用户名: 密码: 验证码:
不同火源形状下射流火羽流及顶棚射流特征参数演化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实世界中发生的火灾可以呈现不同的火源形状,例如:燃气管道阀门损坏引起的气体泄漏可以抽象为轴对称火源;输电电缆的燃烧以及森林地表的火蔓延均可以抽象为线性火源;我国近年来屡屡发生的高层建筑火灾中的火溢流现象,也可以视火焰根部形状抽象为轴对称、矩形或者线性火源诱导的火灾。从火源形状上来讲大部分可以近似处理为矩形火源。当火源的长边与短边基本一致时,可以抽象为轴对称火源;而当火源的长边比短边大很多时,则可以抽象为线性火源。前人研究大都针对上面两种火源类型给出相应的规律,相比之下,对于轴对称火源进行了较多研究,而对线性火源引发的火灾则研究的相对较少;对于介于两种火源之间的更为常见的矩形火源,还未有系统研究。本文针对不同火源形状条件下的火羽流及顶棚射流特征参数演化行为进行了较为系统的研究,揭示其火焰高度、中心线温度及其诱导的顶棚射流相关规律。
     本文首先研究了矩形射流火的火焰高度和中心线温度规律;然后研究了线性火源与轴对称火源诱导的顶棚射流规律,并揭示了二者的异同点;最后将部分研究结论向高原低压环境进行了推广。具体的工作包括:
     利用自制的截面面积相等的一系列矩形喷嘴作为燃烧器开展了火焰高度实验研究。首先利用1:1宽长比的喷嘴进行实验,验证了Quintiere和Grove的理论分析结果对本实验的适用性,同时验证了本实验数据结果的可信性。其次,在宽长比在12到1:71的范围内对每个喷嘴的火焰高度数据进行拟合,得到与每个喷嘴对应的重要参数C1的值。最后,在得出C1的基础上给出矩形火焰高度的显式数学预测模型。研究结果表明:对于轴对称的燃烧器,本研究得出的C1值与Quintiere和Grove给出的结果完全一致;C1值在1:1到1:71的范围内基本不随宽长比的变化而改变,并不存在从0.179至0.444的转折,证明了线性火源的卷吸系数与其他种类的火源的卷吸系数基本相等;显式火焰高度预测模型在实验火焰功率范围内能较好的预测实际火焰高度值。
     研究揭示了自由边界条件下浮力羽流区中心线温度分布规律。由于火焰区的温度分析目前只能基于数据拟合或者进行数值计算得出,所以我们主要关注浮力羽流区的温度分布规律。首先,假设羽流中心线弗洛德数为与出口速度相关的常数,从而推导出浮力羽流区中心线温度的分布应满足的规律。其次,给出了羽流中心线弗洛德数随火源弗洛德数的变化关系并给出了基于此关系所推出的理论公式的适用范围。最后,通过实验研究来验证理论关系式,结果表明基于此假设得出的理论模型能很好的描述羽流中心线温度。
     研究揭示了不同火源形状下火羽流诱导的顶棚射流相关规律。首先通过实验研究,得到了轴对称火源顶棚射流情况下的顶棚温度分布及火焰扩展长度规律,提出了新的顶棚温度和火焰扩展长度关系式。其次研究了线性火源诱导的顶棚射流顶棚温度分布规律。最后,通过对比揭示了两种不同的火灾情况下二者之间的规律差异。值得注意的是同样规模的火源功率下,线性火诱导的顶棚射流最高温升和高温区域都比轴对称情况要小。通过实验与理论分析相结合的方式研究了轴对称火源强羽流驱动的顶棚射流的温度分布规律、火焰扩展长度和线性火源诱导的顶棚射流的温度分布规律,完善了Heskestad和Delichatsios的强羽流驱动的顶棚射流理论,揭示了线性火弱羽流诱导的顶棚射流温度分布规律。
     最后本文研究了高原低压低氧特殊环境(西藏拉萨地区)下矩形射流火火羽流的火焰高度、中心线温度及其诱导的顶棚射流行为特性。通过对比研究合肥和拉萨两地实验数据,验证了拉萨地区与合肥地区卷吸强度差异。基于拉萨地区卷吸强度减弱的特点,给出了矩形火焰高度统一预测模型中对应的Cf值,并进一步给出了重要参数n值(卷吸进火焰的氧气量与所需氧气量的比值)。同样基于卷吸强度减弱的特点,修正了矩形火源中心线温度统一预测模型。最后,我们建立了线性火源弱羽流驱动条件下顶棚射流温度分布在不同压力下的统一预测模型。这些研究结论对认识高原地区的火灾发展规律和火灾防治都有较大的理论指导意义。
Most of the fires occurred in the real world can be approximately divided into three types from the dimensions of fire source:axisymmetric fire, rectangular fire and line fire. It can be considered as axisymmetric fire when the long side is equal to the short side of the fire source while it can be dealt with line fire when the long side is much larger than the short side of the fire source. The fire dimensions fall between these two types are the general rectangular cases. For example:The fire due to gas leakage from a broken valve of pipeline can be considered as a axisymmetric fire; The feeder cable fire can be considered as a line fire; the forest surface fire spreading can also be dealt with the line fire theory; the flame ejecting behavior from a building facade opening can be considered as an axisymmetric fire or a line fire according to different real situations. A lot of research results about axisymmetric fire have been reported in the past years because it is easy to analyze. However, the study on the line fire is relatively rarer than that about axisymmetric fire. In addition, the investigation about the fire driven by rectangular fire sources are also few. So, it is necessary to study the fire characteristics of fires driven by difform nozzle fire sources and give the unified rules of them.
