; Hutchings, G J. Gold Catalysis. Angew. Chem.2006,118, 7896-7936.
    [141]Yoon, B.; Hakkinen, H.; Landman, U.; Wcrz, A.; Antonietti, J. M.; Abbet, S.; Judai, S. K.; Heiz, U. Charging Effects on Bonding and Catalyzed Oxidation of CO on Aug Clusters on MgO. Science.2005,307,403-407.
    [142]Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO Oxidation over Supported Gold Catalysts-"inert" and "active" Support Materials and Their Role for the Oxygen Supply During Reaction. J. Catal.2001,197,113-122.
    [143]Jia, C.; Liu, J.; Bongard, H.; Schuth, F. Very Low Temperature CO Oxidation over Colloidally Deposited Gold Nanoparticles on Mg(OH)2 and MgO. J. Am. Chem. Soc.2010, 132,1520-1522.
    [144]Green, I. X.; Tang, W.; Neurock, M.; Yates, J. T. Jr. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst. Science.2011,333, 736-739.
    [145]Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.;Delmon, B. Low-Temperature Oxidation of CO over Gold Supported on TiO2, a-Fe2O3, and C03O4. J. Catal.1993,144,175-192.
    [146]Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold Catalysts Prepared by Coprecipitation for Low-temperature Oxidation of Hydrogen and of Carbon Monoxide. J. Catal.1989,115,301-309.
    [147]Boccuzzi, F.; Chiorino, A. FTIR Study of CO Oxidation on Au/TiO2 at 90 K and Room Temperature. An Insight into the Nature of the Reaction Centers. J. Phys. Chem. B. 2000,104,5414-5416.
    [148]Haruta, M. Catalysis of Gold Nanoparticles Deposited on Metal Oxides. CATECH. 2002,6,102-115.
    [149]Li, W. C.; Comotti, M.; Schuth, F. Highly Reproducible Syntheses of Active Au/TiO2 Catalysts for CO Oxidation by Deposition-precipitation or Impregnation. J. Catal. 2006,237,190-196.
    [150]Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G J. Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science.2008,321, 1331-1335.
    [151]Carrettin, S.; Concepcio'n, P.; Corma, A.; Lopez Nieto, J. M.; Puntes, V. F. Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude. Angew. Chem., Int. Ed.2004,43,2538-2540.
    [152]Comotti, M.; Li, W. C.; Spliethoff, B.; Schuth, F. Support Effect in High Activity Gold Catalysts for CO Oxidatioa J. Am. Chem. Soc.2006,128,917-924.
    [153]Tsubota, S.; Haruta, M.; Kobayashi, T.; Ueda, A.; Nakahara, Y. Preparation of Highly Dispersed Gold on Titanium and Magnesium Oxide. Stud. Surf. Sci. Catal.1991,72, 695-704.
    [1]Hohenberg, P. C.; Kohn, W. Inhomogneneous Electron Gas. Phys. Rev. B 1964,136, 864-871.
    [2]Kohn, W.; Sham, L. J. Quantum Density Oscillations in an Inhomogneneous Electron Gas. Phys. Rev. A 1965,137,1697-1705.
    [3]Cances, E.; Garcia-Cervera, J. C.; Wang, Y. A. Density Function Theory:Fundamentals and Applications in Condensed Matter Theory. North Holland.1985.
    [4]Sham, L. Density function theory and computational materials physics, Kluwer Academic Publishers.1996.
    [5]Yang, W. Direct Calculation of Electron Density inDensity-Functional Theory. Phys. Rev. Lett.1991,66,1438-1441.
    [6]Beck, A. D. Density Functional Exchange-energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A 1988,38,3098-3100.
    [7]Segall, M. D.; Lindan, P. J. D.; Probert, M. J. First-principles Simulation:Ideas Illustrations and the CASTEP Code. J. Phys. Cond. Matt.2002,14,717-743.
    [8]Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1965,140,1133-1138.
    [1]Heisey, L. V. Energy and Environment:Four Energy Crises (Miller, G; Tyler, Jr.). J. Chem. Educ.1977,54, A130-A131.
    [2]Huang, J. H.; Ding, K. N.; Wang, X. C.; Fu, X. Z. Nanostructuring Cadmium Germanate Catalyst for Photocatalytic Oxidation of Benzene at Ambient Conditions. Langmuir 2009, 25,8313-8319.
