用户名: 密码: 验证码:
应力场对Al_(86)Ni_9La_5非晶合金结构和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择由不同冷却速度(Sc)制备的Al86Ni9La5非晶合金作为研究对象,通过对其进行机械加压、压力釜处理、室温低能球磨(LE-BM-RT)、室温高能球磨(HE-BM-RT)和冷冻高能球磨处理(HE-BM-LT),研究了不同的处理方法,对该非晶合金结构、热力学性能、力学性能和耐腐蚀性能的影响。
     利用X射线衍射仪(XRD)、差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、振动样品磁强计(VSM)和电化学工作站分析了不同压力下,机械加压对Al86Ni9La5非晶合金的结晶行为、断裂行为、磁学性能和耐腐蚀性能的影响,分析发现:(1) Al86Ni9La5条带在Sc=29.3m/s时经不同压力加压仍保持完全非晶态。然而,在加压过程中,Sc=14.7m/s的条带非晶基体中析出了晶化相。结果表明,加压处理仅影响晶核的长大而不影响生核;(2)加压处理提高了Sc=29.3和14.7m/s时Al86Ni9La5条带的韧性,这与加压处理引入的自由体积和剪切带有关;(3)当Sc=14.7m/s时,随着压力的升高,Al86Ni9La5条带中析出了晶化相,从而加压处理引起腐蚀电位升高然而点蚀电位降低。加压处理降低了Al86Ni9La5条带钝化膜的稳定性,这是由于加压处理使得条带中引入自由体积和剪切带以及析出了晶化相。(4) Al86Ni9La5条带的磁性与其结构有关,预存晶核或晶化相存在的数量越多,Al86Ni9La5条带的顺磁性越强,而非晶相的含量越高,抗磁性越强。
     利用XRD、DSC、SEM、热膨胀仪(DIL)和显微硬度计分别研究了5MPa机械加压和压力釜处理对Al86Ni9La5条带的微观结构、热力学性能、显微硬度及表面形貌的影响。分析结果发现:(1)原带的第二晶化开始温度Tx2和收缩度6有随着Sc增加而增加的趋势,与此相反,原带的预峰高度,显微硬度压痕附近的变形区尺寸l和剪切带间距有随着Sc增加递减的趋势。这些结果可以归因于在较高的Sc时原带中骨架原子团的数量比较多。骨架原子团可以被5MPa机械加压和压力釜处理稳定化;(2)在Sc=14.7m/s时,经5MPa机械加压和压力釜处理后,Al86Ni9La5条带中都析出富AI相,然而在Sc=22.0和29.3m/s时却没有析出。在原带和处理后的条带中,随着Sc由14.7增加到29.3m/s,压痕的周围产生半圆形的Ⅰ型剪切带的条数从3或4个变为了2个。将这些现象与原带中随Sc增加、α值的非线性降低相结合,可以解释为当Sc达到某一临界值后骨架原子团发生了逾渗。
     分别通过采用不同试验参数的室温低能球磨、室温高能球磨和冷冻高能球磨对Al86Ni9La5条带进行了处理,并对试样进行了XRD、DSC、SEM和电化学测试,发现:(1)与室温球磨相比,Al86Ni9La5非晶合金在冷冻球磨条件下表现出更强的脆性,经21min的冷冻高能球磨后Al86Ni9La5非晶合金粒度可达微米级;(2)经不同的球磨处理后Al86Ni9La5非晶合金在结构上产生了明显的差别:经30和60min的室温低能球磨后,Al86Ni9La5非晶合金的结构发生了无序化的回复,但室温低能球磨时间增大到120min时,Al86Ni9La5非晶合金的结构又向有序化转变;而高能球磨使得Al86Ni9La5非晶合金中的骨架原子团明显失稳,并且由较低的Sc制备的Al86Ni9La5非晶合金在高能球磨后发生了晶化,较高的Sc制备的Al86Ni9La5非晶合金结构变得有序。而且低温能进一步促进晶化。(3)经室温低能球磨和冷冻高能球磨后,Al86Ni9La5非晶合金的腐蚀电位均有所提高,但钝化区间的宽度明显降低,尤其是冷冻高能球磨,使得Al86Ni9La5非晶合金的钝化区间大为降低。Al86Ni9La5非晶合金钝化区的宽度与非晶基体中的骨架原子团有关,骨架原子团数量越多,钝化区的宽度越宽或钝化膜的稳定性越高。
In the present thesis, Al86Ni9La5amorphous alloy spun with different cooling rates was chosen as the study object. Through mechanical compression, autoclave treatment, low energy ball-milled at room temperature (LE-BM-RT), high energy ball-milled at room temperature (HE-BM-RT) and high energy ball-milled at cryogenic temperature (HE-BM-LT), the effects of different treatment conditions on the amorphous structure, thermodynamic properties, mechanical properties and corrosion resistance were studied.
     The effects of compression on crystallization behavior, fracture behavior and corrosion resistance of Al86Ni9La5ribbons has been studied by using X-ray diffraction (XRD), differential scanning calorimeter (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and electrochemistry station. The results reveal that:(1) The Al86Ni9La5ribbons spun with Sc=29.3m/s keep fully amorphous under different pressures. However, the ribbons spun with Sc=14.7m/s precipitate crystalline phases in amorphous matrix during the compression. The results indicate that the compression only affects the growth of nuclei instead of nucleation;(2) Compression improves the toughness of the Al86Ni9La5ribbons spun with Sc=29.3and14.7m/s, which is associated with the free volume and shear bands induced by compression;(3) The passive film stability of Al86Ni9La5ribbons is weakened by compression, which induces the free volume and shear bands and the precipitation of crystalline phases into the ribbons. With Sc=14.7m/s, the corrosion potential increases while pitting potential decreases with increasing compression pressure due to the precipitation of crystalline phases;(4) The magnetism of Al86Ni9La5ribbons are related with their structure. The more quenched-in nuclei or crystalline phases exist in the ribbons, the stronger is the paramagetism. While, the higher the content of the amorphous phase, the stronger the diamagnetism is.
