用户名: 密码: 验证码:
聚乙烯—醋酸乙烯酯/铁氧化物复合材料制备及其火安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙烯-醋酸乙烯酯(EVA)是一种常用聚烯烃材料,它可以作为热熔性粘合剂,包装,电线和电缆绝缘,地毯等。但是,其易燃性以及燃烧过程中产生的大量有毒烟气严重制约了聚乙烯-醋酸乙烯酯在相关领域的发展。因此,为了扩大聚乙烯-醋酸乙烯酯材料的使用范围,研究和发展阻燃性聚乙烯-醋酸乙烯酯材料显得非常重要。首先本文综述了无卤阻燃技术应用于聚乙烯-醋酸乙烯酯中的现状。其次,探索了几种含铁氧化物在聚乙烯-醋酸乙烯酯复合材料中阻止燃烧的原因。最后,采用稳态管式炉烟气毒性试验平台(SSTF)研究了这些聚乙烯-醋酸乙烯酯复合材料在氧气充足条件下的燃烧烟气毒性。
     1.制备出β-羟基氧化铁(p-FeOOH)和二氯代磷酸苯酯修饰的β-羟基氧化铁(p-FeOOPDCP),将其应用于聚乙烯-醋酸乙烯酯中,制备出一系列EVA/β-FeOOH和EVA/β-FeOOPDCP复合材料。热重(TGA)测试表明,复合材料的成炭有明显提高。锥形量热仪测试表明β-FeOOH和β-FeOOPDCP的加入在一定程度上降低热释放速率峰值和总热释放量;热重-红外(TGA-FTIR)测试表明在热解过程中,β-FeOOH或β-FeOOPDCP都降低了基体产生的裂解产物。对燃烧后的炭渣进行X-射线衍射(XRD)测试。与此同时,动态机械热分析(DMTA)测试表明,β-FeOOH和β-FeOOPDCP的加入有效提高了复合材料的玻璃化转变温度(Tg)和在玻璃化转变区域的储能模量。在老化测试中,研究结果表明,β-FeOOPDCP可能对聚合物基体的降解影响不大。
     2.将β-FeOOH和β-FeOOPDCP作为阻燃协效剂与氢氧化镁复配用于聚乙烯-醋酸乙烯酯材料阻燃,制备出聚乙烯-醋酸乙烯酯/氢氧化镁/β-羟基氧化铁(E VA/Mg(OH)2/β-FeOOH)和聚乙烯-醋酸乙烯酯/氢氧化镁/二氯代磷酸苯酯修饰的β-羟基氧化铁(EVA/Mg(OH)2/β-FeOOPDCP)阻燃复合材料。TGA测试表明,复合材料中β-FeOOH或β-FeOOPDCP能有效地提高复合材料在高温段的热稳定性和成炭量。MCC测试表明,氢氧化镁和β-FeOOH或β-FeOOPDCP复配可以显著降低材料的热释放速率峰值(pHRR),总热释放量(THR)和热释放能力(HRC)。仅将β-FeOOH和β-FeOOPDCP取代1%Mg(OH)2,就能使EVA/Mg(OH)2体系的LOI值由26±0.5vol%分别提高到35±0.5vol%和39±0.5vol%;并且使UL-94值由无级别分别提高到V-2和V-0级别。SEM研究表明,加入β-FeOOPDCP的体系比其它体系炭层更加结实,这可以有效地阻止传热和易燃挥发物的传播,具有很好的阻燃性能。同时,TGA-FTIR测试显示,加入β-FeOOPDCP能有效降低总挥发产物,碳氢化合物,乙酸和CO的生成量。因此,通过引入β-FeOOH或β-FeOOPDCP可以减少火灾隐患。在此基础上,提出了延缓燃烧的原因。
     3.借鉴β-FeOOH在聚乙烯-醋酸乙烯酯材料的优异表现,将铁酸镧(LaFeO3)应用于聚乙烯-醋酸乙烯酯,制备出聚乙烯-醋酸乙烯酯/氧化铁(Fe2O3),聚乙烯-醋酸乙烯酯/氧化镧(La2O3)和聚乙烯-醋酸乙烯酯/铁酸镧(LaFeO3)复合材料。TGA测试表明LaFeO3的加入使得复合材料在高温阶段的热稳定性与成炭量都有一定的提高;锥形量热测试结果显示,加入LaFeO3可以降低复合材料的热释放速率峰值和总热释放量;炭渣的测试研究表明,LaFeO3可以提高材料的有序炭含量。TGA-FTIR测试揭示在热解过程中,LaFeO3显著降低基体中易燃挥发物的量。并且在老化测试中,结果显示LaFeO3的加入可能也对聚合物基体的降解影响不大。
     4.把LaFeO3作为阻燃协效剂与膨胀阻燃剂复配,并且制备出聚乙烯-醋酸乙烯酯/膨胀阻燃剂/氧化铁(EVA/APP/PER/Fe2O3),聚乙烯-醋酸乙烯酯/膨胀阻燃剂/氧化镧(EVA/APP/PER/La2O3),聚乙烯-醋酸乙烯酯/膨胀阻燃剂/氧化铁/氧化镧(EVA/APP/PER/Fe2O3/La2O3和聚乙烯-醋酸乙烯酯/膨胀阻燃剂/铁酸镧(EVA/APP/PER/LaFeO3)复合材料。TGA测试表明,Fe2O3, La2O3, Fe2O3与La203混合物和LaFeO3的加入均能提高聚乙烯-醋酸乙烯酯膨胀阻燃复合材料的热稳定性。将Fe2O3,La2O3和LaFeO3取代0.5%膨胀阻燃剂(IFR),就能使EVA/IFR体系的UL-94值由V-2级别都提高到V-0级别。锥形量热测试均表明加入这些氧化物能显著地降低其热释放速率峰值及总热释放量。其中加入LaFeO3的效果最好。SEM研究炭渣的结果显示添加不同氧化物对炭渣形貌有很大影响;采用XPS对炭渣进行元素分析,引入LaFeO3能明显地提高EVA阻燃复合材料的高温稳定性。并且在此基础上,提出了阻燃机理。
     5.按照相关标准,利用稳态管式炉烟气毒性试验平台(SSTF)研究三组样品(第一组:聚乙烯-醋酸乙烯酯,聚乙烯-醋酸乙烯酯/β-羟基氧化铁,聚乙烯-醋酸乙烯酯/二氯代磷酸苯酯修饰后的-羟基氧化铁和聚乙烯-醋酸乙烯酯/铁酸镧;第二组:聚乙烯-醋酸乙烯酯/氢氧化镁,聚乙烯-醋酸乙烯酯/氢氧化镁/氯代磷酸苯酯修饰的β-羟基氧化铁和聚乙烯-醋酸乙烯酯/氢氧化镁/铁酸镧;第三组:聚乙烯-醋酸乙烯酯/膨胀阻燃剂,聚乙烯-醋酸乙烯酯/膨胀阻燃剂/二氯代磷酸苯酯修饰的-羟基氧化铁和聚乙烯-醋酸乙烯酯/膨胀阻燃剂/铁酸镧复合材料)的烟气毒性。研究表明:在氧气供应充足条件下,聚乙烯-醋酸乙烯酯材料在燃烧过程中,其消耗的氧气主要进入二氧化碳中;β-FeOOPDCP和LaFeO3的加入能够在一定程度上降低复合材料的成烟量和毒性气体。
Ethylene-vinyl acetate copolymer (EVA) is a commonly used polyolefin material, which can be used as hot melt adhesives, packaging, wire and cable insulation, carpet and so on. However, its flammability and large amounts of toxic gas and smoke appeared during the combustion process severely restrict the development of ethylene-vinyl acetate copolymer in the relevant fields. In order to expand the application of ethylene-vinyl acetate copolymer, developing flame retardancy ethylene-vinyl acetate copolymer material is very important. Firstly, this paper reviews the feasibility of the application of the flame retardant technology in ethylene-vinyl acetate copolymer. Then the cause of the retarding combustion of several iron oxides in ethylene-vinyl acetate copolymer were studied. Finally, during the burning, toxic gas and smoke from these ethylene-vinyl acetate copolymer composites in the oxygen-rich conditions were discussed by a steady-state tube furnace test platform (SSTF).