    [3]Yan, S. C.; Li, Z. S.; Zou, Z. G Photodegradation of Phodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation. Langmuir 2010,26,3894-3901.
    [4]Yin, L. F.; Shen, Z. Y.; Niu, J. F.; Duan, Y P. Degradation of pentachlorophenol and 2, 4-dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis. Environ. Sci. Technol.2010,44,9117-9122.
    [5]Narasimham, M.; Rossitza, P.; Matthias, S. Coverage-Dependent Adsorption Mode of Water on Fe3O4 (001):Insights from First Principles Calculations.J. Phys. Chem. C.2010, 114,11148-11156.
    [6]Zhao, Z. Y.; Li, Z. S.; Zou, Z. G A Theoretical Study of Water Adsorption and Decomposition on the Low-Index Stoichiometric Anatase TiO2 Surfaces. J. Phys. Chem. C. 2012,116,7430-7441.
    [7]Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238,37-38.
    [8]Xu, H.; Zhang, R Q.; Alan, M. C. N.; Aleksandra, B. D.; Chan, H. T.; Chan, W. K.; Tong, S. Y Splitting Water on Metal Oxide Surfaces. J. Phys. Chem. C.2011,115, 19710-19715.
    [9]O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 1991,353,737-740.
    [10]Meyer, G J. The 2010 Millenium Technology Grand Prize:Dye Sensitized Solar Cells. ACSNano.2010,4,4337-4343.
    [11]Fujishima, A.; Rao, T. N.; Tryk, D, A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C:Photochem. Rev.2000,1,1-21.
    [12]Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep.2003,48, 53-229.
    [13]Zou, C. W.; Rao, Y. F. Alyamani, A.; Chu, W.; Chen, M. J.; Patterson, D. A.; Emanuelsson, E. A. C.; Gao, W. Heterogeneous Lollipop-like V2O5/ZnO Array:A Promising Composite Nanostructure for Visible Light Photocatalysis. Langmuir 2010,26, 11615-11620.
    [14]Li, Y.; Liu, Q. Y.; Shen, W. J. Morphology-dependent nanocatalysis:Metal particles. Dalton Trans.2011,40,5811-5826.
    [15]Roberts, M. W. Heterogenous catalysis since Berezelius:some personal reflections-Foreword. Catal. Lett.2000,67,1-1.
    [16]Ertl, G Reactions at Surfaces:From Atoms to Complexity (Nobel Lecture). Angew. Chem., Int. Ed.2008,47,3524-3535.
    [17]Semagina, N.; Kiwi-Minsker, L. Recent Advances in the Liquid-Phase Synthesis of Metal Nanostructures with Controlled Shape and Size for Catalysis. Catal. Rev.2009,51, 147-217.
    [18]Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem. Int. Ed.2010,49,1362-1395.
    [19]Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem.Rev.2005,105,1025-1102.
    [20]Xiong, Y. J.; Wiley, B. J.; Xia, Y N. Nanocrystals with unconventional shapes-a class of promising catalysts. Angew. Chem., Int. Ed.2007,46,7157-7159.
    [21]Haruta, M. Catalysis:Gold rush. Nature 2005,437,1098-1099.
    [22]Zhong, M.; Li, Y.B.; Takero, T.; Zheng, M. J.; Yamada, I.; Delaunay, J. J. Vertically aligned ZnO-ZnGa2O4 core-shell nanowires:from synthesis to optical properties. Nanopart Res.2012,14,804-814.
    [23]Zhong, M.; Li, Y. B.; Yamada, I.; Delaunay, J. J. ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting. Nanoscale 2012,4,1509-1514.
    [24]Sun, M. S.; Li, D. Z.; Zhang, W. J.; Chen, Z. X.; Huang, H. J.; Li, W. J.; He, Y. H.; Fu, X. Z. Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatarytic activity toward aromatic compounds in air and dyes in liquid water.J. Solid State Chem. 2012,190,135-142.
    [25]Boppana, V. B. R.; Lobo, R. F. SnOx-ZnGa2O4 Photocatalysts with Enhanced. Visible Light Activity. ACS Catal.2011,1,923-928.
    [26]Zhang, W. W.; Zhang, J. Y.; Chen, Z. Y.; Wang, T. M. Photocatalytic degradation of methylene blue by ZnGa2O4 thin films. Catalysis Communications 2009,10,1781-1785.