     The Al86Ni9La5ribbons are spun with different circumferential speeds Sc and treated with5MPa compression and autoclave conditions. The thermal properties, microhardness and surface morphology of ribbons have been investigated. From these experimental results, the major conclusions are summarized as the following:(1) The onset temperature Tx2of second crystallization and the contraction degree δ of as-spun ribbons have an increasing tendency with increasing Sc.In contrast, the pre-peak height, deformed zone size l and inter-shear-band spacing near the microhardness indentations of the as-spun ribbons have a decreasing tendency with increasing Sc. These results can be ascribed to the argument that the amount of backbone clusters in the as-spun ribbons is larger at a higher Sc. The backbone clusters can be stabilized by5MPa compression and autoclave treatment;(2) In case of both5MPa compression and autoclave treatment, Al-rich phases precipitate in the ribbons with Sc=14.7m/s, but are absent in the ribbons with Sc=22.0and29.3m/s. In as-spun and treated ribbons, the number of edges of the indentation, from which semi-circular shear bands I emanate, varies from3or4to2when the Sc increases from14.7to29.3m/s. Both phenomena together with the non-linear decrease of a for the as-spun ribbon with increasing Sc can be explained by percolating backbone clusters when Sc reaches a critical value.
     The Al86Ni9La5ribbons which are treated with low energy ball-milling at room temperature, high energy ball-milling at room temperature and high energy ball-milling at cryogenic temperature at different milling time are studied by XRD, DSC, SEM and electrochemical experiment. It is found that:(1) Compared with low energy ball-milling at room temperature, the Al86Ni9La5ribbons showed higher brittleness after highe energy ball-milled at cryogenic temperature. And the Al86Ni9La5ribbons are grinded into particals with the size of about several micrometers.(2) After different types of ball-milling, the milled Al86Ni9La5ribbons occurs obvious difference:after30and60minutes low energy ball-milling at room temperature, the structure of the Al86Ni9La5ribbons occurs disorder rejuvenation; while, when the milling time increases to120minutes, the structure occurs order transformation. However, the amorphous structure of the Al86Ni9La5ribbons is destroyed after high energy ball-milled. Even the ribbons quenched with the relatively low Sc occured distinct crystallization. And the structure of the ribbons quenched with higher Sc occur order transformation.(3) After both the low energy ball-milling at room temperature and high energy ball-milling at cryogenic temperature, the corrosion potentials of the Al86Ni9La5ribbons increase and the width of passive zones decrease. Especially, the high energy ball-milling at cryogenic temperature led to the obvious shorten of the passive zones. The width of passive zone of Al86Ni9La5alloy is related with the quantity of backbone clusters in the amorphous matrix. The more backbone clusters exist, the larger width is passive zone.
引文
[1]郭贻诚,王震西.非晶态物理学[M].北京:科学出版社,1984
    [2]徐远丽,室温轧制变形对金属玻璃结构和性能的影响[D],大连理工大学博士学位论文,2011,5.
    [3]王艳,元素掺杂对Zr基非晶形成及结构演化影响的研究[D],山东大学博士学位论文,2009,5.
    [4]汪卫华,金属玻璃发展简史[J].物理,2011,40:701-709.
    [5]J. Kramer, The preparation of amorphous Sb by vapor deposition in vacuum [J]. Ann. Phys., 1934,19 (5):37-39.
    [6]A. Brenner, D.E. Couch, E.K. Williams, Electro-deposition of alloys of phosphorus and nickel or cobalt [J]. J. Res Nat. Bur. Stand.,1950,44:109-112.
    [7]M.H. Cohen, D.Turnbull, Molecular transport in liquids and glasses [J]. J. Chem. Phys.,1959, 31:1164-1169.
    [8]Klement, W., Willens, R. H. Duwez, P. Non-crystalline Structure in Solidified Gold-Silicon Alloys[J]. Nature,1960,187:869-870.
    [9]张荣生,刘海洪,快速凝固技术[M].北京:冶金工业出版社,1994,p.1-11.
    [10]D.Turnbull Under what conditions can a glass be formed? [J]. Contem. Phys.,1969,10: 473-488.
    [11]R. B. Schwarz, W. L. Johnson, Formation of an Amorphous Alloy by Solid-State Reaction of Pure Polycrystalline Metals [J]. Phys. Rev. Lett.,1983,51:415-418.
    [12]M. Saito, K. Fukamichi, T. Gato et al. Concentration Dependence of the Magnetic Properties of Melt-Quenched P-Type Mg3oGdZn7o_x Quasicrystal [J]. J. Alloy Compd.,1997, 251:6-11.
    [13]W. K. Wang, H. Iwasaki, K. Fukamichi, Effect of high pressure on the crystallization of an amorphous Fe83 B17 alloy [J]. J. Mater. Sci.,1980,15:2701-2708.
    [14]H.S. Chen, J.T. Krause, E. Coleman, Elastic constants, hardness and their implications to flow properties of metallic glasses[J]. J. Non-crystal. Solids,1975,18:157-181.
    [15]H.W. Kui, A.L. Greer, D.Turnbull, Formation of bulk metallic glass by fluxing [J]. Appl. Phys. Lett.,1984,45:615-616.
    [16]A Inoue, High strength bulk amorphous alloys with low critical cooling rate (overview) [J]. Mater. Trans. JIM,1995,36:866-875.
    [17]A. Peker, W.L, Johnson, A highly processable metallic glass:ZrTiCuNiBe [J]. Appl. Phys. Lett.,1993,63:2342.
    [18]Y.Q. Cheng, E. Ma, Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci.,2011,56:379-473.
    [19]M.H. Cohen, D.Turnbull, Molecular transport in liquids and glasses [J]. J. Chem. Phys., 1959,31:1164-1169.
    [20]D. Turnbull, M.H.Cohen, Free-volume model of amorphous phase-glass transition [J]. J. Chem. Phys.,1961,34:120-125.
    [21]D. Turnbull, M.H.Cohen, On free-volume model of liquid-glass transition [J]. J. Chem. Phys.,1970,52:3038-3041.
    [22]F. Spaepen, Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses [J]. Acta Metall.,1977,25:407-415.
    [23]T. Egami, Understanding the properties and structure of metallic glasses at the atomic level [J]. JOM-J. Miner. Met. Mater. Soc.2001,62:70-75.
    [24]W. Dmowski, C. Fan, M.L. Morrison, P.K. Liaw, T. Egami, Structural changes in bulk metallic glass after annealing below the glass-transition temperature [J]. Mater. Sci. Eng. A, 2007,471:125-129.
    [25]M. Kohda, O. Haruyama, T. Ohkubo, T. Egami, Kinetics of volume and enthalpy relaxation in Pt60Ni15P25 bulk metallic glass [J]. Phys. Rev. B.,2010,81:092203.