     1. Iron hydroxide (β-FeOOH) and phenyl dichloridophosphate modified iron hydroxide (β-FeOOPDCP) nanoparticles were prepared. Then, they were applied to an ethylene-vinyl acetate copolymer to prepare a series of EVA/β-FeOOH and EVA/β-FeOOPDCP composites. Thermal gravimetric tests showed that char residue from composites was significantly improved. Cone calorimeter tests indicated that the addition of β-FeOOH or P-FeOOPDCP nanoparticle, in some extent, decreased peak heat release rate and total heat release. Thermal gravimetric-Fourier transforms infrared spectrometry (TGA-FTIR) test demonstrated that during the pyrolysis process, the addition of P-FeOOH or β-FeOOPDCP nanoparticle reduced the volatiles form EVA matrix. The residue char after the combustion was conducted by XRD test. At the same time, DMTA tests showed β-FeOOH or β-FeOOPDCP nanoparticle could improve the glass transition temperature (Tg) and the storage modulus of EVA effectively. In the aging test, it was found that5%β-FeOOPDCP might have a very little effect on the photodegradation of EVA matrix.
     2. β-FeOOH and β-FeOOPDCP nanoparticles were used as co-additives in ethylene-vinyl acetate copolymer/magnesium hydroxide composites to prepare ethylene-vinyl acetate copolymer/magnesium hydroxide/iron hydroxide (EVA/Mg(OH)2/β-FeOOH) and ethylene-vinyl acetate copolymer/magnesium hydroxide/phenyl dichloridophosphate modified iron hydroxide (EVA/Mg(OH)2/β-FeOOPDCP) composites. The results of TGA indicated that β-FeOOH or P-FeOOPDCP in the composite could effectively improve the thermal stability and the amount of residue char at high temperatures. MCC tests showed that magnesium hydroxide with iron hydroxide or phenyl dichloridophosphate modified iron hydroxide could significantly reduce peak heat release rate (pHRR), total heat release (THR) and heat release capacity (HRC) of the composite. Only substituted1%Mg(OH)2, β-FeOOH or β-FeOOPDCP nanoparticle could improve the LOI value of EVA/Mg(OH)2system from26±0.5to35±0.5and39±0.5, respectively; UL-94value increased from V-2to V-0level. SEM studies illustrated that the addition of P-FeOOPDCP nanoparticle system could form more robust char than other systems, which effectively prevented the spread of heat and combustible volatiles to improve the flame retardancy. Meanwhile, TGA-FTIR test demonstrated that the addition of β-FeOOPDCP nanoparticle could reduce the amount of total volatile products, hydrocarbons, acetic acid and CO. Thus, the introduction of β-FeOOH or P-FeOOPDCP nanoparticle could reduce fire hazards. Based on these, the reason for retarding the combustion was proposed.
     3. Learning from the outstanding performance of phenyl dichloridophosphate modified iron hydroxide (β-FeOOPDCP) nanoparticles in ethylene-vinyl acetate copolymer, lanthanum ferrite (LaFeO3) nanoparticle was applied in ethylene-vinyl acetate copolymer and ethylene-vinyl acetate copolymer/iron oxide (FeaO3), ethylene-vinyl acetate copolymer/lanthanum oxide (La2O3) and ethylene-vinyl acetate copolymer/lanthanum ferrite (LaFeO3) composites were prepared. TGA tests showed that the adding of LaFeO3nanoparticle improved thermal stability and amount of the residue char at high temperatures; The results from microscale combustion calorimeter (MCC) testing indicated that LaFeO3nanoparticle could reduce the peak heat release rate (pHRR), heat release capacity (HRC) and total heat release (THR) values of ethylene-vinyl acetate copolymer (EVA); The tests about the residue char illustrated the addition of LaFeO3nanoparticle raised the amount of ordered carbon of the material. TGA-FTIR test indicated that during the pyrolysis process, LaFeO3significantly reduced the amount of flammable volatiles generated from EVA matrix. In the aging test, the results showed that5%LaFeO3might also have a very little effect on the photodegradation of EVA matrix.
     4. LaFeO3nanoparticle was used as a co-additive in ethylene-vinyl acetate copolymer/intumescent flame retardant (EVA/APP/PER) composite. Then ethylene-vinyl acetate copolymer/intumescent flame retardant/iron oxide (EVA/APP/PER/Fe2O3), ethylene-vinyl acetate copolymer/intumescent flame retardant/lanthanum oxide (EVA/APP/PER/La2O3) and ethylene-vinyl acetate copolymer/intumescent flame retardant/iron oxide/lanthanum oxide (EVA/APP/PER/Fe2O3/La2O3) composites were also prepared. TGA tests showed the addition of Fe2O3, La2O3, the mixture (Fe2O3and La2O3) and LaFeO3improved the thermal stability of ethylene-vinyl acetate copolymer/intumescent flame retardant (EVA/APP/PER) composite. Only replaced0.5%intumescent flame retardant (APP/PER), Fe2O3, La2O3, the mixture (Fe2O3and La2O3) and LaFeO3all could raise the UL-94value of EVA/IFR system from V-2to V-0level. Cone calorimeter tests demonstrated that adding these oxides could effectively reduce the peak heat release rate (pHRR) and total heat release (THR). LaFeO3had the best effect. The char residue was measured by SEM, indicating that the addition of different oxides had great impacts on the morphology of char residue; Elements from char residue were analyzed by XPS. The results indicated that the addition of LaFeO3could significantly improve the thermal stability of EVA retardant composites at high temperatures. Based on these, this flame retardant mechanism was proposed.
     5. According to international standards, a steady-state tube furnace test platform (SSTF) was used to study toxic gas and smoke from three groups of samples, including the first group:EVA, EVA/β-FeOOH, EVA/β-FeOO PDCP and EVA/LaFeO3; the second group:EVA, EVA/Mg(OH)2, EVA/Mg(OH)2/β-FeOOPDCP and EVA/Mg(OH)2/LaFeO3; the third group:EVA, EVA/APP/PER, EVA/APP/PER/β-FeOOPDCP and EVA/APP/PER/LaFeO3composites. The study showed that under the oxygen-rich condition, in the thermal or combustion process of ethylene-vinyl acetate copolymer, the consumption of oxygen mainly came into carbon dioxide; β-FeOOPDCP and LaFeO3could, to a certain extent, reduce the amount of toxic gas and smoke of the composites.
引文
[1]Yaru S, Takashi K, Richard NW, Jeffrey WG, et al.2009. Ethylene Vinyl Acetate/Layered Silicate Nanocomposites Prepared by a Surfactant-free Method:Enhanced Flame Retardant and Mechanical Properties[J]. Polymer,50:3478-3487.
    [2]唐若谷,黄兆阁.2012,卤系阻燃剂的研究进展[J].科技通报,28(1):129-132.