    [27]Yan, S. C., Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y; Fan, X. M.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y; Zou, Z, G A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2. Angew. Chem., Int. Ed.2010,49,6400-6404.
    [28]Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys.1992,64,1045-1097.
    [29]Segall, M.; Lindan, P.; Probert, M.; Pickard, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. First-principles simulation:ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002,14,2717-2743.
    [30]Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr.2005,220,567-570.
    [31]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, A. K.; Pederson, R. M.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B.1992,46,6671-6687.
    [32]Perdew, J. P.; Wang, Y Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B.1992,45,13244-13249.
    [33]Hornstra, J.; Keulen, E. The oxygen parameter of the spinel ZnGa2O4 Philips Res. Rep. 1972,27,76-81.
    [34]Sanchez-Portal, D.; Artacho, E.; Soler, J. M. Projection of plane-wave calculations into atomic orbitals. Solid State Commun.1995,95,685-690.
    [35]Gonze, X. First-principles responses of solids to atomic displacement and homogeneous electric fields:Implementation of a conjugate-gradient algorithm. Phys. Rev. B.1997,55,10337-10354.
    [36]Wippermann, S.; Schmidt, W. G.; Thissen P.; Grundmeier G Dissociative and molecular adsorption of water on α-Al2O3 (0001). Phys. Status Solidi C.2010,7,137-140.
    [37]Hass, K. C.; Schneider, W. F, Curioni, A.; Andreoni, W. First-principles Molecular Dynamics Simulations of H2O on α-Al2O3 (0001). J. Phys. Chem. B.2000,104,5527-5540.
    [38]Yin, S. X.; Ma, X. Y.; Ellis. D.E. initial stages of H2O adsorption and hydroxylation of Fe-terminated alpha-Fe2O3 (0001) surface. Surf. Sci.2007,601,2426-2437.
    [39]Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev.1993,93, 341-357.
    [40]Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    [41]Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalusis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results. Chem. Rev.1995,95,735-758.
    [42]Shockley W. On the Surface States Associated with a Periodic Potential. Phys Rev. 1939,56,317-323.
    [43]Hadidi, K.; Hancke, R.; Norby, T.; Gunnces, A. E.; Lowik, O. M. Atomic study of LaNbO4; surface peoperties and hydrogen adsorption. Int. J. Hydrogen Energy.2012,37, 6674-6685.
    [44]Houghton, J. Global Warming. Rep. Prog. Phys.2005,68,1343-1403.
    [45]Karl, T. R.; Trenberth, K. E. Modern Global Climate Change. Science 2003,302, 1719-1723.
    [46]Heisey, L. V. Energy and Environment:Four Energy Crises (Miller, G.; Tyler, Jr.). J. Chem. Educ.1977,54, A130-A131.
    [47]Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angew. Chem., Int. Ed.2011,50, 12551-12554.
    [48]Tsodikov, M. V.; Kugel, V. Y.; Slivinskii, E. V.; Zaikin, V. G.; Mordovin, V. P.; Colon, G.; Hidalgo, M. C.; Navio, J. A. Transformation of CO2 Alone and Combined with Ethanol Present in the Hydrogen -Accumulating Intermetallic System TiFe0.95Zr0.03Mo0.02, Pd/SiO2, and γ-Al2O3. Langmuir 1999,15,6601-6604.
    [49]Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced Activation of CO2 on Ti-Based Heterogeneous Catalysts:Current State, Chemical Physics-Based Insights and Outlook. Energy Environ. Sci.2009,2,745-758.
    [50]Hiroaki, F.; Hiroji, H.; Kei, M.; Yuji, W.; Shozo, Y. Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction. Langmuir 1998,14, 5154-5159.
    [51]Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.; Havecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.; et al. The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts. Science 2012,336,893-897.
    [52]Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons Toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel. J. Am. Chem. Soc. 2010,132,14385-14387.
    [53]Rasko, J.; Solymosi. F. Infrared Spectroscopic Study of the Photoinduced Activation of CO2 on TiO2 and Rh/TiO2 Catalysts. J. Phys. Chem.1994,98,7147-7152.
    [54]Seiferth, O.; Wolter, K.; Kuhlenbeck, H.; Freund, H.-J. CO2 adsorption on Na Precovered Cr2O3(0001). Surf. Sci.2002,505,215-224.