     Firstly, we study the flame height and axial temperature distribution of jet fires driven by rectangular sources with aspect ratio ranging from1:1to1:71. Secondly, we research the flame extension length and the temperature distribution of ceiling jet flow induced by axisymmetric fire and the temperature distribution of ceiling jet driven by weak line fire flume. Then, we reveal the differences between these two types of ceiling jets. Finally, we expand the research results to the hypobaric hypoxia environment in high altitude. The major findings include:
     Comprehensive experimental work was carried out to study the flame height of jet fire produced by rectangular equal-area nozzles with different aspect ratios. First of all, we verify the applicability of the theoretical results deduced by Quintiere and Grove using the experimental data of rectangular nozzle with aspect ratio of1:1. Meanwhile, this also can prove the credibility of our experimental results. Then, the value of C1is obtained through the data fitting of experimental data for each rectangular nozzle whose aspect ratio varied from1:2to1:71. Finally, an explicit model is established to predict the flame height based on the implicit correlation. Results show that:For the axisymmetric fire, the value of C1in this work are in good agreement with Quintiere and Grove have proposed; However, the value of C1needs not to transit from0.179to0.444with decreasing of aspect ratio from1:1to1:71. The value of C1can be taken as a constant, which implies that the entrainment coefficient is nearly the same for both axisymmetric fire source and line cases; the flame height can be well collapsed by the proposed explicit model.
     The axial temperature profiles of buoyant plume driven by fires produced by rectangular sources are investigated in this paper. We assume that the centerline Froude number of a buoyant plume can be presented by source Froude number which is related to the fuel exit velocity. Then, we theoretically deduced the axial temperature profiles correlations based on this assumption. Immediately following, the correlation to predict centerline Froude number as well as the range of its application is given based on experimental data. In the end, the comparison of experimental data and the theoretical correlation shows that the axial temperature profiles of buoyant plume can be well described by the new proposed model.
     The evolution behaviors of smoke movement of the ceiling jet flow induced by a fire plume impinging upon a ceiling are studied in this thesis. Experiments have been conducted to investigate the ceiling temperature profiles and the flame extension length under the ceiling for ceiling jets driven by strong axisymmetric fire plume. New predictive model for flame extension length is established and a modified model about temperature profiles based on weak plume driven ceiling jets'correlations is proposed. The line source plume driven ceiling jets have also been studied and the temperature distribution profiles are discovered. Finally, the differences between these two kinds of fire sources induced ceiling jets are discussed. It should be noted that the ceiling temperature induced by the line fire is usually lower than that of the axisymmetric fire under the same fire situation. This means that the fire produced by a line source is more difficult to be detected by the traditional fire detectors equipped at the roof of the buildings.
     At last, we investigate the flame height, the axial temperature and the ceiling flow characteristics of rectangular jet fire under a hypobaric hypoxia environment in plateau (Tibet Lhasa city at a high altitude). The experimental data in both Hefei and Lhasa have been compared. Based on the phenomenon of weakened entrainment in Tibet Lhasa, the correlations about flame heights, centerline temperature profiles and ceiling jets established in normal atmosphere are expanded to this hypobaric hypoxia environment. It is found that the coefficient Cf in the explicit model for flame heights and C/β in temperature correlations are both higher in Lhasa than that in Hefei In addition, this paper gives the value of an important coefficient n (ratio of oxygen entrained into fire and oxygen needed for combustion) in Lhasa. Finally, a global model to predict temperature distribution of ceiling flow driven by line source weak buoyant plume in these two ambient atmospheric pressures are proposed. The conclusions would be significant for the regularity and prevention of fire in high latitudes.