    [26]W. Dmowski, Y. Yokoyama, A. Chuang, Y. Ren. M. Umemoto, K. Tsuchiya, A. Inoue, T. Egam, Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation [J]. Acta Mater.,2010,58:429-438.
    [27]T. Egami, K. Maeda, V. Vitek, Structural defects in amorphous solids-a computer-simulation study [J]. Philos. Mag. A,1980,41:883-901.
    [28]T. Egami, D. Srolovitz, Local structural fluctuations in amorphous and liquid-metals-a simple theory of the glasstransition [J]. J. Phys. F,1982,12:2141-2163.
    [29]D.Srolovitz, V. Vitek, T. Egami, An atomistic study of deformation of amorphous metals [J]. Acta Metall.,1983,31:335-352.
    [30]V. Vitek, T. Egami, Atomic level stresses in solids and liquids [J]. Phys. Status Solidi B, 1987,144:145-156.
    [31]D. Srolovitz, T. Egami, V.Vitek, Radial-distribution function and structural relaxation in amorphous solids [J]. Phys. Rev. B,1981,24:6936-6944.
    [32]Y. Waseda, T. Egami, Effect of low-temperature annealing and deformation on the structure of metallic glasses by X-raydiffraction [J]. J. Mater. Sci.,1979,14:1249-1253.
    [33]T. Egami, S.J. Poon, Z. Zhang, V. Keppens, Glass transition in metallic glasses:a microscopic model of topological fluctuations in the bonding network [J]. Phys. Rev. B,2007,76: 024203.
    [34]T. Tomida, T. Egami, Molecular-dynamics study of structural anisotropy and anelasticity in metallic glasses [J]. Phys. Rev. B,1993,48:3048-3057.
    [35]Y. Suzuki, J. Haimovich, T. Egami, Bond-orientational anisotropy in metallic glasses observed by X-ray-diffraction [J]. Phys. Rev.B,1987,35:2162-2168.
    [36]T. Egami, W. Dmowski, P. Kosmetatos, M. Boord, Deformation-induced bond-orientational order in metallic glasses [J]. J. Non-Cryst. Solids 1995,193:591-594.
    [37]W.L. Johnson, K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence [J]. Phys. Rev. Lett.,2005,95:195501.
    [38]M.D. Demetriou, J.S. Harmon, M. Tao, G. Duan, K. Samwer, W.L. Johnson, Cooperative shear model for the rheology of glass-forming metallic liquids [J]. Phys. Rev. Lett.,2006,97: 065502.
    [39]W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, K. Samwer, Rheology and ultrasonic properties of metallic glass-forming liquids:a potential energy landscape perspective [J]. MRS Bull.2007,32:644-650.
    [40]Y.F. Shi, M.B. Katz, H. Li, M.L. Falk, Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding inamorphous solids [J]. Phys. Rev. Lett.,2007,98:185505.
    [41]P.H. Gaskell, A new structural model for transition metal-metalloid glasses [J]. Nature,1978, 276:484-485.
    [42]杨亮,金属玻璃原子结构的电子辐射研究[D],浙江大学博十学位论文,2007.4.
    [43]R. Wang. Short-range structure for amorphous intertransition metal alloys [J]. Nature,1979, 278:700-704
    [44]H.Y. Hsieh, B.H. Toby, T. Egami, Y. He, S.J. Poon, G.J. Shiflet, Atomic-structure of amorphous Al90FexCe10-x [J]. J. Mater. Res.,1990,5:2807-2812.
    [45]H.Y. Hsieh, T. Egami, Y. He, S.J. Poon, G.J. Shiflet, Short-range ordering in amorphous Al90FexCe10-x [J]. J. Non-Cryst. Solids,1991,135:248-254.
    [46]A.N. Mansour, C.P. Wong, R.A. Brizzolara, Atomic-structure of amorphous Al100-2xCoxCex (x=8,9, and 10) and Al80Fe10Ce10 alloys-an XAFS study [J]. Phys. Rev. B,1994,50: 12401-12412.
    [47]A.N. Mansour, A. Marcelli, G. Cibin, G. Yalovega, T. Sevastyanova, A. V. Soldatov, Amorphous Al90FexCe10-x alloys:X-ray absorption analysis of the Al, Fe and Ce local atomic electronic structures [J]. Phys. Rev. B.,2002,65:134207.
    [48]T. Egami, The atomic structure of aluminum based metallic glasses and universal criterion for glass formation [J]. J. Non-Cryst. Solids,1996,207:575-282.
    [49]K. Saksl, P. Jovari, H. Franz, JZ Jiang, Atomic structure of Al88Y7Fe5 metallic glass [J]. J. Appl. Phys.,2005,97:113507.
    [50]R. Bacewicz, J. Antonowicz, XAFS study of amorphous Al-RE alloys [J]. Scripta Mater., 2006,54:1187-1191.
    [51]W. Zalewski, J. Antonowicz, R. Bacewicz, J. Latuch, Local atomic order in Al-based metallic glasses studied using XAFS method [J]. J. Alloy Compd.,2009,468:40-46.
    [52]K.Saksl, P. Jovari, H. Franz, Q.S. Zeng, J.F. Liu, J.Z. Jiang, Atomic structure of Al89La6Ni5 metallic glass [J]. J. Phys-Condens Matter.,2006,18:7579-7592.
    [53]N. Jakse, O. Lebacq, A. Pasturel, Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and A180Ni20 alloys [J]. Phys. Rev. Lett.,2004,93:207801.
    [54]H.W. Sheng, Y.Q. Cheng, P.L. Lee, S.D. Shastri, E. Ma, Atomic packing in multicomponent aluminum-based metallic glasses [J]. Acta Mater.,2008,56:6264-6272.
    [55]B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, E. Ma, Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength [J]. Scripta Mater.,2009,61:423-426.
    [56]B.J. Yang, J.H. Yao, Y.S. Chao, J.Q. Wang, E. Ma, Developing aluminum-based bulk metallic glasses [J]. Philos Mag.,2010,90:3215-3231.
    [57]S.J. Poon, G.J. Shiflet, F.Q. Guo, V.Ponnambalam, Glass formability of ferrous- and aluminum-based structural metallic alloys [J]. J. Non-Cryst. Solids,2003,317:1-9.
    [58]F.R. de Boer, R. Boom, W.C.M. Mattens, A.R.Miedema, A.K. Niessen, in:F.R. De Boer, D.G. Pettifor(Eds.), Cohesion in Metals Transition Metal Alloys, Cohesion and Structure [M], vol.1, North Holland, Amsterdam,1988.