    [55]Wang, Y.; Lafosse, A.; Jacobi, K. Adsorption and Reaction of CO2 on the RuO2(110) Surface. J. Phys. Chem. B.2002,106,5476-5482.
    [56]Inoue, T.; Fujishima, S.; Konishi, S.; Honda, K. Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature 1979,277, 637-638.
    [57]Taylor, H. S. A Theory of the Catalytic Surface. Proc. R. Soc. London, Ser. A 1925,108, 105-111.
    [58]N(?)rskov, J. K.; Bligaard, T.; Hvolbaek, B.; Abild-Pedersen, F.; Chorkendorff, I.; Christensen, C. H. The Nature of the Active Site in Heterogeneous Metal Catalysis. Chem. Soc. Rev.2008,37,2163-2171.
    [59]Yates, J. T. Surface Chemistry at Metallic Step Defect Sites. J. Vac. Sci. Technol. A 1995,13,1359-1367.
    [60]Wandelt, K. Properties and Influence of Surface Defects. Surf. Sci.1991,251-252, 387-395.
    [61]Rupprechter, G Sum Frequency Generation and Polarization-Modulation Infrared Reflection Absorption Spectroscopy of Function-ing Model Catalysts from Ultrahigh Vacuum to Ambient Pressure. Adv. Catal 2007,51,133-263.
    [62]Pan, Y. X.; Liu, C. J.; Mei, D. H.; Ge, Q. F. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on β-Ga2O3(100). Langmuir 2010,26,5551-5558.
    [63]Vang, R. T.; Honkala, K.; Dahl, S.; Vestergaard, E. K.; Schnadt, J.; Laegsgaard, E.; Clausen, B. S.; Norskov, J. K.; Besenbacher, F. Controlling the Catalytic Bond-Breaking Selectivity of Ni Surfaces by Step Blocking. Nat. Mater.2005,4,160-162.
    [64]Liu, L. J.; Gao, F.; Zhao, H. L.; Li, Y. Tailoring Cu Valence and Oxygen Vacancy in Cu/TiO2 Catalysts for Enhanced CO2 Photoreduction Efficiency. Appl. Catal., B.2013, 134-135,349-358.
    [65]Wang, Y. G.; Li, B.; Zhang, C. L.; Cui, L. F.; Kang, S. F.; Li, X.; Zhou, L. H. Ordered Mesoporous CeO2-TiO2 Composites:Highly Efficient Photocatalysts for the Reduction of CO2 with H2O under Simulated Solar Irradiation. Appl. Catal., B.2013,130-131,277-284.
    [66]Sui, D. D.; Yin, X. H.; Dong, H. Z.; Qin, S. Y; Chen, J. S.; Jiang, W. L. Photocatalytically Reducing CO2 to Methyl Formate in Methanol Over Ag Loaded SrTiO3 Nanocrystal Catalysts. Catal. Lett.2012,142,1202-1210.
    [67]Liu, L. J.; Zhao, C. Y.; Li, Yang. Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2-x Nanoparticals at Room Temperature. J. Phys. Chent. C.2012,116, 790-7912.
    [68]Li, H. L.; Lei, Y. G.; Huang, Y.; Fang, Y P.; Xu, Y. H.; Zhu, L.; Li, X. Photocatalytic Reduction of Carbon Dioxide to Methanol by Cu2O/SiC Nanocnstallite under Visible Light Irradiation. J. Nat. Gas Chem.2011,20,145-150.
    [69]Vidal, A. B.; Feria, L.; Evans, J.; Takahashi, Y.; Liu, P.; Nakamura, K.; Illas, F.; Rodriguez, J. CO2 Activation and Methanol Synthesis on Novel Au/TiC and Cu/ TiC Catalyst. J. Phys. Chem. Lett.2012,3,2275-2280.
    [70]Yang, H. C.; Lin, H. Y.; Chien, Y. S.; Wu, J. C.; Wu, H. H. Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol. Catal. Lett.2009,131,381-387.
    [71]Zhong, M.; Li, Y. B.; Takero, T.; Zheng, M. J.; Yamada, I.; Delaunay, J. J. Vertically Aligned ZnO-ZnGa2O4 Core-Shell Nanowires:from Synthesis to Optical Properties. Nanopart Res.2012,14,804-814.
