用户名: 密码: 验证码:
电磁脉冲成形多物理场耦合数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合金属板料单点渐进成形和电磁脉冲成形工艺,提出电磁脉冲渐进成形新方法。该技术的基本原理是放电线圈代替单点渐进成形装置中的刚性工具头。放电线圈在计算机控制下按照一定的三维空间轨迹逐次移动到一个大型工件的各个局部位置,并通过线圈放电和磁场力使工件分布变形。最终这些局部变形累加成整个大型零件。另外,电磁脉冲成形涉及到一个多物理场相互耦合过程。数值模拟提供了一种手段去解决这种耦合问题。但是大多数的模拟方法只针对简单的2D轴对称模型。对于实际的工业应用,需要分析非轴对称和曲面复杂的成形零件,这都必须设计相应的3D有限元模型。因此,本文的研究内容可概括为:
     为了提供能够适用于复杂3D模型的强耦合模拟方法,采用顺序耦合法对板料电磁自由胀形过程进行3D有限元模拟分析。对空气网格采用任意拉格朗日欧拉算法(ALE)或者网格随移技术,实现空气3D网格能够与工件变形随动而不产生畸变。动态而无畸变的六面体网格和不同时刻工件上的磁场力数据能够在磁场分析模块与塑性成形模块间准确传递数据,既提高了运算速度又可获得精确计算结果。与过去学者所发表文献的实验数据比较证明,本文的模拟方法能合理的描述工件3D电磁动态变形过程。对于复杂线圈结构,提出采用网格重划技术实现空气网格随工件的变形而更新。建立含有均压力线圈的3D电磁成形有限元模型,分析均压力线圈的工作原理、板料上的磁场力分布情况。采用ANSYS/MECHANICAL软件分析板料在均压力线圈作用下的变形规律。通过分析线圈的受力情况,提出均压力线圈容易发生失效的原因。
     采用松散耦合法和顺序耦合法分析了脉冲电流第二半波对成形的影响。研究发现:随着电流频率的增加,第二半波对电磁脉冲成形结果影响加剧。如果仅考虑第一半波对成形的影响和高的电流频率条件下,松散耦合的计算精度有可能会高于顺序耦合法。但是当第二半波对成形的影响被考虑,无论在高的电流频率还是低电流频率,顺序耦合法计算结果都与实验结果接近。另外,采用顺序耦合法研究了线圈与凹模尺寸的比值和电流频率对板料电磁脉冲成形的影响。模拟结果发现板料电磁自由胀形存在两个明显的厚度减薄区域。当线圈与凹模尺寸的比值接近于1时,板料会得到最大的厚度减薄量。同时存在最佳的电流频率使板料的变形量最大。模拟结果发现最佳电流频率会受到板料厚度和电流衰减系数显著影响。因此,不能依据传统观点(即趋肤深度应该小于或者接近工件的壁厚)来选择最佳电流频率。
     结合实验和2D、3D有限元分析手段,深入研究了电磁渐进成形方法对大尺寸板坯件和长直壁管件的成形问题。针对大尺寸板坯件成形,研究发现:板料高速变形并与凹模贴合时,板料变形时的空气阻力随着放电电压的增加而增加。当放电电压大于某一临界值(U=1700V),由于空气阻力的原因,导致板料表面有凹坑出现。为了提高板料与模具的贴合质量,需要在一个放电位置连续两次放电成形。另外本文实验得到:当最佳的放电区域个数N=4时,相邻两次放电区域存在最佳的重叠率,使板料最终成形质量最好。针对长直臂管件均匀变形的研究,采用“生死单元法”间接描述线圈移动放电成形过程。与一次放电、两次放电和三次放电实验结果相比,模拟与实验结果吻合。进一步采用数值模拟方法研究了放电区域的重叠系数、放电电压、成形顺序和模具尺寸对管件变形均匀性的影响。结果证明电磁渐进成形工艺在大型板材和长直臂管件成形上的可行性。
In this paper, a new method named electromagnetic incremental forming (EMIF) hasbeen proposed based on the single point incremental sheet forming and electromagneticforming (EMF). The principle of the new method can be described that the working coil isused to replace the rigid tool in the incremental sheet forming. The working coil is movedalong a special trajectory and small discharge energy to cause workpiece localdeformation in a high speed by magnet force. Finally, all local deformations accumulateinto large parts. In addition, EMF is a complex Multi-physics coupling forming process.Numerical simulation offers an opportunity to overcome the problem. However, modelingapproaches found for EMF process in the literature are mainly restricted to2D model. Forreal industrial applications, the modeling of3D forming operation becomes crucial for aneffective process design. Thus, the whole paper can be divided into the following sections:
     In order to propose a new strong coupling method which can be used for complex3Dmodels, three-dimensional finite element models are established and sequential couplingmethod are used to analyze electromagnetic sheet free bulging. The ArbitraryLagrangian-Eulerian (ALE) algorithm or the Morphing technologies are used in airmeshes to make them change regularly with the deformation of the workpiece and avoidthe occurrence of distorted meshes. The dynamic and distortionless hexahedral meshes canensure the accuracy of date transfers between the magnetic field module and structurefield module. Therefore, the computational accuracy and computational efficiency havebeen improved. The comparison between the simulation results and the experimental onesindicates the deformation laws in simulation results agree with the experimental one. Forthe complex coil structure, the remeshing technology is used to make the air mesheschange with the workpiece deformation. Then, the3D finite element model is establishedto analyze the distribution of the magnetic forces and work principle of the uniformpressure electromagnetic actuator. The magnetic forces on the sheet are input into thesoftware, ANSYS/MECHANICAL, which is used to analyze the deformation law of thesheet.And, the reason for coil failure has been proposed based on the force on coil.