    [59]O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull.,2001,36:2183-2198.
    [60]S. G. Mayr, Relaxation kinetics and mechanical stability of metallic glasses and supercooled melts [J]. Phys. Rev. B,2009,79:060201(R).
    [61]R. E. Baumer, and M. J. Demkowicz, Glass Transition by Gelation in a Phase Separating Binary Alloy [J]. Phys. Rev. Lett.,2013,110:145502.
    [62]A. Takeuchi, A. Inoue, Critically-Percolated, Cluster-Packed Structure in Cu-Zr Binary Bulk Metallic Glass Demonstrated by Molecular Dynamics Simulations Based on Plastic Crystal Model [J]. Mater. Trans.,2012,53:1113-1118.
    [63]R. Soklaski, Z. Nussinov, Z. Markow, K. F. Kelton, L. Yang, Connectivity of icosahedral network and a dramatically growing static length scale in Cu-Zr binary metallic glasses [J]. Phys. Rev. B,2013,87:184203.
    [64]A.J. Cao, Y.Q. Cheng, E. Ma, Structural processes that initiate shear localization in metallic glass [J].Acta Mater.,2009,57:5146-5155.
    [65]H.S. Chen, T.T. Wang, Mechanical Properties of Metallic Glasses of Pd-Si-Based Alloys [J]. J. Appl. Phys.,1970,41:5338-5339.
    [66]S. Jovanovic, C.S. Smith, Elastic Modulus of Amorphous Nickel Films [J]. J. Appl. Phys., 1961,32:121-122.
    [67]T. Masumoto, R. Maddin, The mechanical properties of palladium 20% silicon alloy quenched from the liquid state [J]. Acta Metall.,1971,19:725-741.
    [68]H.J. Leamy, H.S. Chen, T.T. Wang, Plastic flow and fracture of metallic glass [J]. Metall. Trans.,1972,3:699-709.
    [69]L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings [J], J. Non-Cryst. Solids,2005,351:3259-3270.
    [70]D.R. Chichili, K.T. Ramesh, K.J. Hemker, Adiabatic shear localization in α -titanium: Experiments, modeling and microstructural evolution [J]. J. Mech. Phys. Solids,2004,52: 1889-1909.
    [71]Q. Wei, D. Jia, K.T. Ramesh, E. Ma, Evolution and microstructure of shear bands in nanostructured Fe [J]. Appl. Phys. Lett.,2002,81:1240-1242.
    [72]S. Bair, C. McCabe, A study of mechanical shear bands in liquids at high pressure [J].Trib. Inter.,2004,37:783-789.
    [73]P.C.F. M(?)ller, S. Rodts, M.A.J. Michels, D. Bonn, Shear banding and yield stress in soft glassy materials [J]. Phys. Rev. E,2008,77:041507.
    [74]H. Chen, Y. He, G.J. Shiflet, S.J. Poon, Deformation-induced nanocrystal formation in shear bands of amorphous alloys [J]. Nature,1994,367:541-543.
    [75]J J. Kim, Y. Choi, S. Suresh, A.S. Argon, Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature [J]. Science 2002,295:654-657.
    [76]A.A. Csontos, G.J. Shiflet, Formation and chemistry of nanocrystalline phases formed during deformation in aluminum-rich metallic glasses [J]. Nanostruct. Mater.,1997,9: 281-289.
    [77]R.J. Hebert, N. Boucharat, J.H. Perepezko, H. Rosner, G. Wilde, Calorimetric and microstructural analysis of deformation induced crystallization reactions in amorphous Al88Y7Fe5 alloy [J]. J. Alloys Compd.,2007,434:18-21.
    [78]M.W. Chen, A. Inoue, W. Zhang, T. Sakurai, Extraordinary Plasticity of Ductile Bulk Metallic Glasses [J]. Phys. Rev. Lett.,2006,96:245502.
    [79]M.L. Trudeau, R. Schulz, D. Dussault, A. Vanneste, Structural changes during high-energy ball milling of iron-based amorphous alloys:Is high-energy ball milling equivalent to a thermal process? [J]. Phys. Rev. Lett.,1990,64:99-102.
    [80]G. Mazzone, A. Montone, M.V. Antisari, Effect of plastic flow on the kinetics of amorphous phase growth by solid state reaction in the Ni-Zr system [J]. Phys. Rev. Lett.,1990,65: 2019-2022.
    [81]J.J. Kim, Y. Choi, S. Suresh, A.S. Argon, Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature [J]. Science,2002,295:654-657.
    [82]M. L. Trudeau, R. Schulz, Structural Changes during High-Energy Ball Milling of Iron-Based Amorphous Alloys:Is High-Energy Ball Milling Equivalent to a Thermal Process? [J]. Phys. Rev. Lett.,1990,1:99-102.
    [83]Y. He, G. J. Shiflet, S.J. Poon, Ball milling-induced nanocrystal formation in aluminum-based metallic glasses [J]. Acta Metall. Mater.,1995,43:83-91.
    [84]J. Wu, T. Grosdidier, N. Allain-bonasso, E. Gaffet, C. Dong, On the mechanically induced crystallization of FCC phases by mechanical milling in ZrAlNiCu bulk metallic glasses [J]. J. Alloys. Compd.,2010,504S:S264-S266.
    [85]H. Shao, Y.L. Xu, B. Shi, C.S. Yu, H. Hahn, H. Gleiter, J.G. Li, High density of shear bands and enhanced free volume induced in Zr70Cu20Ni10 metallic glass by high-energy ball milling [J]. J. Alloys. Compd.,2013,548:77-81.
    [86]G. J. Fan, M. X. Quan, Z. Q. Hu, Mechanically induced structural relaxation in an amorphous metallic Fe80B20 alloy [J]. Appl. Phys. Lett.,1996,68:319-321.
    [87]G. J. Fan, M. X. Quan, Z. Q. Hu, Deformation-enhanced thermal stability of an amorphous Fe80B20 alloy [J]. Appl. Phys. Lett.,1996,80:6055-6057.
    [88]N. Boucharat, R. Hebert, H. Rosner, R.Z. Valiev, G. Wilde, Synthesis routes for controlling the microstructure in nanostructured Al88Y7Fe5 alloys [J]. J. Alloys Compd.,2007,434: 252-254.
    [89]K. Wang, T. Fujita, Y.Q. Zeng, N. Nishiyama, A. Inoue, M.W. Chen, Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity [J]. Acta Mater.,2008,56:2834-2842.