    [72]Zhong, M.; Li, Y. B.; Yamada, I.; Delaunay, J. J. ZnO-ZnGa2O4 Core-Shell Nanowire Array for Stable Photoelectrochemical Water Splitting. Nanoscale 2012,4,1509-1514.
    [73]Sun, M. S.; Li, D. Z.; Zhang, W. J.; Chen, Z. X.; Huang, H. J.; Li, W. J.; He, Y. H.; Fu, X. Z. Rapid Microwave Hydrothermal Synthesis of ZnGa2O4 with High Photocatalytic Activity Toward Aromatic Compounds in Air and Dyes in Liquid Water. J. Solid State Chem.2012,190,135-142.
    [74]Boppana, V. B. R.; Lobo, R. F. SnOx-ZnGa2O4 Photocatalysts with Enhanced. Visible Light Activity. ACS Catal.2011,1,923-928.
    [75]Zhang, W. W.; Zhang, J. Y; Chen, Z. Y.; Wang, T. M. Photocatalytic Degradation of Methylene Blue by ZnGa2O4 Thin Films. Catalysis Communications 2009,10,1781-1785.
    [76]Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y; Fan, X. M.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y; Zou, Z, G. A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2. Angew. Chem. Int. Ed.2010,49,6400-6404.
    [77]Wang, G C.; Jiang, L.; Pang, X. Y.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z.; Morikawa, Y.; Nakamura, J. A Theoretical Study of Surface-structural Sensitivity of the Reverse Water-Gas Shift Reaction over Cu(hkl) Surfaces. Surf. Sci.2003,543,118-130.
    [78]Choe, S. J.; Kang, H. J.; Park, D. H.; Huh, D. S.; Park, J. Adsorption and Dissociation Reaction of Carbon Dioxide on Ni(111) Surface:Molecular Orbital Study. Surf. Sci.2001, 181,265-276.
    [79]Wang, S. G.; Cao, D. B.; Li, Y. W.; Wang, J. G; Jiao, H. J. Chemisorption of CO2 on Nickel Surfaces. J. Phys. Chem. B.2005,109,18956-18963.
    [80]Vidal, A. B.; Feria, L.; Evans, J.; Takahashi, Y; Liu, P.; Nakamura, K.; Illas, F.; Rodriguez, J. A. CO2 Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts. J. Phys. Chem. Lett.2012,3,2275-2280.
    [81]Sorescu, D. C.; Al-Saidi, W. A.; Jordan, K. D. CO2 Adsorption on TiO2(101) Anatase: A Dispersion-Corrected Density Functional Theory Study. J. Chem. Phys.2001,135, 124701-124716.
    [82]Segall, M.; Lindan, P.; Probert, M.; Pickard, M.; Pickard, G.; Hasnip, P.; Clark, S.; Payne, M. First-principles Simulation:Ideas, Illustrations and the CASTEP Code. J. Phys.: Condens. Matter 2002,14,2717-2743.
    [83]Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Kristallogr.2005,220,567-570.
    [84]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, A. K.; Pederson, R. M.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B.1992,46,6671-6687.
    [85]Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B.1992,45,13244-13249.
    [86]Sanchez-Portal, D.; Artacho, E.; Soler, J. M. Projection of Plane-Wwave Calculations Into Atomic Orbitals. Solid State Commun.1995,95,685-690.
    [87]Gonze, X. First-principles Responses of Solids to Atomic Displacement and Homogeneous Electric Fields:Implementation of a Conjugate-Gradient Algorithm. Phys. Rev. B.1997,55,10337-10354.
    [88]Jia, C. Y.; Fan, W. L.; Yang, F.; Zhao, X.; Sun, H. G.; Li, P.; Liu, L. A Theoretical Study of Water Adsorption and Decomposition on Low-Index Spinel ZnGa2O4 Surfaces: Correlation between Surface Structure and Photocatalytic Properties. Langmuir 2013,29, 7025-7037.
    [89]Zhao, Z. Y.; Li, Z. S.; Zou, Z. G A Theoretical Study of Water Adsorption and Decomposition on the Low-Index Stoichiometric Anatase TiO2 Surfaces. J. Phys. Chem. C. 2012,116,7430-7441.
    [90]Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y Photocatalitic CO2 Reduction with H2O on TiO2 Nanocrystals:Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catal.2012,2,1817-1828.