     The loose coupling method and sequence coupling method are both used toinvestigate how the second half current wave affects the simulation result. It is found that the effect of the second current pulse on sheet deformation increases with the increasing of the discharge frequency. The sequential coupling method may or may not obtain higher simulation accuracy than the loose coupling method if the first current pulse just be considered. However, the sequential coupling method always can obtain accurate simulation results whatever in a high or low current frequency if the second current are also considered. In addition, the sequential coupling method is used to analyze the effect of the ratio of coil to die dimension and current frequency on sheet forming. It exist two regions with great thickness thinning in the final sheet shapes. If the ratio of coil and die dimention is close to1, the sheet could obtain the maximum value thickness thinning. And there exists optimum frequency which corresponding to the maximum displacement in sheet forming. However, the effect factors, such as sheet thickness and current damping exponent, play a very great role in choosing the optimum current frequency. Thus, it is not reasonable to choose the optimum frequency according to the basic experience that the skin depth should be equal to or slight below the wall thickness.
     Based on the experiment and the2D and3D finite element models, it is deeply analyzed the forming process of electromagnetic incremental sheet and tube forming. To produce large sheet parts using EMIF, it is found that:1) the forming quality of sheet side surface is better in a high discharge voltage than that in the low discharge voltage. However, a high air pressure is created to hinder sheet deformation during the forming process, which will cause the appearance of concave on the sheet if the discharge voltage exceeds a critical value (U=1700V);2) Two consecutive discharges in a fixed position are needed to produce large parts using EMIF technology;3) There exists optimum number of discharge regions (N=4), which corresponds to the best overlap ratio in two adjacent discharge regions and best forming quality. For the deformation of large-straight tube, the technology liked "birth-death element" is used to indirectly describe the movement of the coil. The simulaiton results are better agreement with the the experimental values of single, twice and triple discharging. Then the effect factors named overlap ratio of discharge regions, discharge voltage, forming sequence and the dimensional of die structure on tube homogeneous deformation are analyzed. The results demonstrate that this new technology is feasible to produce large sheet and tube parts.
引文
[1]朱宏敏.汽车轻量化关键技术的应用与发展.应用能源技术.2009,2:10-13.
    [2]王孟君,黄电源,姜海涛.汽车用铝合金的研究进展.金属热处理.2006,31(9):34-37.Miller W S, Zhuang L, Bottema J. Recent development in aluminium alloysfor the automotive industry [J]. Materials Science and Enfineering A,2000,280(3):37-49.
    [3] Miller W S, Zhuang L, Bottema J. Recent development in aluminium alloys for theautomotive industry [J]. Materials Science and EnfineeringA,2000,280(3):37-49.