    [3]林勇.2010,无卤阻燃材料的研究进展[J].中国高新技术企业,21:26-28.
    [4]Wang LJ, Su SP, Chen D, Wilkie CA.2009. Fire Retardancy of Bis[2-(methacryloyloxy)ethyl] Phosphate Modified Poly(methyl methacrylate) Nanocomposites containing Layered Double Hydroxide and Montmorillonite[J]. Polymer Degradation and Stability,94(7):1110-1118.
    [5]Shen ZQ, Bateman S, Wu DY, McMahon P, Dell'Olio M, Gotama J.2009. The Effects of Carbon Nanotubes on Mechanical and Thermal Properties of Woven Glass Fibre Reinforced Polyamide-6 Nanocomposites[J]. Composites Science and Technology,69(2):239-244.
    [6]Acharya H, Sung J, Shin H, Park SY, Min BG, Park C.2009. Deposition of Silver Nanoparticles on Single Wall Carbon Nanotubes via a Self Assembled Block Copolymer Micelles[J]. Reactive & Functional Polymers,69(7):552-557.
    [7]Goyal RK, Jagadalle PA, Mulik UP.2009. Thermal, Mechanical, and Dielectric Properties of Polystyrene/Expanded Graphite Nanocomposites[J]. Journal of Applied Polymer Science, 111(4):071-2077.
    [8]Zhang WA, Zhuang XD, Li XH, Lin Y, Bai JR, Chen Y.2009. Preparation and Characterization of Organic/inorganic Hybrid Polymers Containing Polyhedral Oligomeric Silsesquioxane via RAFF Polymerization[J]. Reactive & Functional Polymers,69(2):124-129.
    [9]Wu K, Song L, Hu Y, Lu HD, Kandola BK, Kandare E.2009. Synthesis and Characterization of a Functional Polyhedral Oligomeric Silsesquioxane and Its Flame Retardancy in Epoxy Resin[J]. Progress in Organic Coatings,65(4):490-497.
    [10]Li T, Zeng XR, Xu J.2007. Preparation and Characterization of Conductive Polypyrrole/organophilic Montorillonite Nanocomposite[J]. Polymer-Plastics Technology and Engineering,46(8):751-757.
    [11]Lewin M, Zhang J, Pearce E, Gilman J.2007. Flammability of Polyamide 6 Using the Sulfamate System and Organo-layered Silicatet[J]. Polymers for Advanced Technologies, 18(9):737-745.
    [12]Jiao C, Wang ZZ, Chen XL, Hu Y.2008. Synthesis of a Magnesium/Aluminum/Iron layered Double Hydroxide and Its Flammability Characteristics in Halogen-Free, Flame-Retardant Ethylene/Vinyl Acetate Copolymer Composites[J]. Journal of Applied Polymer Science, 107:2626-2631.
    [13]Zhang Y, Hu Y, Song L, Wu J, Fang SL.2008. Influence of Fe-MMT on the fire retarding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite[J]. Polymers for Advanced Technologies,19:960-966.
    [14]Beyer G.2002. Carbon nanotubes as flame retardants for polymers. Fire and Materials, 26:291-293.
    [15]Morganl AB, Cogen JM, Opperman RS, Harris JD.2007. The effectiveness of magnesium Carbonate-based flame retardants for poly(ethylene-CO-vinyl acetate) and poly (ethylene-CO-ethyl acrylate)[J]. Fire and Materials,31:387-410.
    [16]Laoutid F, Gaudon P, Taulemesse JM, Cuesta JML, Velasco JI.2006. Piechaczyk, A., Study of hydromagnesite and magnesium hydroxide based fire retardant systems for ethylene vinyl acetate containing organo-modified montmorillonite[J]. Polymer Degradation and Stability, 91:3074-3082.
    [17]Jiao CM, Chen XL.2009. Synergistic Flame Retardant Effect of Lanthanum Oxide in Ethylene-vinyl acetate/Aluminium Hydroxide Composites[J]. Iranian Polymer Journal, 18:723-730.
    [18]Qiu LZ, Xie RC, Ding P, Qu BJ.2003. Preparation and characterization of Mg(OH)(2) nanoparticles and flame-retardant property of its nanocomposites with EVA[J]. Composite Structures,62(3-4):391-395.
    [19]Lv JP, Qiu LZ, Qu BJ.2004. Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene-vinyl acetate copolymerblends[J]. Nanotechnology,15:1576-1581.
    [20]Zhang XG, Guo F, Chen JF, Wang GQ, Liu H.2005. Investigation of interfacial modification for flame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites[J]. Polymer Degradation and Stability,87:411-418.
    [21]Ding YY, Xu L, Hu GS.2011. Performance of halogen-free flame retardant EVA/MH/LDH composites with nano-LDHs and MH[J]. Chinese Science Bulletin,56(35):3878-3883.
    [22]Fu MZ, Qu BJ.2004. Synergistic flame retardant mechanism of fumed silica in Ethylene-vinyl Acetate/magnesium hydroxide blends[J]. Polymer Degradation and Stability,85:633-639.
    [23]Ye L, Wu QH, Qu BJ.2009. Synergistic effects and mechanism of multiwalled carbon nanotubes withmagnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites[J]. Polymer Degradation and Stability,94:751-756.
    [24]Gui H, Zhang XH, Dong WF, Wang QG, Gao JM, et al.2007. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites[J]. Polymer,48:2537-2541.
    [25]何庆东,曹有名,岑兰.2008.环保高效膨胀型阻燃剂研究进展[J]塑料科技,36(2):104-108。
    [26]Li ZZ, Qu BJ.2004. Effects of gamma irradiation on the properties of flame-retardant EVM/magnesium hydroxide blends[J]. Radiation Physics and Chemistry,69(2):137-141.
    [27]Xie RC, Qu BJ.2001. Expandable graphite systems for halogen-free flame-retarding of polyolefins. I. Flammability characterization and synergistic effect[J]. Journal of Applied Polymer Science,80(8):1181-1189.
    [28]Wang BB, Hu S, Zhao KM, Lu HD, Song L, Hu Y.2011. Effects of gamma irradiation on the properties of flame-retardant EVM/magnesium hydroxide blends[J]. Industrial & Engineering Chemistry Research,50(20):11476-11484.
    [29]Wu K, Shen MM, Hu YA.2010. Combustion Behavior and Thermal Oxidative Degradation of EVA Containing Intumescent Flame Retardant[J]. Polymer-Plastics Technology And Engineering,49(15):1527-1533.
    [30]Wang BB, Zhou KQ, Wang L, Song L, Hu Y, Hu S.2012. Enhancement on physical properties of flame retarded ethylene-vinyl acetate copolymer/ferric pyrophosphate composites through electron beam irradiation[J]. Composites Part B-Engineering, 43(2):641-646.
    [31]李小云,王止洲,梁好均.2007.三聚氰胺磷酸盐和季戊四醇在EVA中的阻燃研究[J].高分子材料与工程,23:145-148.
    [32]Caminol G, Sgobbil R, Zaopo A.2000. Investigation of Flame Retardmey in EVA[J]. Fire and Materials,24:85-90.
    [33]蔡晓霞.2007.聚乙烯-醋酸乙烯酯的膨胀阻燃体系研究:[硕士].成都:四川大学.
    [34]Bras ML, Bourbigot S.1999. Comprehensive study of the degradation of an intumescent EVA-based material during combustion[J]. Journal of Materials Science,34:5777-5782.
    [35]刘键,罗志强,周大俊等.2002.季戊四醇二磷酸酯蜜胺盐的合成新方法.化学世界,4:203-205.