    [90]S.W. Lee, M.Y. Huh, E. Fleury, J.C. Lee, Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys [J]. Acta Mater.,2006,54:349-355.
    [91]K. Hajlaoui, A.R. Yavari, B. Doisneau, A. LeMoulec, W.J. Botta, G. Vaughan, A.L.Greer, A. Inoue, W. Zhang, A. Kvick, Shear delocalization and crack blunting of a metallic glass containing nanoparticles:In situ deformation in TEM analysis [J]. Scripta Mater.,2006,54: 1829-1834.
    [1]刘光启,马连湘,刘杰,化学化工物性数据手册有机卷[M],化工出版社,北京,2002.
    [2]郭靖岩,铝热反应性材料的冷冻高能球磨制备及其热性能[D],山东大学硕士学位论文,济南,2012.
    [3]神户博太郎编,刘振海译,热分析,北京:化学出版社,1985.
    [4]王一禾,杨赝善编,非晶态合金,北京:冶金工业出版社,1989.
    [5]于伯龄,姜胶东,实用热分析,北京:纺织工业出版社,1990.
    [1]A. Inoue, K. Ohtera, A.P. Tsai and T. Masumoto, High-Tc Superconductor Produced by Oxidization of Melt-Spun Ag-Ho-Ba-Cu Alloy Ribbon [J]. Jpn. J. Appl. Phys.,1988,27: L280-L282.
    [2]A. Inoue, K. Ohtera, A.P. Tsai and T. Masumoto, Aluminum-Based Amorphous Alloys with Tensile Strength above 980 MPa (100 kg/mm2) [J]. Jpn. J. Appl. Phys.,1988,27: L479-L482.
    [3]Y. Kawamura, A. Inoue, T. Masumoto, Mechanical properties of amorphous alloy compacts prepared by a closed processing system [J]. Scripta Metall. Mater.,1993,29:25-30.
    [4]A. Inoue, Y. Horio, Y.H. Kim, T. Masumoto, Elevated-temperature strength of an A188Ni9Ce2Fel amorphous alloy containing nanoscale fcc-Al particles [J].Mater. Trans., JIM,1992,33:669-674.
    [5]H. Yan, J.Q. Wang, Y. Li, Influence of TM and RE elements on glass formation of the ternary Al-TM-RE systems [J]. J. Non-Cryst. Solids,2008,354:3473-3479.
    [6]Y.H. Kim, A. Inoue, T. Masumoto, Ultrahigh tensile strengths of A188Y2Ni9M1 (M=Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles [J]. Mater. Trans. JIM, 1990,31:747-749.
    [7]Y.H. Kim, A. Inoue, T. Masumoto, Increase in mechanical strength of Al-Y-Ni amorphous alloys by dispersion of nanoscale fcc-Al particles [J]. Mater. Trans. JIM,1991,32:331-338.
    [8]G.H. Li, W.M. Wang, X.F. Bian, J.T. Zhang, R. Li, T. Huang, Influences of Similar Elements on Glass Forming Ability and Magnetic Properties in Al-Ni-La Amorphous Alloy [J]. J. Mater. Sci.Technol.,2010,26:146-150.
    [9]Y.H. Kim, A. Inoue, T. Masumoto, Ultrahigh Mechanical Strengths of Al88Y2Ni10-xMx (M=Mn,Fe or Co) Amorphous Alloys Containing Nanoscale fcc-Al Particales [J]. Mater. Trans. JIM,199132:599-608.
    [10]H. Chen, Y. He, G.J. Shifet, S.J. Poon, Mechanical properties of partially crystallized aluminum based metallic glasses [J]. Scripta Metall. Mater.,1991,25:1421-1424.
    [11]F. Zhou, X.H. Zhang, K. Lu, Synthesis of a bulk amorphous alloy by consolidation of the melt-spun amorphous ribbons under high pressure [J]. J. Mater. Res.,1998,13:784-788.
    [12]Y. Kawamura, H. Kato, A. Inoue, T. Masumoto:Fabrication of bulk amorphous alloys by powder consolidation [J]. Int. J. Powder Metall.,1997,33:50-61.
    [13]T. Imura, M. Suwa, K. Fujii, Effects of ultrahigh pressure on the crystallization temperature of Ni80P20 amorphous alloys [J]. Mater. Sci. Eng.,1988,97:247-251.
    [14]L.A. Davis, S. Kavesh:Deformation and fracture of an amorphous metallic alloy at high pressure [J]. J. Mater. Sci.,1975,10:453-459.
    [15]P.E. Donovan, A yield criterion for Pd40Ni40P20 metallic glass [J]. Acta Metall.,1989,37: 445-456.
    [16]Y. Hu, J.F. Li, P.N. Zhang, Y.H. Zhou, Crystallization Behavior of Zr55Al10Cu30Ni5 Bulk Metallic Glass Rolled at Room Temperature [J]. J. Mater.Sci. Technol.,2010,26:177-180.
    [17]F. Ye, K. Lu, Pressure effect on crystallization kinetics of an Al-La-Ni amorphous alloy [J]. Acta Mater.,1999,47:2449-2454.
    [18]Y.X. Zhuang, J.Z. Jiang, T.J. Zhou, H. Rasmussen,L. Gerward, M. Mezouar, W. Crichton, A. Inoue, Pressure effects on Al89La6Ni5 amorphous alloy crystallization [J]. Appl. Phys. Lett., 2000,77,4133-4135.
    [19]N. Boucharat, R. Hebert, H. RAosner, R. Valiev, G Wilde, Nanocrystallization of amorphous Al88Y7Fes alloy induced by plastic deformation [J]. Scripta Mater.,2005,53:823-828.
    [20]W.H. Jiang, M. Atzmon, The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5:a high-resolution transmission electron microscopy study [J]. Acta Mater.,2003,51:4095-4105.
    [21]A. Inoue, H. Kimura, Synthesis and Properties of Mechanically Alloyed and Nanocrystalline Materials [J]. Mater. Sci. Forum,1997,235-238:873-880.
    [22]T. Gloriant, A.L. Greer, Al-based nanocrystalline composites by rapid solidification of Al-Ni-Sm alloys [J]. Nanostruct. Mater.,1998,10:389-396.
    [23]J.Q. Wang,H.W. Zhang, X.J. Gu, K. Lu, F. Som-mer, E.J. Mittemeijer, Kinetics of primary nanocrystallization in Al-rich metallic glass with quenched-in nuclei [J]. Mater. Sci. Eng. A, 2004,375-377:980-984.