    [4] Satio M, Iwantsuki S, Yasunaga K. Develapment of Aluminum Body for the MostFuel Efficient Vechicle. JSAE Review.2000,21(1):511-516.
    [5]潘复生,张丁非.铝合金及应用.化学工业出版社.2006:297-386.
    [6]肖永清.铝合金是现代汽车轻量化的首选材料.铝加工,2005(5):36-39.
    [7]李春峰,于海平,刘大海.铝合金磁脉冲辅助板材冲压技术研究进展.中国机械工程.2008,19(1):108-113.
    [8]王孟君,周威,任杰等.汽车用5182铝合金的温拉伸成形性能.中南大学学报.2010,41(3):936-939.
    [9] Palumbo G, Tricarco L. Numerical and experimental investigations on the warmdeep drawing process of circular aluminum alloy specimens. Journal of MaterialsProcessing Technology,2007,184:115-123.
    [10]孙成智.基于变压边力的薄板冲压成形理论及实验研究.上海交通大学博士学位论文.2004.
    [11]林忠钎,李淑慧,于忠奇,等.汽车板精益成形技术.北京:机械工业出版社,2009.
    [12] Li J, Dean T A. Prediction of springback in creep age forming. Establishing NewCollaborations with China in Advanced Metal Forming and Related Processess.2006, pp27.
    [13]李明哲等.板材多点成形过程起皱现象数值模拟研究.中国机械工程.1998,10:34-38.
    [14]松原茂夫.數值制禦逐次成形法.塑性と加工.1994,406(35):1258-1263.
    [15] Balanethiram VS, Daehn GS. Enhanced formability of interstitial free iron at highstrain rate. Scripta Metallurgica et Materialia.1992,27:1783-1788.
    [16] Balanethiram V S, Daehn G S. Hyperplasticity: increased forming limits at highworkpiece velocity. Scr. Metall. Mater.1994,30:515-520.
    [17] Balanethiram V S. Hyperplasticity: enhanced formability of sheet metals at highworkpiece velocities. Ph.D. Thesis. The Ohio State University.1996.
    [18]国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告.科学出版社.2010.
    [19]李春峰.高能率成形技术.机械工业出版社.2001.
    [20] Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M. Electromagnetic forming-Areview. Journal of Materials Processing Technology.2011,211:787-829.
    [21] Mamalis AG, Manolakos DE. Electromagnetic forming and powder processing:Trends and developments. Appl Mech Rev.2004,57(4):299-324.
    [22]韩飞,莫健华,黄树槐.电磁成形技术在汽车制造中的应用.塑性工程学报.2006,13(5):100-105.
    [23] Meng ZH, Huang SY, Hu JH, Huang W, Xia ZL. Effects of process parameters onwarm and electromagnetic hybrid forming of magnesium alloy sheets. Journal ofMaterials Processing Technology,2011,211:863-867.
    [24]孟正华,黄尚宇,胡建华,夏志林,夏晓峰.镁合金板材温热电磁复合成形实验研究.机械工程学报.2011,47(10):38-42.
    [25] Shin C, J HH, L JG, L DJ, Rhee CK, Hong JH. Expansion of a Low ConductiveMetal Tube by an Electromagnetic Forming Process: Finite Element Modeling.Metals and Materials International.2008,14(1):91-97.
    [26] Andersson R, Syk M. Electromagnetic Pulse Forming of Carbon Steel Sheet Metal.3rdInternational Conference on High Speed Forming,2008,233-244.
    [27] Thomas JD, Seth M, Daehn GS, Bradley JR, Triantafyllidis N. Forming limits forelectromagnetically Expanded Aluminum Alloy Tubes: Theory and Experiment.Acta Materialia.2007,55(8):2863-2873.
    [28] Rajendran A M, Fyfe I M. Inertia effects on the ductile failure of thin rings. J. Appl.Mech.1982,49:31-36.
    [29] Regazzoni G, Johnson J N, Follansbee P S. Theoretical study of the dynamictensile test. J.Appl. Mech.1986,53:519-528.