    [36]Wang LC, Jiang JQ, Jiang PK.2011. Synthesis, characteristic of a novel flame retardant containing phosphorus and its application in poly(ethylene-co-vinyl acetate)[J]. Fire and Materials,35:193-207.
    [37]Wu K, Wang ZZ.2008. Intumescent Flame Retardation of EVA Using Microencapsulated Ammonium Polyphosphate and Pentaerythritols[J]. Polymer-Plastics Technology and Engineering,47:247-254.
    [38]汪碧波.2012.核一壳协同微胶囊化膨胀型阻燃剂的制备及其交联阻燃乙烯一醋酸乙烯 酯共聚物性能的研究乙烯:[博士].合肥:中国科学技术大学.
    [39]Bourbigot S, Bras ML, Dabrowski F.2000. PA-6Clay Nanocomposite Hybrid as Char Forming Agent in Intumescent Formulations[J]. Fire and Materials,24:201-208.
    [40]Cornell RM, Schwertmann U.1996. The Iron Oxides[M]. Weinheim:VCH.
    [41]Brown ASS, Hargreaves JSJ.1998. A Study of the Structural and Catalytic Effects of Sulfation on Iron Oxide Catalysts Prepared From Goethite and FerrihyDrite Precursors for Methane Oxidation[J]. Catalysis Letters,53(1/2):7-13.
    [42]Sun HT, Cantalini C.1996. Porous Sillca-coated alpha-Fe2O3 Ceramics for Humidity Measurements at Elevated Temperature[J]. Journal of the American Ceramic Society,79(4): 927-937.
    [43]Kong QH, Tang YW, Hu Y, Song L, Liu H, Li LX.2012. Thermal stability and flame retardance properties of acrylonitrile-butadiene-styrene/polyvinyl chloride/organophilic Fe-montmorillonite nanocomposites [J]. Journal of Polymer Research,19(1).
    [44]Manzi-Nshuti C, Wang DY, Hossenlopp JM, Wilkie CA.2009. The role of the trivalent metal in an LDH:Synthesis, characterization and fire properties of thermally stable PMMA/LDH systems[J]. Polymer Degradation and Stability,94(4):705-711.
    [45]Jiao CM, Wang ZZ, Chen XL, Hu YA.2008. Synthesis of a Magnesium/Aluminum/Iron layered double hydroxide and its flammability characteristics in halogen-free, flame-retardant Ethylene/Vinyl acetate copolymer composites[J]. Journal of Applied Polymer Science, 107(4):2626-2631.
    [46]Nour M, Elgazery M, Awad W, Amerm M.2009. Preparation and characterization of low density polyethylene nanocomposites with modified montmorillonite clay[J]. Polymer,54(7-8):536-540.
    [47]Tai QL, Yuen RKK, Yang W, Qiao ZH, Song L, Hu Y.2012. Iron-montmorillonite and zinc borate as synergistic agents in flame-retardant glass fiber reinforced polyamide 6 composites in combination with melamine polyphosphate[J].Composites Part A-Applied Science and Manufacturing,43 (3):415-422.
    [48]Zhang P, Song L, Lu HD, Wang JA, Hu YA.2010. The Thermal Property and Flame Retardant Mechanism of Intumescent Flame Retardant Paraffin System with Metal [J]. Industrial & Engineering Chemistry Research,49(13):6003-6009.
    [49]Fang SL, Hu Y, Song L,2009, Wu J, Preparation and Investigation of ethylene-vinyl acetate copolymer/Silicone Rubber/Clay Nanocomposites[J]. Journal of Applied Polymer Science, 113(3):1664-1670.
    [50]Zhang P, Hu Y, Song L, Lu HD, Wang J, Liu QQ.2009. Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material[J]. Thermochimica Acta,487(1-2):74-79.
    [51]Kong QH, Hu Y, Song L, Yi CW.2009. Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites[J]. Polymers for Advanced Technologies,20(4):404-409.
    [52]Hassan MA.2004. Effect of incorporation of butyl acrylate-iron chelate resin on the flammability properties of Mg(OH)(2)-LDPE compositions[J]. Polymer-Plastics Technology and Engineering,43(5):1487-1501.
    [53]Ebadi-Dehaghani H, Ashori D, Hassanzadeh-Soureshjani M.2013. Flame Retarded Nylon 66 Nanocomposites:Comparing the Effect of Different Flame Retardants on the Flammability [J]. Asian Journal of Chemistry,25(13):7153-7157.
    [54]Laachachi A, Leroy E, Cochez M, Ferriol M, Lopez-Cuesta JM.2005. Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate)[J]. Polymer Degradation and Stability,89:344-52.
    [55]Laachachi A, Cochez M, Ferriol M, Lopez-Cuesta JM, Leroy E.2005. Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methylmethacrylate) (PMMA)[J]. Materials Letters,59:36-39.
    [56]Carty P, White S.1995. The effects of antimony(III) oxide and basic iron(III) oxide on the flammability and thermal-stability of a tertiary polymer blend[J]. Polymer Degradation and Stability,47(2):305-310.
    [57]Carty P, White S.1994. Iron-based flame retarding smoke suppressing compounds for thermoplastic polymers[J]. Fire Safey Journal,23(1):67-77.
    [58]Marinovic-Cincovic M, Popovic MC, Novakovic MM, Nedeljkovic JM.2007. The influence of P-FeOOH nanorods on the thermal stability of poly(methyl methacrylate)[J]. Polymer Degradation and Stability,92:70-74.
    [59]Levin BC, et al.1995. Further development of the n-gas mathematical model[M]. American Chemical Society, Chapter 20.
    [60]Stec AA, Hull TR, Torero JL, Carvel R, Rein G, Bourbigot S.2009. Effects of fire.retardants and nanofillers on the fire toxicity. Fire and Polymers V:Materials and Concepts for fire retardancy. ACS Symposium Series,1023:342-366.
    [61]Polka M.2011. Studies on the smoke formation and heat release rates of unmodified and flame retardant-modified epoxy materials[J]. Polymer,56 (10):734-742.
    [62]刘军军.2005.材料燃烧烟气毒性综合评价:[硕士].重庆:重庆大学.
    [63]方伟峰,杨立中..2002.可燃材料烟气毒性及其在火灾危险性评估中的作用.自然科学进 展,12(3):245-249.
    [64]Ding YY, Xu L, Hu GS.2011. Performance of halogen-free flame retardant EVA/MH/LDH composites with nano-LDHs and MH[J]. Chinese science bulletin,56(35):3878-3883.
    [65]Zhang QL, Ma XY, Wang YF, et al.2009. Morphology and interfacial action of nanocomposites formed from ethylene-vinyl acetate copolymerco-polymers and organoclays[J]. Journal of Physical Chemistry B,113:11898-11905.
    [1]Yaru S, Takashi K, Richard NW, Jeffrey WG, Richard EL, Dotsevi YS.2009. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant free method:Enhanced flame retardant and mechanical properties[J]. Polymer,50:3478-3487.
    [2]Guido K.2003. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J]. Progress in Polymer Science,28:83-114.
    [3]Walter C.2000. Nanocomposites of polymers and metals or semiconductors:Historical background and optical properties[J]. Macromolecular Rapid Communications,11:705-722.
    [4]Pranav N, Priya D, Matt L, Mikhail YG, Benjamin SH, Miriam R, Anatoly F, Andy HT, Jeffrey WG, Syed K.2007. Polymer nanocomposites based on transition metal ion modified organoclays[J]. Polymer,48:827-840.