    [24]N. Boucharat, H. RAosner, G. Wilde, Development of nanocrystals in amorphous Al-alloys [J]. Mater. Sci.Eng. C,2003,23:55-59.
    [25]P. Muniz, J.A. De Toro, J.M. Riveiro, Influence of the quenched-in nuclei on the crystallisation of amorphous Ni80B20 [J]. J. Magn. Magn. Mater.,2004,272-276: E1129-E1130.
    [26]C.H. Shek, G. He, Z. Bian, GL. Chen, J.K.L. Lai, Effect of composition and cooling rate on structures and properties of quenched or cast Al-V-Fe alloys [J]. Mater. Sci. Eng. A,2003, 357:20-26.
    [27]冯端,金属物理学(第二卷)[M].北京:科学出版社,1987,p136-139.
    [28]J.Y. Thompson, K.J. Anusavice, B. Balasubramaniam, J.J. Mecholsky, Effect of Micmcracking on the Fracture Toughness and Fracture Surface Fractal Dimension of Lithia-Based Glass-Ceramics [J]. J. Am. Ceram. Soc.,1995,78:3045-3049.
    [29]C.H. Shek, G.M. Lin, K.L. Lee, J.K.L. Lai, Fractal fracture of amorphous Fe46Ni32V2Si14B6 alloy [J]. J. Non-Cryst. Solids,1998,224:244-248.
    [30]B.P. Kanungo, S.C. Glade, P. Asoka-Kumar, K.M.Flores, Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses [J]. Intermetallics,2004,12:1073-1080.
    [31]W.H. Jiang, F. Jiang, B.A. Green, F.X. Liu and P.K.Liaw, Electrochemical corrosion behavior of a Zr-based bulk-metallic glass [J]. Appl. Phys. Lett.,2007,91:041904.
    [32]M.Q. Jiang, L.H. Dai, Shear-band toughness of bulk metallic glasses [J]. Acta Mater.,2011, 59:4525-4537.
    [33]J. Jayaraj, A. Gebert, L. Schultz, Passivation behaviour of structurally relaxed Zr4gCu36Ag8Al8 metallic glass [J]. J. Alloy. Compd.,2009,479:257-261.
    [34]Z. Hu, L. Li, Y.P. Hu, J.S. Xing, B.C Wei, Oxidation features of plastic deformed Zr-based bulk metallic glass [J]. J. Alloy. Compd.,2011,509, S69-S73.
    [35]S.D. Zhang, Z.M. Wang, X.C. Chang, W.L. Hou, J.Q. Wang, Identifying the role of nanoscale heterogeneities in pitting behaviour of Al-based metallic glass [J]. Corros. Sci., 2011,53:3007-3015.
    [36]曹楚南,电化学腐蚀原理(第三版)[M].北京:化学工业出版社,2008,p254-256.
    [37]Z.M.Wang, J. Zhang, X.C. Chang, W.L. Hou, J.Q.Wang, Structure inhibited pit initiation in a Ni-Nb metallic glass [J]. Corros. Sci.,2010,52:1342-1350.
    [38]J.G. Lin, J. Xu, W.W. Wang, W. Li, Electrochemical behavior of partially crystallized amorphous A186Ni9La5 alloys [J]. Mater. Sci. Eng. B,2011,176:49-52.
    [39]龚静,杨红旺,杨柏俊,王瑞春,李荣德,王建强,非晶态及部分晶化态Al-Ni-Y合金的磁性[J].金属学报,2011,47:333-336.
    [1]A. Inoue, K. Ohtera, T. Maasumoto, New amorphous Al-Y, Al-La and Al-Ce alloys prepared by melt spinning [J], Jpn. J. Appl. Phys.,1988,27:L736-L739.
    [2]H.S. Kim, Hardening behaviour of partially crystallised amorphous Al alloys [J],Mater. Sci. Eng. A,2001,304-306:327-331.
    [3]W.S. Sanders, J.S. Warner, D.B. Miracle, Stability of Al-rich glasses in the Al-La-Ni system [J]. Intermetallics,2006,14:348-351.
    [4]S.J. Poon, G.J. Shiflet, F.Q. Guo, V.Ponnambalam, Glass formability of ferrous-and aluminum-based structural metallic alloys [J]. J. Non-Cryst. Solids,2003,317:1-9.
    [5]S. G. Mayr, Relaxation kinetics and mechanical stability of metallic glasses and supercooled melts [J]. Phys. Rev. B,2009,79:060201 (R).
    [6]R.J. Hebert, N. Boucharat, J.H. Perepezko, H. Rosner, G. Wilde, Wilde, Calorimetric and microstructural analysis of deformation induced crystallization reactions in amorphous Al88Y7Fe5 alloy [J]. J. Alloys Compd.,2007,434-435:18-21.
    [7]X.J. Gu, J.Q. Wang,F. Ye,K. Lu, Influence of pressure on crystallization kinetics in an Al-Ni-Ce-Fe amorphous alloy [J]. J. Non-Cryst. Solids,296 (2001) 74-80.
    [8]J. Schroers, W.L. Johnson, Ductile bulk metallic glass [J]. Phys. Rev. Lett.,2004,93:255506.
    [9]T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Dynamic response of a Pd4oNi4oP2o bulk metallic glass in tension [J]. Scripta Mater.,2002,46:43-47.
    [10]W.H. Jiang, M. Atzmon, The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5:a high-resolution transmission electron microscopy study [J]. Acta Mater.,2003,51:4095-4105.
    [11]J.C. Lee, Y.C. Kim, J.P. Ahn., H.S. Kim, S.H. Lee, B.J. Lee, Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite [J]. Acta Mater.2004,52:1525-1533.
    [12]J.Q. Wang, H.W. Zhang, X.J. Gu, K. Lu, F. Sommer and E.J. Mittemeijer, Kinetics of primary nanocrystallization in Al-rich metallic glass with quenched-in nuclei [J]. Mater. Sci. Eng. A,2004,375-377:980-984.
    [13]N. Boucharat, H. Rosner and G. Wilde, Development of nanocrystals in amorphous Al-alloys [J]. Mater. Sci. Eng. C,2003,23:55-59.
    [14]Y. Liu, W.M. Wang, H.D.Zhang, H.J. Ma and B. An, Effect of Compression on the Crystallization Behavior and Corrosion Resistance of A186Ni9La5 Amorphous Alloy [J]. J. Mater. Sci. Technol.2012,28:1102-1108.