    [30] Hu XY, Wagoner RH, Daehn GS, Ghosh S. The effect of inertia on tensile ductility.Metallurgical and Materials Transactions A.1994,25A:2735
    [31] Altynova M, Hu XY, Daehn GS. Increased ductility in high velocityelectromagnetic ring expansion. Metallurgical and Materials Transactions A.1996,27A:1837-1844.
    [32]李忠,李春峰,赵春艳.管件电磁胀形极限的实验研究.锻压技术.2006,6:52-55.
    [33] Imbert J M, Wrinkler S L, Worswick M J, Oliveria D A, Golovashchenko S. Theeffect of tool-sheet interaction on damage evolution in electromagnetic forming ofaluminum alloy sheet [J]. J Eng Mater T-ASME.2005,127:145-153.
    [34] Imbert J M. Increased Formability and the Effects of the Tool/Sheet Interaction inElectromagnetic Forming of Aluminum Alloy Sheet. MS Thesis of University ofWaterloo.2005.
    [35] Harvey GW, Brower DF. Metal Forming Device and Method. US-Patent Nr.2976907.1958.
    [36] Okoye C N, Jiang J H, Hu Z D. Application of electromagnetic-assisted stamping(EMAS) technology in incremental sheet metal forming. International Journal ofMachine Tool and Manufacture.2006,46:1248-1252.
    [37] Daube J, G tsch A, H nisch H. Ausnutzung gespeicherter elektrischer Energie zurMagnetumformung von Metallen und Grenzen dieses Verfahrens.Fertigungstechnik und Betrieb16(2),107-113.
    [38]常宏,孟正华,胡双峰.平板毛坯电磁成形线圈的研究及应用[J].锻压技术,2007,32(3):7-11.
    [39]赵志衡,李春峰,邓将华.电磁胀形时轴对称线圈受力的理论研究[J].塑性工程学报.2007,14(3):76-79.
    [40] Golovashchenko SF. Materials formability and coil design in electromagneticforming. Journal of Materials Engineering and Performance.2007,16:314-320.
    [41] Magneform Company. Welcometo magneform[EB/OL]. http://www.magneform. com/apps.html,2003
    [42]杨澍.管件磁脉冲侧翻边工艺研究.哈尔冰工业大学硕士学位论文.2011,34-52.
    [43] J ger A, Risch D, Tekkaya AE. Thermo-mechanical processing of aluminumprofiles by integrated electromagnetic compression subsequent to hot extrusion.Journal of Materials Processing Technology.2011,211:936-943.
    [44] G bel G, Kaspar J, Herrmannsd rfer T, Brenner B, Boyer E. Insights intointermetallic phases on pulse welded dissimilar metal joints.4thInternationalConference on High Speed Forming.2010,127-136.
    [45] Shribman V, Gafri O, Livshitz Y. Magnetic pulse welding and joining-a new toolfor the automotive industry [J]. SAE Technical Paper Series (2001-02-3408). SAEInt and Messe DüsseldorfATTCE Proc Vol3: Manufacuring.2001:131-146.
    [46] Weddeling C, Woodward S, Nellesen J, Psyk V, Marré M, Brosius A, Tekkaya AE,Daehn GS, Tillmann W. Development of desigh principles for form-fit joints inlightweight frame structures.4thInternational Conference on High Forming.2010,137-148.
    [47] Song FM, Zhang X, Wang ZR, Yu LZ. A study of tube electromagnetic forming.Journal of Materials Processing Technology.2004,151:372-375.
    [48] Zhang H, Murata M, Suzuki H. Effects of various working conditions on tubebulging by electromagnetic forming. Journal of Materials Processing Technology.1995,48:113-121.
    [49] Eguia I, Zhang P, Daehn GS. Improved Crimp-Joining of Aluminum Tubes ontoMandrels with Undulating Surface.1stInternational Conference on High SpeedForming.2004,161-170.
    [50] Weddeling C, Woodward ST, Marré M, Nellesen J, Psyk V, Tekkaya AE, TillmannW. Influence of groove characteristics on strength of form-fit joints. Journal ofMaterials Processing Technology.2011,211:925-935.
    [51]王永志,李春峰,赵志衡,李建辉.管-杆磁脉冲连接工艺研究.锻压技术.1999,1:12-14.