    [91]Zhao, Y.; Teng, B. T.; Wen, X. D.; Zhao, Y.; Zhao, L. H.; Luo, M. F. A Theoretical Evaluation and Comparison of MxCe1-xO2-Delta (M=Au, Pd, Pt, and Rh) Catalysts. Catal. Commun.2012,27,63-68.
    [92]Liu, L.; Fan, W. L.; Zhao, X.; Sun, H. G.; Li, P.; Sun, L. M. Surface Dependece of CO2 Adsorption on Zn2Ge04. Langmuir 2012,28,10415-10424.
    [1]Xu, H.; Zhang, R. Q.; Ng, A. M. C.; Djurisic A. B.; Chan, H. T.; Chan, W. K.; Tong, S. Y. Splitting Water on Metal Oxide Surfaces. J. Phys. Chem. C 2011,115,19710-19715.
    [2]Pan, Y. X.; Liu, C. J.; Mei, D. H.; Ge, Q. F. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption andActivation on β-Ga2O3 (100). Langmuir 2010,26,5551-5558.
    [3]Jia, C. Y.; Fan, W. L.; Yang F.; Zhao, X..; Sun, H. G.; Li, P.; Liu, L. A Theoretical Study of Water Adsorption and Decomposition on Low-index Spinel ZnGa2O4 Surfaces: Correlation Between Surface Structure and Photocatalytic Properties. Langmuir 2013,29, 7025-7037.
    [4]Liu, L.; Zhao, X.; Sun, H. G.; Jia, C. Y.; Fan, W. L. Theoretical Study of H2O Adsorption on Zn2GeO4 Surfaces:Effects of Surface State and Structure-Activity Relationships. ACS Appl. Mater. Interfaces 2013,5,6893-6901.
    [5]Hansen, T. W.; Hansen, P. L.; Dahl, S.; Jacobsen, C. J. H. Support Effect and Active Sites on Promoted Ruthenium Catalysts for Ammonia Synthesis. Catal Lett 2002,84,7-12.
    [6]Emeline, A. V.; Abramkin, D. A.; Zonov, I. S.; Sheremetyeva, N. V.; Rudakova, A. V.; Ryabchuk, V. K.; Serpone, N. Photoinduced Radical Processes on the Spinel (MgAl2O4) Surface Involving Methane, Ammonia, and Methane/Ammonia. Langmuir 2012,28, 7368-737.
    [7]Mosayebi, Z.; Rezaei, M.; Hadian, N.; Kordshuli, F. Z.; Meshkani, F. Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method:Effect of preparation conditions. Materials Research Bulletin 2012,47,2154-2160.
    [8]Zhou, Y.; Yu, Z.; Zhao, N.; Shi, C.; Liu, E.; Du, X.; He, C. Microstructure and properties of in situ generated MgAl2O4 spinel whisker reinforced aluminum matrix composites. Materials & Design 2013,46,724-730.
    [9]Li, W. C.; Comotti, M.; Lu, A. H.; Schuth, F. Nanocast mesoporous MgAl2O4 spinel monoliths as support for highly active gold CO oxidation catalyst. Chem. Commun.2006, 1772-1774.
    [10]Li, F. T.; Zhao, Y.; Liu, Y.; Hao, Y. J.; Liu, R. H.; Zhao, D. S. Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders. Chemical Engineering Journal 2011,173,750-759.
    [11]Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys.1992,64,1045-1097.
    [12]Segall, M.; Lindan, P.; Probert, M.; Pickard, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. First-principles simulation:ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002,14,2717-2743.
    [13]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, A. K.; Pederson, R. M.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B.1992,46,6671-6687.
    [14]Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B.1992,45,13244-13249.
    [15]Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP.2. Kristallogr.2005,220,567-570.
    [16]Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev.B 1976,13,5188-5192.
    [17]Sanchez-Portal, D.; Artacho, E.; Soler, J. M. Projection of plane-wave calculations into atomic orbitals. Solid State Commun.1995,95,685-690.
    [18]Gonze, X. First-principles responses of solids to atomic displacement and homogeneous electric fields:Implementation of a conjugate-gradient algorithm. Phys. Rev. B.1997,55,10337-10354.
    [19]Wendt, S.; Schaub, R; Matthiesen, J,; Vestergaard, E. K.; Wahlstrom, E.; Rasmussen, M. D.; Thostrup, P.; Molina, L. M.; Laegsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Oxygen vacancies on TiO2(110) and their interaction with H2O and O2:A combined high-resolution STM and DFT study. Surf. Sci.2005,598,226-245.