    [15]B.G. Yoo, Y.J. Kim, J.H. Oh, U. Ramamurty, J.I. Jan, On the hardness of shear bands in amorphous alloys [J]. Scripta Mater.2009,61:951-954.
    [16]S. Jana, R. Bhowmick, Y. Kawamura, K. Chattopadhyay, U. Ramamurty, Deformation morphology underneath the Vickers indent in a Zr-based bulk metallic glass [J]. Intermetallics,2004,12:1097-1102.
    [17]W.J. Wright, M.W. Samale, T.C. Hufnagel, M.M. LeBlanc, J.N. Florando, Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass [J]. Acta Mater.2009,57:4639-4648.
    [18]S.R. Elliott, Medium-range structural order in covalent amorphous solids [J]. Nature,1991, 354:445-452.
    [19]J.K. Zhou, X.F. Bian, W.M. Wang, X.Y. Xue, S.H. Wang, Y. Zhao, K.B. Yin, Medium-range order and crystallization in amorphous Al-Ni-Pr alloys [J], Mater. Lett.2004, 58:2559-2563.
    [20]B.A. Sun, X.F. Bian, J. Guo, J.Y. Zhang, Hump peak formation and the crystallization in amorphous Al87Co10Ce3 alloy [J]. T. Mao, Mater. Lett.,2007,61:111-114.
    [21]L. Zhang, Y.S. Wu, X.F. Bian, H. Li, W.M. Wang, S.Wu, Short-range and medium-range order in liquid and amorphous Al9oFe5Ce5 alloys [J]. J. Non-Cryst. Solids,2000,262: 169-176.
    [22]International Tables for X-Ray Crystallography [M], Birmingham, England,1968.
    [23]O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull.,2001,36:2183-2198.
    [24]H.W. Sheng, Y.Q. Cheng, P.L. Lee, S.D. Shastri, E. Ma, Atomic packing in multicomponent aluminum-based metallic glasses [J]. Acta Mater.,2008,56:6264-6272.
    [25]D.V. Louzguine, A. Inoue, Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature [J]. J. Non-Cryst. Solids,2002,311:281-293.
    [26]J.H. Perepezko, S.D. Imhoff, Primary crystallization reactions in Al-based metallic glass alloys [J]. J. Alloys Compd.,2010,504S:S222-S225.
    [27]P. Gargarella, C.S. Kiminami, M.F. de Oliveira, C. Bolfarini, W.J. Botta, Crystallisation behaviour and glass-forming ability in Al-La-Ni system [J]. J. Alloys Compd.2010,495: 334-337.
    [28]J.M. Dubois, GL. Caer, Caer, Ordre local et proprietes physiques des verres metalliques riches en fer [J]. Acta Metall.1984,32:2101-2114.
    [29]J. Guo, X.F. Bian, T. Lin, Y. Zhao, T.B. Li, B. Zhang, B.A. Sun, Formation and interesting thermal expansion behavior of novel Sm-based bulk metallic glasses [J]. Intermetallics,2007, 15:929-933.
    [30]G.H. Li, W.M.Wang, X.F. Bian, J.T. Zhang, R. Li, L.Wang, Comparing the dynamic and thermodynamic behaviors of Al86Ni9La5/(La0.5Ce0.5)5 amorphous alloys [J]. J. Alloys Compd. 2009,478:745-749.
    [31]Q.P. Cao, J.F. Li, Y.H. Zho, Effect of rolling deformation on the microstructure of bulk Cu6oZr2oTi2o metallic glass and its crystallization [J]. Appl. Phys. Lett.,2005,87:101901.
    [32]X. Hu, S.C. Ng, Y.P. Feng, Y. Li, Cooling-rate dependence of the density of Pd40Ni10Cu30P2O bulk metallic glass [J]. Phys. Rev. B,2001,64:172201.
    [33]Y. He, R.B. Schwarz, D.G. Mandrus, Thermal expansion of bulk amorphous Zr41.2Til3.8Cu12.5Ni10Be22.5 alloy [J]. J. Mater. Res.,1996,11:1836-1838.
    [34]Y. Shi, M.L. Falk, Does metallic glass have a backbone? The role of percolating short range order in strength and failure [J]. Script. Mater.54 (2006) 381-386.
    [35]A.L. Greer, Y.Q. Cheng, Shear bands in metallic glasses [J]. Mater. Sci. Eng. R,2013,74: 71-132.
    [36]A. Inoue, Consolidation of partially amorphous aluminium-alloy powders by severe plastic deformation [J]. Prog. Mater. Sci.,1998,43:365-517.
    [37]Z.C. Zhong, X.Y. Jiang, A.L. Greer, Micro structure and hardening of Al-based nanophase composites [J]. Mater. Sci. Eng. A,1997,226-228:531-535.
    [38]K. Hono, Y. Zhang, A. Inoue, T. Sakurai, Mater. Trans. JIM 36 (1995) 909-917
    [39]R. Sahu, S. Chatterjee, K.L. Sahoo, Mechanical properties and nanocrystalliz- ation behavior of Al-Ni-La alloys [J].Metall. Mater. Trans. A,2010,41A:861-869.
    [40]M. Gogebakan, Mechanical properties of AlYNi amorphous alloys [J]. J. Light Metals 2 (2002) 271-275.
    [1]F. Spacepen, A. I. Taub, F.E. Luborsky Amorphous Metallic Alloys [M]. Butterworths, Boston,1983.
    [2]T. Matsumoto, R. Madding, Structural Stability and Mechanical Properties of Amorphous Metals [J]. Mater. Sci. Eng.,1975,19:1-24.
    [3]F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta metall.,1977,25:407-415.
    [4]A.S. Argon, Plastic deformation in metallic glasses [J]. Acta metall.,1979,27:47-58.
    [5]J.J. Sunol, A. Gonzalez, T. Pradell, P. Bruna, M.T. Clavaguera-Mora, N. Clavaguera, Thermal and structural changes induced by mechanical alloying in melt-spun Fe-Ni based amorphous alloys [J]. Mater. Sci. Eng. A,2004,375-377:881-887
    [6]C. Suryanarayana, Mechanical alloying and milling [J]. Prog. Mater. Sci.2001,46:1-148.
    [7]M. L. Trudeau, R. Schulz, Structural Changes during High-Energy Ball Milling of Iron-Based Amorphous Alloys:Is High-Energy Ball Milling Equivalent to a Thermal Process? [J]. Phys. Rev. Lett.,1990,1:99-102.