    [5]Bao CL, Guo YQ, Yuan BH, Hu Y, Song L.2012. Functionalized graphene oxide for fire safety applications of polymers:a combination of condensed phase flame retardant strategies[J]. Journal of Materials Chemistry,43:23057-23063.
    [6]Tai QL, Yuen RKK, Song L, Hu YA.2012. novel polymeric flame retardant and exfoliated clay nanocomposites:Preparation and properties[J]. Chemical Engineering Journal,183:542-549.
    [7]Tang Y, Hu Y, Wang SF, Gui Z, Chen ZY, Fan WC.2002. Preparation and flammability of ethylene-vinyl acetate copolymer/montmorillonite nanocomposites[J]. Polymer Degradation and Stability,78:555-559.
    [8]Wang XL, Rajendra R, Ponusa S, Mariadel MJG, Evangelos M, Charles AW.2011. EVA-layered double hydroxide (nano)com;posites:Mechanism of fire retardancy[J]. Polymer Degradation and Stability,96:301-313.
    [9]Lu HD, Wilkie CA.2010. The influence of alpha-zirconium phosphate on fire performance of EVA and PS composites[J]. Polymers for Advanced Technologies,22:1123-1130.
    [10]Milena MC, Maja CP, Mirjana MN, Jovan MN.2007. The influence of (β-FeOOH nanorods on the thermal stability of poly(methyl methacrylate)[J]. Polymer Degradation and Stability, 92:70-74.
    [11]Milena MC, Maja CP, Mirjana MN, Jovan MN.2007. The influence of β-FeOOH nanorods on the thermal stability of poly (methyl methacrylate)[J]. Polymer Degradation and Stability,92: 70-74.
    [12]Dzunuzovic'E, Marinovic'-Cincovic'M, Jeremic'K, Vukovic'J, Nedeljkovic'J.2008. Influence of α-Fe2O3 nanorods on the thermal stability of poly(methyl methacrylate) synthesized by in situ bulk polymerisation of methyl methacrylate[J]. Polymer Degradation and Stability,93:77-83.
    [13]Carty P, White S.1995. The effects of antimony(Ⅱ1) oxide and basic iron(Ⅱ1) oxide on the flammability and thermal stability of a tertiary polymer blend[J]. Polymer Degradation and Stability,47:305-310.
    [14]Guo PZ, Tan JS, Ji QQ, Zhao D, Zhao XS.2009. Beta-FeOOH Nanospindles:Facile Synthesis and Their Transition to alpha-FeO3 Submicron/Micro-particles[J]. Chinese Journal of Inorganic Chemistry,4:647-651.
    [15]Riveros PA, Dutrizac JE.1997. The precipitation of hematite from ferric chloride media[J]. Hydrometallurgy,1-2:85-104.
    [16]Music S, Krehula S, Popovic S.2004. Thermal decomposition of beta-FeOOH[J]. Materials Letters,58:444-448.
    [17]Guo PZ, Tan JS, Ji QQ, Zhao D, Zhao XS.2009. β-Nanospindles:Facile Synthesis and Their Transition to a-Fe2O3 Submicron/Micro-particles[J]. Chinese Journal of Inorganic Chemistry, 4:647-651.
    [18]Musi'c S, Krehula S, Popovi'c S.2004. Thermal decomposition of β-FeOOH[J]. Materials Letters,58:444-448.
    [19]Wei X, Xu G, Ren ZH, Wang YG, Shen G, Han GR.2008. Synthesis of Highly Dispersed Rarium Titanate Nanoparticles by a Novel Solvothermal Method[J]. Journal of the American Ceramic Society,91:315-318.
    [20]LiuY, ZhangY, Cao ZH, Fang ZP.2012. Synthesis of Three Novel Intumescent Flame Retardants Having Azomethine Linkages and Their Applications in EVA Copolymer[J]. Industrial & Engineering Chemistry Research,51:11059-11065.
    [21]Chithambararaj A, Bose AC.2011. Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles[J]. Journal of Alloys and Compounds,31:8105-8110.
    [22]Abdul HA, Nor HMN, Irmawati R, Mansor H.2008. Effect of precipitation route on the properties of antimony trioxide[J]. Materials Chemistry and Physics,111:201-204.
    [23]Zhu J, Uhl FM, Morgan AB, Wilkie CA.2001. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability[J]. Chemistry of Materials,13: 4649-4654.
    [24]Cross MS, Cusack PA, Hornsby PR.2003. Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer[J]. Polymer Degradation and Stability,79:309-318.
    [25]Nazare S, Kandola B, Horrocks AR.2002. Use of cone calorimetry to quantify the bu rning hazard of apparel fabrics[J]. Fire and materials,26:191-199.
    [26]Fang SL, Hu Y, Song L, Zhan J, He QL.2008. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber[J]. Journal of Materials Science,43:1057-1062.
    [27]Bai XY, Wang QW, Sui SJ, Zhang CS.2011. The effects of wood-flour on combustion and thermal degradation behaviors of PVC in wood-flour/poly(vinyl chloride) composites[J]. Journal of Analytical and Applied Pyrolysis,91:34-39.
    [28]Li YT, Li B, Dai JF, Jia H, Gao SL.2008. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system[J]. Polymer Degradation and Stability, 93:9-16.
    [29]Anthony GM.1999. Kinetic and chemical studies of polymer cross-linking using thermal gravimetry and hyphenated methods:Degradation of polyvinylchloride[J]. Polymer Degradation and Stability,64:353-357.
    [30]Dong YY, Gui Z, HuY, WuY, Jiang SH.2012. The influence of titanate nanotube on t he improved thermal properties and the smoke suppression in poly(methyl methacrylat e)[J]. Journal of Hazardous Materials,209-210:34-39.
    [31]Witkowski A, Stec AA, Hull TR.2012. The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA[J]. Polymer Degradation and Stability, 97:2231-2240.
    [32]Wu YQ, Zeng M, Jin HY, Xu QY, Lu LY, Wang J, Hou S.2012. Effects of Glass-to-Rubber Transition on the Friction Properties of ZrO2 Reinforced Polybenzoxazine Nanocomposites[J]. Tribology Letters,47:389-398.
    [33]Zhou SX, Wu LM.2008. Phase Separation and Properties of UV-Curable Polyurethane/ Zirconia Nanocomposite Coatings[J]. Macromolecular Chemistry and Physics,209:117 0-1181.
    [34]Wang BB, Tang QB, Hong NN, Song L, Wang L, Shi YQ, Hu Y.2011. Effect of Cellulose Acetate Butyrate Microencapsulated Ammonium Polyphosphate on the Flame Retardancy, Mechanical, Electrical, and Thermal Properties of Intumescent Flame-Retardant Ethylene Vinyl Acetate Copolymer/Microencapsulated Ammonium Polyphosphate/Polyamide-6 Blends[J]. ACS Applied Materials & Interfaces,3:3754-3761.
    [35]Deng S, Hou M, Yea L.2007. Temperature-dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data[J]. Polymer Testing,26:803-813.
    [36]Lespade P, Al-Jishi R, Dresselhaus MS.1982. Model for Raman scattering from incompletely graphitized carbons[J}. Carbon,20,427-431.
    [37]Tuinstra F, Koenig JL.1970. Raman Spectrum of Graphite[J]. The Journal of Chemical Physics,53,1126-1130.
    [38]Wang L, Hu Y, Song L, Richard KKY.2012. Investigation of Thermal and Combustion Properties for Intumescent Flame-Retardant Ethylene-Viny Acetate Composites Containing Ferrous Disulfide[J]. Industrial & Engineering Chemistry Research,46:15082-15088.