    [52] Li Z, Li CF, Yu HP, Zhao ZH. Effect of tube size on electromagnetic tube bulging.Trans. Nonferrous Met. Soc. China.2007,17:705-710.
    [53]于海平,徐殿国,李春峰.异种金属磁脉冲连接技术的研究与应用.锻压技术.2009,34(2):1-6.
    [54]韩飞,莫健华,黄树槐.电磁成形技术理论与应用的研究进展[J].锻压技术,2006,31(6):4-8.
    [55] Bach F, Rodman M, Rossberg A, Weber J, Walden L. Verhalten vonAluminiumwerkstoffen bei der elektromagnetischen Blechumformung. In:Proceesing of the2. Kolloquium Elektromagnetische Umformung, Dortmund.2003,11-18
    [56] Kamal M. A uniform pressure electromagnetic actuator for forming flat sheets.Ph.D. Thesis. USA: The Ohio State University,2005, pp115-190.
    [57]张文忠,陈浩,董占国,卢兆勇,黄霞.基于磁脉冲技术的铝合金板材圆孔翻边工艺研究.航天制造技术.2009,4:5-8.
    [58]邓将华,李春峰.磁脉冲冲孔实验研究.锻压技术.2006,5:140-143.
    [59] Kamal M, Shang J, Cheng V, Hatkevich S, Daehn GS. Agile manufacturing of amicro-embossed case by a two-step electromagnetic forming process. Journal ofMaterials Processing Technology.2007,190:41-50.
    [60] Vohnout V S. A hybrid quasi-static/dynamic process for forming large sheet metalparts from aluminum alloys. Ph.D. Thesis. The Ohio State University.1998.
    [61] Shang JH. Electromagnetically assisted sheet metal stamping. Ph.D. Thesis. TheOhio State University.2006.
    [62] Shang JH, Daehn GS. Electromagnetically assisted sheet metal stamping. Journalof Materials Processing Technology.2011,211:868-874.
    [63] Imbert J, Worswick M. Electromagnetic reduction of a pre-formed radius on AA5754sheet. Journal of Materials Processing Technology.2011,211:896-908.
    [64] Imbert J, Worswick M. Reduction of a pre-formed radius in aluminium sheet usingelectromagnetic and conventional forming. Journal of Materials ProcessingTechnology.2012,212:1963-1972.
    [65] Iriondo E, Gonzalez B, Gutierrez M, Vonhout V, Daehn G, Hayes B.Electromagnetic Springback Reshaping.2ndInternational Conference on HighSpeed Forming.2006,153-160.
    [66] Iriondo E, Gutiérrez MA, González B, Alcaraz JL, Daehn GS. Electromagneticimpulse calibration of high strength sheet metal structures. Journal of MaterialsProcessing Technology.2011,211:909-915.
    [67]陈石,胡建华,孙樊,黄尚宇.铝合金曲面零件电磁校形试验研究.武汉理工大学学报,2010,32(19):36-39.
    [68]耿长刚.铝合金油箱壳体电磁成形复合冲压实验研究.北京机电研究所硕士论文.2006:1-118.
    [69]刘大海.5052铝合金板料磁脉冲辅助冲压成形变形行为及机理研究[D].哈尔滨:哈尔滨工业大学,2010:1-135.
    [70]刘大海,于海平,李春峰等.筒形件磁脉冲辅助冲压成形数值模拟.塑性工程学报,2009,16(1):18-24.
    [71]嵇正波,李春峰,刘大海,于海平.铝合金筒形件磁脉冲辅助冲压成形实验研究.锻压技术.2009,34(4):69-73.
    [72] Liu DH, Yu HP, Li CF. Experimental observations of hybrid quasi-static-dynamicformability in biaxially strained AA5052-O. Journal of Materials Engineering andPerformance. DOI:10.1007/s11665-010-9676-3.
    [73]刘大海,于海平,李春峰等.AA5052板材准静态/动态平面应变成形极限实验研究.材料科学与工艺.2009,17(5):593-596.
    [74] Liu DH, Yu HP, Li CF. Quasi-static-dynamic formability of AA5052-O sheet underuniaxial and plane-strain tension. Trans. Nonferrous Met. Soc. China.2009,19:318-325.