    [8]Y. He, G. J. Shiflet, S.J. Poon, Ball milling-induced nanocrystal formation in aluminum-based metallic glasses [J]. Acta Metall. Mater.,1995,43:83-91.
    [9]J. Wu, T. Grosdidier, N. Allain-bonasso, E. Gaffet, C. Dong, On the mechanically induced crystallization of FCC phases by mechanical milling in ZrAlNiCu bulk metallic glasses [J]. J. Alloys. Compd.,2010,504S:S264-S266.
    [10]H. Shao, Y.L. Xu, B. Shi, C.S. Yu, H. Hahn, H. Gleiter, J.G. Li, High density of shear bands and enhanced free volume induced in Zr70Cu20Ni10 metallic glass by high-energy ball milling [J]. J. Alloys. Compd.,2013,548:77-81.
    [11]G. J. Fan, M. X. Quan, Z. Q. Hu, Mechanically induced structural relaxation in an amorphous metallic Fe80B20 alloy [J]. Appl. Phys. Lett.,1996,68:319-321.
    [12]G. J. Fan, M. X. Quan, Z. Q. Hu, Deformation-enhanced thermal stability of an amorphous Fe80B20 alloy [J]. Appl. Phys. Lett.,1996,80:6055-6057.
    [13]H.Q. Li, C.g Fan, K.X. Tao, H. Choo, P. K. Liaw, Compressive Behavior of a Zr-Based Metallic Glass at CryogenicTemperatures [J]. Advan. Mater.,2006,18:752-754.
    [14]Y.J. Huang, J. Shen, J.F. Sun, Z.F. Zhang, Enhanced strength and plasticity of a Ti-based metallicglass at cryogenic temperatures [J]. Mater. Sci. Eng. A,2008,498:203-207.
    [15]A. Kawashima, Y.Q. Zeng, M. Fukuhara, H. Kurishit,N. Nishiyama, H. Miki, A. Inoue, Mechanical properties of a Ni60Pd20P17B3 bulk glassy alloy at cryogenic temperatures [J]. Mater. Sci. Eng. A,2008,498:475-481.
    [16]W.H. Jiang, F.E. Pinkerton, M. Atzmon, Deformation-induced nanocrystallization in an Al-based amorphous alloy at a subambient temperature [J]. Scripta Mater.,2003, 48:1195-1200.
    [17]A. Guinier, X-ray Diffraction in crystal, Impe and Amorphous Bodies [M]. W.H. Freeman, San Francisco,1963:72-81.
    [18]W.M. Wang, W.X. Zhang, A. Gebert, S. Roth, C. Mickel, L. Schultz. Microstructure and Magnetic Properties in Fe61Co9-xZr8Mo5WxB17 (0≤x≤3) Glasses and Glass-Matrix Composites [J]. Metal. Mater. Trans.,2009,40:511-521.
    [19]Y.H. Liu, T. Fujital, D.P.B. Aji,, M. Matsuura, M.W. Chen, Structural origins of Johari-Goldstein relaxation in a metallic glass [J].Nature Comms.,2014,4238.
    [20]Y. Liu, S.L. Ye, B. An, Y.G. Wang, Y.J. Li, L.C. Zhang, W.M. Wang, Effects of mechanical compression and autoclave treatment on the backbone clusters in the A186Ni9La5 amorphous alloy [J]. J. Alloys. Compd.,2014,587:59-65.
    [21]Y. Liu, W.M. Wang, H.D.Zhang, H.J. Ma and B. An, Effect of Compression on the Crystallization Behavior and Corrosion Resistance of Al86Ni9La5 Amorphous Alloy [J]. J. Mater. Sci. Technol.2012,28:1102-1108.
    [22]P. Henits, A. Revesz, A.P. Zhilyaev, Zs. Kovacs, Severe plastic deformation induced nanocrystallization of melt-spun Al85Y8Ni5Co2 amorphous alloy [J]. J. Alloys. Compd.,2008, 461:195-199.
    [23]G. J. Fan, M. X. Quan, Z. Q. Hu, Deformation-enhanced thermal stability of an amorphous Fe80B20 alloy [J]. J.Appl. Phys.,1996,80:6055-6057.
    [24]Y. Liu, G.Schumacher, S. Zimmermann, J. Banhart,Devitrification of glassy A185NilOLa5 powder by thermal treatment and ball-milling [J]. J. Alloys. Compd.,2011,509S:S78-S81.
    [25]黄维清,王玲玲,邓辉球,胡望宇,赵立华,机械合金化法制备Al-Cu-Fe纳米非晶合金[J].中国有色金属学报,2001,11:647-650.
    [26]王艳,元素掺杂对Zr基非晶形成及结构演化影响的研究[D],山东大学博士学位论文,2009.5.
    [27]C.A.C. Souza, S.E. Kuri, F.S. Politti, J.E. May, C.S. Kiminami, Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution [J]. J. Non-Crystal. Solids,1999,247:69-73.
    [28]H. Alves, M. G S. Ferreira, U. Koester, Corrosion behavior of nanocrystalline (Ni70Mo30)90B10 alloys in 0.8 M KOH solution [J]. Corros. Sci.,2003,45:1833-1845.
    [29]M.K. Tam, C.H. Shek, Crystallization and corrosion resistance of Cu50Zr45Al5 bulk amorphous alloy [J]. Mater. Chem. Phys.,2006,100:34-38.
    [30]C.G. Tan, W.J. Jiang, Z.C. Zhang, X.Q. Wu, J.G. Jin,The effect of Ti-addition on the corrosion behavior of the partially crystallized Ni-based bulk metallic glasses [J]. Mater. Chem. Phys.,2008,108:29-34.
    [31]C. A. C. Souza, F. S. Politi, C. S. Kiminami, Influence of structural relaxation and partial devitrification on the corrosion resistance of Fe78B13Si9 amorphous alloy [J]. Scripta Mater., 1998,39:329-334.
    [32]D. Szewieczek, J. Tyrlik-Held, Z. Paszenda, Corrosion investigations of nanocrystalline iron based alloy [J]. J. Mater. Process. Technol.,1998,78:171-178.
    [33]R. Jindal, V.S. Raja, M.A. Gibson, M.J. Styles, T.J. Bastow, C.R. Hutchinson, Effect of annealing below the crystallization temperature on the corrosion behavior of Al-Ni-Y metallic glasses [J]. Corros. Sci. (2014), http://dx.doi.org/10.1016/j.corsci.2014.03.015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700