    [39]Liu H, Wei Y, Li P, Zhang YF, Sun YH.2007. Catalytic synthesis of nanosized hem atite particles in solution[J]. Materials Chemistry and Physics,102:1-6.
    [40]Krehula S, Music S.2008. Influence of aging in an alkaline medium on the microstru ctural properties of alpha-FeOOH[J]. Journal of Crystal Growth,310:513-520.
    [41]Musi'c S, Krehula S, Popovi' c S.2004. Thermal decomposition of β-FeOOH[J]. Mat erials Letters,58:444-448.
    [42]Wang X, Chen XY, Gao LS, Zheng HG, Ji MR, Tang CM, Shen T, Zhang ZD.2004. Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of (3-Fe OOH[J] Journal of Materials Chemistry,14:905-907.
    [43]Wei X, Xu G, Ren ZH, Wang YG, Shen G, Han GR.2008. Synthesis of Highly Dispersed Rarium Titanate Nanoparticles by a Novel Solvothermal Method[J]. Journal of the American Ceramic Society,91:315-318.
    [44]Liu Y, Zhang Y, Cao ZH, Fang ZP.2012. Synthesis of Three Novel Intumescent Flame Retardants Having Azomethine Linkages and Their Applications in EVA Copolymer[J]. Industrial & Engineering Chemistry Research,51:11059-11065.
    [45]Zhang Y, Hu Y, Song L, Wu J, Fang SL.2008. Influence of Fe-MMT on the fire ret arding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesiu m hydroxide) composite[J]. Polymers for Advanced Technologies,19:960-966.
    [46]Zhu J, Uhl FM, Morgan AB, Wilkie CA.2001. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability [J]. Chemistry of Materials,13:4649-4654.
    [47]Wu Y, Song L, Hu Y.2011. Fabrication and Characterization of TiO2 Nanotube Epoxy Nanocomposites[J]. Industrial & Engineering Chemistry Research,50:11988-11995.
    [48]Zhou SX, Wu LM.2008. Phase Separation and Properties of UV-Curable Polyurethane/Zirconia Nanocomposite Coatings[J]. Macromolecular Chemistry and Physics, 209:1170-1181.
    [49]Carty P, White S.1995. The effects of antimony(Ⅱ1) oxide and basic iron(Ⅱ1) oxide on the flammability and thermal stability of a tertiary polymer blend[J]. Polymer Degradation and Stability,47:305-310.
    [50]Wu XF, Wang LC, Wu C, Wang GL, Jiang PK.2012. Flammability of EVA/IFR (APP/PER/ZB System) and EVA/IFR/Synergist (CaCO3,NG, and EG) Composites[J]. Journal of Applied Polymer Science,126:1917-1928.
    [51]Wang L, Hu Y, Song L.2012. Investigation of Thermal and Combustion Properties for Intumescent Flame-Retardant Ethylene-Viny Acetate Composites Containing Ferrous Disulfide[J]. Industrial & Engineering Chemistry Research,51:15082-15088.
    [52]Dong YY, Gui Z, Hu Y, Wu Y, Jiang SH.2012. The influence of titanate nanotube o n the improved thermal properties and the smoke suppression in poly(methyl methacry late)[J]. Journal of Hazardous Materials,209-210:34-39.
    [53]Singer, E.S.; Lewis, I.C.; Greinke, R.A., Characterization of the phases in c entrifuged mesophase pitches[J]. Molecular crystals and liquid crystals 1986, 132:65-9.
    [54]Short MA, Walte PL.1963. Measurement of interlayer spacings and crystal sizes in turbostratic carbons[J]. Carbon,1:3-9.
    [55]Jin J, Chen SJ, Zhang J.2010. UV aging behaviour of ethylene-vinyl acetate copolymers (EVA) with different vinyl acetate contents[J]. Polymer Degradation and Stability, 95:725-732.
    [1]Holmes M.2004. Wire and cable:some new deveIopments[J]. Plast Adidit Compd,6:32.
    [2]Sen AK, Mukherjee B, Bhattacharya AS, L Sanghi, De PP. Bhowmick K.1991. Preparation and characterization of low-halogen and nonhalgoen fire-resistant low-smoke (FRLS) cable sheathing compound from blends of functionalized polyolefins and PVC[J]. Journal of Applied Polymer Science,43:1673-1684.
    [3]Montezin F, Lopez-Cuesta JM, Crespy A, Georlette P.1997. Flame retardant and mechanical properties of copolymer PP/PE containing brominated compounds/antimony trioxide blends and magnesium hydroxide or talc[J]. Fire Master,21:245-252.
    [4]Gheysari D, Behjat A.2002. The effect of high-energy electron beam. irradiation and co ntent of ATH upon mechanical and thermal properties of EVA copolymer[J]. Europea n Polymer Journal,38:1087-1093.
    [5]Hassan MA.2004. Effect of incorporation of butyl acrylate-iron chelate resin on the flammability properties of Mg(OH)(2)-LDPE compositions[J]. Polymer-Plastics Technology and Engineering,43(5):1487-1501.
    [6]Zhang Y, HuY, Song L, Wu J, Fang SL.2008. Influence of Fe-MMT on the fire retarding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite[J]. Polymers for Advanced Technologies,19:960-966.
    [7]Nie SB, Song L, Zhan J, Hu Y, Tai QL, Chen LJ.2009. Synergistic Effect of Novel Synergists-Transition Metal Ion-incorporated Nickel Phosphates with Intumescent Flame Retardants in Polypropylene[J]. Journal of Macromolecular Science Part A-Pure and Applied Chemistry,46:554-559.
    [8]Wang L, Yang W, Wang BB, Wu Y, Hu Y, Song L, Yuen RKK.2012. The Impact of Metal Oxides on the Combustion Behavior of ethylene-vinyl acetate copolymerCoploymers Containing an Intumenscent Flame Retardant[J]. Industrial & Engineering Chemistry Research,51:7884-7890.
    [9]Lu HD, Song L, HuY.2011. A review on flame retardant technology in China. Part Ⅱ: flame retardant polymeric nanocomposites and coatings[J]. Advances in Polymer Tech noIogy,22:379-394.
    [10]Zhu J, Uhl FM, Morgan AB, Wilkie CA.2001. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability [J]. Chemistry of Materials,13: 4649-4654.
    [11]Wang DY, Cai XX, Qu MH, Liu Y, Wang JS, Wang YZ.2008. Preparation and flammability of a novel intumescent flame-retardant poly(ethylene-co-vinyl acetate) system[J], Polymer Degradation and Stability,93:2186-2192.
    [12]Wang BB, Hu S, Zhao KM, Lu HD, Song L, Hu Y.2011. Preparation of Polyurethane Microencapsulated Expandable Graphite, and Its Application in Ethylene Vinyl Acetate Copolymer Containing Silica-Gel Microencapsulated Ammonium Polyphosphate[J]. Industrial & Engineering Chemistry Research,50:11476-11484.
    [13]Dong YY, Gui Z, Hu Y, Wu Y, Jiang SH.2012. Performance of halogen-free flame retardant EVA/MH/LDH composites with nano-LDHs and MH[J]. Journal of Hazardous Materials, 209-210:34-39.
    [1]Artur W, Anna AS, Hull TR.2012. The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA[J]. Polymer Degradation and Stability, 97(11):2231-2240.
    [2]Lu SY, Hamerton I.2002. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science,27,1661-1712.
    [3]Hornsby PR.2001.Fire retardant fillers for polymers[J]. International Materials Reviews, 46,199-210.