    [75] Li, C.F., Liu, D.H., Yu, H.P., Ji, Z.B.,2009. Research on formability of5052aluminum alloy sheet in a quasi-static-dynamic tensile process. InternationalJournal of Machine Tools&Manufacture49,117-124.
    [76]孙成. U形件磁脉冲辅助弯曲变形分析.哈尔滨工业大学硕士论文.2009.
    [77] Furth HP, Levine MA, Waniek RW. Production and use of high transient magneticfieldsⅡ. The Review of Scientific Instruments27(4):195-203.
    [78] Golovashchenko S. Electromagnetic Forming and Joining for AutomotiveApplications.2ndInternational Conference on High Speed Forming.2006:201-206.
    [79] Oliveira DA, Worswick MJ, Finn M, Newman D. Electromagnetic forming ofaluminum alloy sheet: Free-form and cavity fill experiments and model. Journal ofMaterials and Processing Technology,2005,170:350-362.
    [80] Belly IV, Fertik SM, Khimenko LT. Spravochnik Po Magnitno-impulsnoyObrabotke Metallov [Electromagnetic Metal Forming Handbook]. Englishtranslation by Altynova, M.M., online available athttp://www.mse.eng.ohio-state.edu/~Daehn/metalforminghb/index.html.
    [81] Golovashchenko S, Bessonov N, Davies R. Design and Testing of Coils for PulsedElectromagnetic Forming.2ndInternational Conference on High Speed Forming.2006:141-151.
    [82] Woodward S, Weddeling C, Daehn G, Psyk V, Carson B, Tekkaya AE. AgileProduction of Sheet Metal Aviation Components Using DisposableElectromagnetic Actuators.4thInternational Conference on High Speed Forming.2010:35-46.
    [83] Uhlmann E, Ziefle A, K nig C, Prasol L. Coupled FEM-Simulation of MagneticPulse Welding for Nonsymmetric Applications.5thInternational Conference onHigh Speed Forming.2012:303-313.
    [84] Yu HP, Li CF, Zhao ZH, Li Z. Effect of field shaper on magnetic pressure inelectromagnetic forming. Journal of Materials Processing Technology.2005,168:245-249.
    [85] Suzuki H, Murata M, Negishi H. The effect of a field shaper in electromagnetictube bulging. Journal of Mechanical Working Technology.1987,15:229-240.
    [86] Bahmani MA, Niayesh K, Karimi A.3D Simulation of magnetic field distributionin electromagnetic forming systems with field-shaper. Journal of MaterialsProcessing Technology.2009,209:2295-2301.
    [87]初红艳,费仁元,吴海波,陆辛.椭圆线圈在平板电磁成形中的应用研究.锻压技术.2002,5:38-41.
    [88]吕书林.铝板电磁辅助弯曲实验研究.武汉理工大学硕士学位论文.2008:1-54.
    [89]孟正华.镁合金板材温热电磁成形性能及本构方程研究.武汉理工大学博士学位论文.2009.
    [90]肖师杰,莫健华,崔晓辉.并列线圈在平板电磁成形中的磁场力分布与受力分析.新工艺新技术.2012,(4):54-60.
    [91]肖师杰.平板电磁成形全耦合模拟方法研究与线圈的设计与分析.华中科技大学硕士学位论文.2012.
    [92]莫健华,王波,崔晓辉,何文治.板料电磁成形集磁器工作原理的模拟.塑性工程学报.18(1):36-42.
    [93]王波.板料电磁成形集磁器工作原理的模拟及其结果的改进.华中科技大学硕士学位论文.2011.
    [94] Conraux Ph, Pignol M, Robin V, Bergheau JM.3D Finite Element Modeling ofElectromagnetic Forming Processes.2ndInternational Conference on High SpeedForming.2006:73-82.
    [95] Lai GK, Hillier MJ. The Electrodynamics of Electromagnetic Forming. Int. J. Mech.Sci.1968,(10):491-500.
    [96] Takatsu N, Kato M, Sato K, Tobe T. High Speed Forming of Metal Sheets byElectromagnetic Force. Int. J. Jpn. Mech. Eng.1988,31(1):142-148.