    [20]Schaub, R.; Thostrup, P.; Lopez, N.; Laegsgaard, E.; Stensgaard, I.; Norskov, J. K.; Besenbacher, F. Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO2(110). Phys. Rev. Lett.2001,87,266104-1-4.
    [21]Linsebigler, A. L.; Lu, G Q.; Yates, J. T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results. Chem. Rev.1995,95,735-758.
    [1]Haruta, M. Size-and Support-dependency in the Catalysis of Gold. Catal.Today,1997, 36,153-166.
    [2]Kulkarni, G. U.; Vinod, C. P.; Rao, C. N. R. In Surface Chemistry and Catalysis, edited by Carley, A. F. Vavies, P. R. Hutchings, G. J. Spencer, M. S. (Kluwer Academic/Plenum Publishers, New York),2002, pp 191.
    [3]Kim, T. S.; Stiehl, J. D.; Reeves, C. T.; Meyer, R. J.; Mullins, C. B. Cryogenic CO Oxidation on TiO2-supported Gold Nanoclusters Precovered with Atomic Oxygen. J.Am. Chem. Soc.2003,125,2018-2019.
    [4]Lee, S.; Fan, C.; Wu, T.; Anderson, S. L. CO Oxidation on Au-n/TiO2 Catalysts Produced by Size-selected Cluster Deposition.J. Am. Chem. Soc.2004,126,5682-5683.
    [5]Meier, D. C.; Lai, X.; Goodman, D. W. In Surface Chemistry and Catalysis, edited by Carley, A. F. Vavies, P. R. Hutchings, G J. Spencer M. S. (Kluwer/Plenum, New York), 2002, pp 147.
    [6]Bondzie, V A.; Parker, S. C.; Campbell, C. T. The Kinetics of CO Oxidation by Adsorbed Oxygen on Well-defined Gold Particles on TiO2(110). Catal. Lett.1999, 63,143-151.
    [7]Valden, M.; Lai, X.; Goodman, D. W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science.1998,281,1647-1650.
    [8]Shelef, M.; McCabe. R. W. Twenty-five Years After Introduction of Automotive Catalysts:What Next? Catal. Today.2000,62,35-50.
    [9]Twigg. M. V. Progress and Future Challenges in Controlling Automotive Exhaust Gas Emissions. Appl. Catal. B.2007,70,2-15.
    [10]Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. NOVEL GOLD CATALYSTS FOR THE OXIDATION OF CARBON-MONOXIDE AT A TEMPERATURE FAR BELOW 0-DEGREES-C Chem. Lett.1987,4,405-408.
    [11]Valden, M.; Parker, S.; Lai, X.; Goodman. D. W. Structure Sensitivity of CO Oxidation over Model Au/TiO2 Catalysts. Catal. Lett.1998,1.7-10.
    [12]Chen, M. S.; Goodman, D. W. The Structure of Catalytically Active Gold on Titania. Science.2004,306,252-255.
    [13]Min, B. K.; Friend, C. M. Heterogeneous Gold-based Catalysis for Green Chemistry: Low-temperature CO Oxidation and Propene Oxidation. Chem. Rev.2007,107,2709-2724.
    [14]Meyer, R.; Lemire, C.; Shaikhutdinov, S. K.; Freund, H. J. Surface Chemistry of Catalysis by Gold. GoldBull.2004,37,72.
    [15]Remediakis, I. N.; Lopez, N.; Norskov, J. K. CO Oxidation on Rutile-supported Au Nanoparticles. Angew. Chem.2005,117,1824-1826.
    [16]Hashmi, A. S. K.; Hutchings, G. J. Gold Catalysis. Angew. Chem.2006,118, 7896-7936.
    [17]Yoon, B.; Hakkinen, H.; Landman, U.; Wcrz, A.; Antonietti, J. M.; Abbet, S.; Judai, S. K.; Heiz, U. Charging Effects on Bonding and Catalyzed Oxidation of CO on Au-8 Clusters on MgO. Science.2005,307,403-407.
    [18]Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO Oxidation over Supported Gold Catalysts-"inert" and "active" Support Materials and Their Role for the Oxygen Supply During Reaction. J. Catal.2001,197,113-122.