    [4]Pal K, Rastogi JN.2004. Development of halogen-free flame-retardant thermoplastic elastomer polymer blend[J]. Journal of Applied Polymer Science,94,407-415.
    [5]Fang SL, Hu Y, Song L, Wu J.2009. Preparation and Investigation of ethylene-vinyl acetate copolymer/Silicone Rubber/Clay Nanocomposites[J]. Journal of Applied Polymer Science,113:1664-1670.
    [6]Dzunuzovic E, Marinovic-Cincovic M, Jeremic K, Nedeljkovic J.2008. Influence of cubic alpha-Fe2O3 particles on the thermal stability of poly(methyl methacrylate) synthesized by in situ bulk polymerization[J]. Polymer Degradation and Stability,94(4):701-704.
    [7]Nie SB, Song L, Hu Y, Cai YB, Zhan J, Guo YQ.2010. The catalyzing carbonization properties of acrylonitrile-butadiene-styrene copolymer (ABS)/rare earth oxide (La2O3)/o rganophilic montmorillonite(OMT) nanocomposites[J]. Journal of polymer research,17:8 3-88.
    [8]Song L, Wu K, Wang Y, Wang ZZ, Hu Y.2009. Flammability and Thermo-Oxidative Decomposition of Epoxy Resin Containing Ammonium Polyphosphate and Metallic Oxide[J]. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry,46,290-295.
    [9]Bate G.1991. Magnetic recording materials since 1975[J]. Journal of Magnetism and Magnetic Materials,100(1):413-424.
    [10]Gopal RGV, Manorama SV, Rao VJ.2000. Preparation and characterization of ferrites as gas sensor materials [J]. Journal of Materials Science Letters,19(9):775-778.
    [11]Teresa VS, Patrieia VV, Antonio BF.2007. Manganese ferrite nanopartieles synthesized through aannocasting route as a highly active Fenton catalyst [J].Catalysis Communications,8(12):2037-2042.
    [12]Sugimoto M.1999. The past, present, and future offerrites[J]. J Am Ceram Soc,82(2): 269-280.
    [13]Viciu L, Golub OV, Wiley JB.2003. Structural, thermal and magnetic characterization of the manganese oxyhalide layered perovskite,(MnCl)LaNb207[J]. Journal of Solid State Chemistry,175(1):88-93.
    [14]Mao Y, Banerjee S, Wong SS.2003. Large-scale synthesis of single crystalline perovskite nanostruetures[J]. Journal of the American Chemical Society,125(51):15718-15719.
    [15]Sauvet AL, Fouletier J, Gai UF.2002. Surface proporities and physieochemieal characterizations of a new type of anode material,La1-xSrxCr1-yRuyO3-zfor a Solid oxide fuel cell under methane at intermediate temperature[J]. Journal of Catalysis,209(1):25-34.
    [16]Auer R, Alifanti M, Delmonb B.2002. Catalytic combustion of methane in the presence of organic and inorganic compounds over La0.9 Ce0.iCoO3 catalyst[J]. Applied Catalysis B: Environmental,39(4):311.
    [17]董艳萍,田喜强,赵东江,迟云超,马松艳.2009.纳米LaFeO3溶胶凝胶合成、表征及性能研究,应用化工,38(4):544-546.
    [18]Wang J, Wu FQ, Shi KH, Wang XH, Sun PP.2004. Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin[J]. Sensors and Actuators B:Chemical, 99,586-591.
    [19]Su HJ, Jing LQ, Shi KY, Yao CH, Fu HG.2010. Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts[J]. Journal of nanoparticle research,12,967-974
    [20]Wei X, Xu G, Ren ZH, Wang YG, Shen G, Han GR.2008. Synthesis of Highly Dispersed Rarium Titanate Nanoparticles by a Novel Solvothermal Method[J]. Journal of the American Ceramic Society,91:315-318.
    [21]Liu Y, Zhang Y, Cao ZH, Fang ZP.2012. Synthesis of Three Novel Intumescent Flame Retardants Having Azomethine Linkages and Their Applications in EVA Copolymer[J]. Industrial & Engineering Chemistry Research,51:11059-11065.
    [22]Shentu BQ, Gan TF, Weng ZX.2009. Modification of Fe2O3 and Its Effect on the Heat-Resistance of Silicone Rubber[J]. Journal of Applied Polymer Science,113,3202-3206.
    [23]Manickam S, Nanda G, Masamichi I, Shin-ichi Y, Masaki Y, Kenichi N.2012. La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries[J]. Chemical Communications,48:3200-3202.
    [24]Maths K. Ahksander M, Pedro B.2005. Vibrational properties of proton conducting double perovskites[J]. Solid State Ionics,176(39):2971-2974.
    [25]Zhang Y, Hu Y, Song L, Wu J, Fang SL.2008. Influence of Fe-MMT on the fire ret arding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesiu m hydroxide) composite[J]. Polymers for Advanced Technologies,19:960-966.
    [26]Zhu J, Uhl FM, Morgan AB, Wilkie CA.2001. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability[J]. Chemistry of Materials,13: 4649-4654.
    [27]Wu Y, Song L, Hu Y.2011. Fabrication and Characterization of TiO2 Nanotube Epoxy Nanocomposites[J]. Industrial & Engineering Chemistry Research,50:11988-11995.
    [28]Zhou SX, Wu LM.2008. Phase Separation and Properties of UV-Curable Polyurethane/Zirconia Nanocomposite Coatings[J]. Macromolecular Chemistry and Physics, 209:1170-1181.
    [29]Tamor MA, Vassell WC.1994. Raman Fingerprinting of Amorphous-Carbon Films[J]. J ournal of Applied Physics,76,3823-3830.
    [30]Hu S, Song L, Pan HF, Hu Y.2012. Thermal Properties and Combustion Behaviors of Chitosan Based Flame Retardant Combining Phosphorus and Nickel[J]. Industrial & Engineering Chemistry Research,51,3663-669.
    [31]Hu S, Song L, Pan HF, Hu Y.2012. Thermal Properties and Combustion Behaviors of Chitosan Based Flame Retardant Combining Phosphorus and Nickel[J]. Industrial & Engineering Chemistry Research,51.3663-3669.
    [32]Jin J, Chen SJ, Zhang J.2010. UV aging behaviour of ethylene-vinyl acetate copolymers (EVA) with different vinyl acetate contents[J]. Polymer Degradation and Stability, 95:725-732.
    [33]Liu ZY, Jin J, Chen SJ, Zhang J.2011. Effect of crystal form and particle size of titanium dioxide on the photodegradation behaviour of ethylene-vinyl acetate copolymer/low density polyethylene composite[J]. Polymer Degradation and Stability,96:43-50.
    [34]Chen SJ, Zhang J, Su J.2009. Effect of hot air aging on the properties of ethylene-avinyl acetate copolymer and ethylene-acrylic acid copolymer blends[J]. Journal of Applied Polymer Science,112(3):1166-1174.
    [35]Shi XM, Zhang J, Li DR, Chen SJ.2009. Effect of damp-heat aging on the structures and properties of ethylene-vinyl acetate copolymers with different vinyl acetate contents[J]. Journal of Applied Polymer Science,112(4):2358-2365.
    [36]Chen S, Zhang J, Su J.2009. Effect of damp-heat aging on the properties of ethylene-vinyl acetate copolymer and ethylene-acrylic acid copolymer blends[J]. Journal of Applied Polymer Science,114(5):3110-3117.