    [97] Hashimato Y. Local Deformation and Buckling of a Cylindrical Al Tube underMagnetic Impulsive Pressure. Journal of Materials Processing Technology.1999,85:209-212.
    [98] Jablonski J, Winkler R. Analysis of the Electromagnetic Forming Process. Int. J.Mech. Sci.1978,20(5):315-325.
    [99] Gourdin WH. Analysis and Assessment of Electromagnetic Ring Expansion as aHigh-Strain-Rate Test. J.Appl. Phy.1989,65(2):411-422.
    [100] Al-Hassani STS. Magnetic pressure distribution in the sheet metal forming,Electrical Methods of Machining, Forming and Coating, Institute of ElectricalEngineering Conference,1975, pp.1-10
    [101] Jimbert P, Eguia I, Perez I, et al. Analysis and comparative study of factorsaffecting quality in the hemming of6061T4AA performed by means ofelectromagnetic forming and process characterization. J. Mater. Process Technol.,2011,211:916-924.
    [102] Lee SH, Lee DN. A finite element analysis of electromagnetic forming for tubeexpansion. J Eng Mater T-ASME.1994,116(2):250-254.
    [103] Li Zhong, Li Chunfeng (2006) Simulation of electromagnetic tube bulging basedon loose coupling method [J]. Chinese Journal of Mechanical Engineering,19(4):566-569.
    [104]于海平,李春峰,李忠.基于FEM的电磁缩颈耦合场数值模拟.机械工程学报.2006,42(7):231-234.
    [105]初红艳.平板件电磁成形的质量保证及时的研究.北京工业大学博士学位论文.2003:83-122.
    [106] Yu Haiping, Li Chunfeng. Finite element analysis of free expansion of aluminumalloy tube under magnetic pressue [J]. Trans. Nonferrous Mer. Soc. China.2005,15(5):1040-1044.
    [107]李春峰,赵志衡,李建辉,李忠.电磁成形磁场力的研究[J].塑性工程学报.2001,8(2):70-72.
    [108] Li CF, Zhao ZH, Li JH, Wang YZ, Yang YY. Numerical simulation of the magneticpressure in tube electromagnetic bulging. Journal of Materials ProcessingTechnology,2002,123:225-228.
    [109] Suzuki H, Negishi H, Yokouchi Y, et al. Free expansion of tube under magneticpressure. Journal of the Japanese Society for Technology of Plasticity,1986,27(310):1254-1260.
    [110]黄尚宇,常志华,王立峰等.板坯电磁成形载荷计算方法及分布特性.中国有色金属学报.1998,8(3):441-446.
    [111]陈玉珍,李春峰,马宝山.锥形件电磁成形数值模拟及实验研究.塑性工程学报.2008,15(5):127-130.
    [112] Correia JPM, Siddiqui MA, Ahzi S, Belouettar S, Davies R. A simple model tosimulate electromagnetic sheet free bulging process. Int J Mech Sci.2008,50:1466-1475.
    [113] Pérez I, Aranguren I, González B, Eguia I. Electromagnetic forming: a newcoupling method [J]. Int J Mater Form.2009,2(suppl1):637-640.
    [114] Liu D H, Li C F, Yu H P. Numerical modeling and deformation analysis forelectromagnetically assisted deep drawing of AA5052sheet [J]. Trans. NonferrousMer. Soc. China.2009,19(5):1294-1302.
    [115] Yu HP, Li CF, Deng JH. Sequential coupling simulation for electromagneticmechanical tube compression by finite element analysis. J Mater Process Technol.2009,209:707-713.
    [116] Yu HP, Li CF. Effects of current frequency on electromagnetic tube compression.Journal of Materials Processing Technology.2009,209:1053-1059.
    [117] Fenton GK, Daehn GS. Modeling of electromagnetically formed sheet metal. JMater Process Technol.1998,75:6-16.
    [118]孔明礼,胡仁喜,崔海蓉等编著.ANSYS10.0电磁学有限元分析实例指导教程.机械工业出版社.2007.
    [119] Stiemer M, Unger J, Blum H, Seendsen B. Fully Coupled3D simulation ofElectromagnetic forming. Proceedings of the2ndInternational Conference on highspeed forming.2006:63-72.