    [19]Jia, C.; Liu, J.; Bongard, H.; Schuth, F. Very Low Temperature CO Oxidation over Colloidally Deposited Gold Nanoparticles on Mg(OH)(2) and MgO. J. Am. Chem. Soc.2010, 132,1520-1522.
    [20]Green, I. X.; Tang, W.; Neurock, M.; Yates, J. T. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst. Science.2011,333, 736-739.
    [21]Ko, H. Y. Y.; Mizuhata, M.; Kajinami, A.; Deki, S. The Dispersion of Au Nanoparticles in SiO(2)/TiO2 Layered Films by the Liquid Phase Deposition (LPD) Method. Thin Solid Films.2005,491,86-90.
    [22]Okumura, M.; Nakamura, S.; Tsubota, S.; Nakamura, T.; Azuma, M.; Haruta, M. Chemical Vapor Deposition of Gold on Al2O3, SiO2, and TiO2 for the Oxidation of CO and of H-2. Catal. Lett.1998,51,53-58.
    [23]Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active Nonmetallic Au and Pt Species on Ceria-based Water-gas Shift Catalysts. Science.2003,301,935-938.
    [24]Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. Nanostructured Au-CeO2 Catalysts for Low-temperature Water-gas Shift. Catal. Lett.2001,77,87-95.
    [25]Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, T. H.; Genet, M. J.; Delmon, B. Low-Temperature Oxidation of CO over Gold Supported on TiO2, a-Fe2O3, and C03O4. J. Catal.1993,144,175-192.
    [26]Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Gold Catalysts Prepared by Coprecipitation for Low-temperature Oxidation of Hydrogen and of Carbon Monoxide. Catal.1989,115,301-309.
    [27]Boccuzzi, F.; Chiorino, A. FTIR Study of CO Oxidation on Au/TiO2 at 90 K and Room Ttemperature. An Insight into the Nature of the Reaction Centers. J. Phys. Chem. B.2000, 104,5414-5416.
    [28]Haruta, M. Catalysis of Gold Nanoparticles Deposited on Metal Oxides. CATECH. 2002,6,102-105.
    [29]Li, W. C.; Comotti, M.; Schuth, F. J. Highly Reproducible Syntheses of Active Au/TiO2 Catalysts for CO Oxidation by Deposition-precipitation or Impregnation. Catal. 2006,237,190-196.
    [30]Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science.2008,321, 1331-1335.
    [31]Carrettin, S.; Concepcion, P.; Corma, A.; Lopez Nieto, J. M.; Puntes, V. F. Nanocrystalline CeO2 Increases the Activity of an for CO Oxidation by Two Orders of Magnitude. Angew. Chem., Int. Ed.2004,43,2538-2540.
    [32]Guzman, J.; Carrettin, S.; Corma, A. Supported Gold Catalyzes the Homocoupling of Phenylboronic Acid with High Conversion and Selectivity. J. Am. Chem. Soc.2005,44, 2242-2245.
    [33]Sakurai, H.; Akita, T.; Tsubota, S.; Kiuchi, M.; Haruta, M. Low-temperature Activity of Au/CeO2 for Wter Gas Shift Reaction, and Characterization by ADF-STEM, Temperature-programmed Reaction, and Pulse Reaction. APPLIED CATALYSIS A-GENERAL.2005,1-2,179-187.
    [34]Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative Minimization Techniques for ab Initio Total-energy Calculations:Molecular Dynamics and Conjugate Gradients. Rev. Mod. Phys.1992,64,1045-1097.
    [35]Segall, M.; Lindan, P.; Probert, M.; Pickard, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. First-principles Simulation:Ideas, Illustrations and the CASTEP Code. J. Phys.: Condens. Matter.2002,14,2717-2744.
    [36]Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Kristallogr.2005,220,567-570.
    [37]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, A. K.; Pederson, R. M.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B.1992,46,6671-6687.
    [38]Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy. Phys. Rev. B.1992,45,13244-13249.
    [39]Sanchez-Portal, D.; Artacho, E.; Soler, J. M. Projection of Plane-wave Calculations into Atomic Orbitals. Solid State Commun.1995,95,685-690.
    [40]Gonze, X. First-principles Responses of Solids to Atomic Displacement and Homogeneous Electric Fields:Implementation of a Conjugate-gradient Algorithm. Phys. Rev. B.1997,55,10337-10354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700