    [37]Klemchuk P, Ezrin M, Lavigne G, Holley W, Galica J, Agro S.1997. Investigation of the degradation and stabilization of EVA-based encapsulant in field-aged solar energy modules[J]. Polymer Degradation and Stability,55(3):347-365.
    [38]Ayutthaya SIN, Wootthikanokkhan J.2008. Investigation of the photodegradation behaviors of an ethylene/vinyl acetate copolymer solar cell encapsulant and effects of antioxidants on the photostability of the material[J]. Journal of Applied Polymer Science,107 (6):3853-3863.
    [39]Shi XM, Zhang J, Li DR, Chen SJ.2009. Effect of damp-heat aging on the structures and properties of ethylene-vinyl acetate copolymers with different vinyl acetate contents[J]. Journal of Applied Polymer Science,112(4):2358-2365.
    [40]Jin J, Chen S, Zhang J.2010. UV aging behaviour of ethylene-vinyl acetate copolymers (EVA) with different vinyl acetate contents[J]. Polymer Degradation and Stability,95 (5):725-732.
    [41]Rodriguez-Vazquez M, Liauw CM, Allen NS, Edge M, Fontan E.2006. Degradation and stabilisation of poly(ethylene-stat-vinyl acetate):1-spectroscopic and rheological examination of thermal and thermo-oxidative degradation mechanisms[J]. Polymer Degradation and Stability,91(1):154-164.
    [42]Copuroglu MS, En MA.2004. comparative study of thermal ageing characteristics of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl acetate)/carbon black mixture[J]. Polymers for Advanced Technologies,15(7):393-399.
    [43]Allen NS, Edge M, Rodriguez M, Liauw CM, Fontan E.2000. Aspects of the thermal oxidation of ethylene vinyl acetate copolymer[J]. Polymer Degradation and Stability,68 (3):363-371.
    [44]Qin H, Zhao C, Zhang S, Chen G, Yang M.2003. Photo-oxidative degradation of polyethylene /montmorillonite nanocomposite[J]. Polymer Degradation and Stability,81(3):497-500.
    [45]Jin J, Chen S, Zhang J.2010. UV aging behaviour of ethylene-vinyl acetate copolymercopoly-mers (EVA) with different vinyl acetate contents[J]. Polymer Degradation and Stability,95 (5):725-732.
    [46]Morlat-Therias S, Fanton E, Gardette JL, Peeterbroeck S, Alexandre M, Dubois P.2007. Polymer/carbon nanotube nanocomposites:influence of carbon nanotubes on EVA photodegradation[J]. Polymer Degradation and Stability,92 (10):1873-1882.
    [1]Dutta SK, Bhownick AK, Mukunda PG, Chaki TK.1995. Thermal degradation studies of electron beam cured ethylene-vinyl acetate copolymer[J]. Polymer Degradation and Stability,50:75-82.
    [2]Lu HD, Zhang QZ, Hu Y.2007. Flammability properties of gamma-irradiated intumescent flame-retardant HDPE/EVA composites[J]. Journal of Fire Sciences,25:499-508.
    [3]Wu K, Wang ZZ.2008. Intumescent flame retardation of EVA using microencapsulated ammonium polyphosphate and pentaerythritols[J]. Polymer-Plastics Technology and Engineering,47:247-54.
    [4]Almeras X, BM L, Poutch F, Bourbigot S, Marosi G, Anna P.2003. Effect of fillers on fire retardancy of intumescent polypropylene blends[J]. Macromolecular Symposia,198:435-47.
    [5]Almeras X, BM L, Hornsby P, Bourbigot S, Marosi G, Keszei S, et al.2003. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polymer Degradation and Stability,82:325-31.
    [6]Serge B, Michel LB, Rene D.1996.4A zeolite synergistic agent in new flame retardant intumescent formulations of polyethylenic polymers-study of the effect of the constituent monomers[J]. Polymer Degradation and Stability,54:275-87.
    [7]Chen YJ, Zhan J, Zhang P, Nie SB, Lu HD, Song L.2010. Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent[J]. Industrial& Engineering Chemistry Research,49:8200-8208.
    [8]Zhang P, Hu Y, Song L, Lu HD, Wang J, Liu QQ.2009. Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material[J]. Thermochim ica Acta,487:7-9.
    [9]Wu J, Hu Y, Song L, Kang WJ,2008, Synergistic effect of lanthanum oxide on intumescent flame-retardant polypropylene-based formulations[J]. Journal of Fire Sciences,26:399-414.
    [10]Yang DD, Hu Y, Song L, Nie SB, He SQ, Cai YB.2008. Catalyzing carbonization function of a-ZrP based intumescent fire retardant polypropylene nanocomposites[J]. Polymer Degradation and Stability,93:2014-2018.
    [11]Wang BB, Zhou KQ, Wang L, Song L, Hu Y, Hu S.2012. Enhancement on physical properties of flame retarded ethylene-vinyl acetate copolymer/ferric pyrophosphate composites through electron beam irradiation[J]. Composites:Part B-Engineering,43,641-646.
    [12]Li YT, Li B, Dai JF, Jia H, Gao SL.2008. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system[J]. Polymer Degradation and Stability,93, 9-16.
    [13]Li GX, Yang JF, He TS, Wu YH, Liang GZ.2008. An investigation of the thermal degradation of the intumescent coating containing MoO3 and Fe2O3[J]. Surface & CoatingsTechnology,202,3121-3128.
    [14]Wu J, Hu Y, Song L, Kang WJ.2008. Synergistic effect of lanthanum oxide on intumescent flame-retardant polypropylene-based formulations[J]. Journal of Fire Sciences,26,399-414.
    [15]Alongi J, Poskovic M, Frache A, Trotta F.2010. Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties[J]. Polymer Degradation and Stability,95,2093-2100.
    [16]Bourbigot S, LeBras M, Gengembre L.1994. XPS study of an intumescent coating ap plication to the ammonium polyphosphate pentaerythritol fire-retardant system[J]. Appli ed Surface Science,81(3),299-307.
    [1]Peter C, Stewart W.2002. The effect of temperature on char formation in polymer blends:an explanation of the role of the smoke suppressant FeOOH acting in ABS/CPVC polymer blends[J]. Polymer Degradation and Stability,1:173-184.
    [2]Richard TH, Rita EQ, Irene GA, David AP.2002. Combustion toxicity of fire retarded EVA[J]. Polymer Degradation and Stability,77:235-242.[3]Bin L.2003. Influence of polymer additives on thermal decomposition and smoke emission of poly(vinyl chloride)[J]. Polymer Degradation and Stability,82(3):467-476.[4]Bin L.2002. A study of the thermal decomposition and smoke suppression of poly(vinyl chloride) treated with metal oxides using a cone calorimeter at a high incident heat flux[J]. Polymer Degradation and Stability,78(2):349-356.
    [5]ISO TS 19700.2006. Controlled equivalence ratio method for the determination of hazardous components of fire effluents.
    [6]Hull TR, Carman JM, Purser DA.2000. Prediction of CO evolution from small-scale polymer fires[J]. Polymer International,49,1259-1265.
    [7]Stec AA, Hull TR, Lebek K.2008. Characterisation of the steady state tube furnace (ISO TS 19700) for fire toxicity assessment. Polymer Degradation and Stability,93,2058-2065.
    [8]Stec AA, Rhodes J.2011. Smoke and hydrocarbon yields from fire retarded polymer nanocomposites[J]. Polymer Degradation and Stability,96,295-300.
    [9]Hull TR, Lebek K, Pezzani M, Messa S.2008. Comparison of toxic product yields of burning cables in bench and large-scale experiments [J]. Fire Safety Journal,43,140-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700