    [120] Stiemer M, Unger J, Svendsen B, Blum H. An arbitrary Lagrangian Eulerianapproach to the three-dimensional simulation of electromagnetic forming [J].Comput. Methods Appl. Mech. Engrg.2009,198:1535-1547.
    [121] Stiemer M, Unger J, Blum H, Svendsen B. ALE-based3D FE simulation ofelectromagnetic forming. PAMM. Proc. Appl. Math. Mech.2006,6:459-460.
    [122] Unger J, Stiemer M, Schwarze M, Svendsen B, Blum H, Reese S. Strategies for3Dsimulation of electromagnetic forming process. Journal of Materials ProcessingTechnology,2008,199:341-362.
    [123] Unger J, Stiemer M, Svendsen B, Blum H. Multifield modeling of electromagneticmetal forming processes. Journal of Materials Processing Technology,2006,177:270-273.
    [124] Boutana I, Rachid M, Mekideche R. Simulation of aluminum sheet electromagneticforming with several dies [C].20085thInternational Multi-Conference on Systems,Signals and Devices.
    [125] Bartels G, Schatzing W, Scheibe HP, Leone M. Comparison of two differentsimulation algorithms for the electromagnetic tube compression. Int J Mater Form.20091:693-696.
    [126] Yu HP, Li CF. Effects of coil length on tube compression in electromagneticforming. Trans. Nonferrous Met. Soc. China.2007,17:1270-1275.
    [127] Yu HP, Li CF, Liu DH, Mei X. Tendency of homogeneous radial deformationduring electromagnetic compression of aluminium tube. Trans. Nonferrous Met.Soc. China.2010,20:7-13.
    [128]程然.板料电磁温热成形均均压力线圈结构及参数优化研究.武汉理工大学硕士学位论文.2010.
    [129] Release11.0Documentation for ANSYS.
    [130]李泷杲.金属板料成形有限元模拟基础-PAMSTAMP2G(Autostamp).北京航空航天大学出版社.2008,19-22.
    [131]雷正保.汽车覆盖件冲压成形CAE技术.国防科技大学出版社.2003,34-38.
    [132]白金泽. LSDYNA3D理论基础与实例分析.科学出版社.2006.
    [133]何涛,杨竞,金鑫等编著. ANSYS10.0/S\LSDYNA非线性有限元分析实例指导教程.机械工业出版社.2007.
    [134] Mamalis AG, Manolakos DE, Kladas AG, Koumoutsos AK. ElectromagneticForming Tools and Processing Conditions: Numerical Simulation. Materials andManufacturing Processes,2006,21,411-423.
    [135] American Society for Metals. ASM metal handbook Vol.14:Forming and forging[M]. USA: American Society for Metals,1998.
    [136] Xu W, Liu XS, Yang JG, Fang HY, Xu WL. Effect of temperature on plasticdeformation of sheet by electromagnetic force. Journal of Materials ProcessingTechnology,2009,209:2693-2698.
    [137] Kuo CL. You JS, Hwang SF. Temperature effect on electromagnetic formingprocess by finite element analysis. International Journal of AppliedElectromagnetics and Mechanics.2011,35:25-37.
    [138] Xu J R, Yu H P, Li C F (2012) Effects of process parameters on electromagneticforming of AZ31magnesium alloy sheets at room temperature. Int J Adv ManufTechnol. DOI10.1007/s00170-012-4442-3.
    [139]初红艳,费任元,陆辛,杨鲁义.电磁成形中板料厚度与变形深度的关系.机械工程学报.2003,39(3):62-65.
    [140]张敏.板材电磁成形的实验研究[M].北京机电研究所硕士学位论文.
    [141]莫建华,叶春生,黄树槐.金属板料数控渐进成形技术.航空制造技术.2002,12:25-27.
    [142] Fan GQ, Gao L, Hussain G, Wu ZL. Electric hot incremental forming: A noveltechnique. International Journal of Machine Tools&Manufacture.2008,48:1688-1692.
    [143] Alaswad A, Benyounis KY, Olabi AG. Tube hydroforming process: A referenceguide. Materials and Design.2012,33:328-339.
    [144]苑世剑,王小松.内高压成形技术研究与应用新进展.塑性工程学报.2008,15(2):22-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700