引文
[1]M.A Delichatsios. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships [J]. Combustion and Flame.1993,92:349-364.
    [2]MA Delichatsios, L. Orloff. Proc. Entrainment measurements in turbulent buoyant jet flames and implications for modeling [J]. Proceedings of the Combustion Institute.1985,20:367-375.
    [3]MA Delichatsios. Air entrainment into buoyant jet flames and pool fires [J].Combustion and Flame.1987,70:33-46.
    [4]KM. Lyons. Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames:Experiments [J]. Progress in Energy and Combustion Science.2007,33:211-231.
    [5]G.T. Kalghatgi. Lift-off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air [J]. Combustion Science and Technology.1984,41:17-29.
    [6]C.O. Iyogum, M. Birouk. Effect of Fuel Nozzle Geometry on the Stability of a Turbulent Jet Methane Flame [J]. Combustion Science and Technology.2008,180:2186-2209.
    [7]M.S. Cha, S.H Chung. Characteristics of lifted flames in nonpremixed turbulent confined jets [J]. Proceedings of the Combustion Institute.1996,26:121-128.
    [8]D.Y Kiran, D.P. Mishra. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame [J]. Fuel.2007,86:1545-1551.
    [9]A Santos, M. Costa Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames [J]. Combustion and Flame.2005,142:160-169.
    [10]K Wohl, N.M. Kapp, G. Gazley. The stability of open flames [J]. Proceedings of the Combustion Institute.1949,3:3-21.
    [11]L.Vanquickenborne, ATiggelen Van. The stabilization mechanism of lifted diffusion flames [J]. Combustion and Flame.1966,10:59-69.
    [12]M Chen, M Herrmann, N. Peters, Proc. Combustion and Flame.28 (2000) 167-174.
    [13]G. Heskestad. Turbulent jet diffusion flames:consolidation of flame height data [J]. Combustion and Flame.1999,118:51-60.
    [14]MA Delichatsios. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships [J]. Combustion and Flame.1993,92:349-364.
    [15]M.A Delichatsios, L. Orloff. Entrainment measurements in turbulent buoyant jet flames and implications for modeling [J]. Proceeding Combustion institute.1984,20:367-375.
    [16]MA Delichatsios. Air entrainment into buoyant jet flames and pool fires [J]. Combust and Flame.1987,70:33-46.
    [17]Y Hasemi, M. Nishihata. Fuel shape effect on the deterministic properties of turbulent diffusion flames [J]. In Proc.2nd International Symposium on Fire Safety Science. Hemisphere, New York, pp.1988,275-284.
    [18]P. H. Thomas. The size of flames from natural fires. In 9th International Symposium on Combustion [J]. Academic Press, New York, pp.1963,844-859.
    [19]L.M. Yuan, G. Cox. An Experimental Study of Some Line Fire [J]. Fire Safety Journal. 1996, 27:123-139.
    [20]J.G. Quintiere, B.S. Grove. A unified analysis for fire plumes [J]. Proceedings of the Combustion Institute.1988,27:2757-2766.
    [21]X.C Zhang, L.H. Hu, X.L. Zhang, L.Z. Yang, S.F. Wang. Non-dimensional correlations on flame height and axial temperature profile of a buoyant turbulent line-source jet fire plume. Journal of fire science [J]. (In Press).
    [22]Yokoi S. Study on the prevention of fire spread caused by hot upward current [R]. Japan, Report 34, Report of the Building Research Institute,1960.
    [23]C.T. Webster and M.M. Rafrery, The burning of fires in rooms:Part 2,Test with cribs and high ventilation on various scales [R]. Joint Fire Research Organisatun, Borehamwood 1959.
    [24]Seigel L G. The projection of flames from burning buildings [J]. Fire Technology,1969,5 (1): 43-51.
    [25]Thomas P H, Law M. The projection of flames from buildings on fire [J]. Fire Prevention Science and Technology,1972, (10):19-26.
    [26]胡隆华,唐飞,朱伟,祝实,霍然,阳东,城市建筑外壁面火灾模拟实验装置网.发明专利ZL 20091 0184963.0。
    [27]Y P. Lee, MA Delichatsios, G.W.H. Silcock., Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [J]. Proceedings of Combustion Institute.2007,31 (2)2521-2528.
    [28]Y P. Lee, Heat fluxes and flame heights in external facade fires [D]. University of Ulster, FireSERT.2006.
    [29]Y P. Lee, M. A Delichatsios, Y Ohmiya, K Wakatsuki, A Yanagisawa, D. Goto, Heat fluxes on opposite building wall by flames emerging from an enclosure [J]. Proceedings of Combustion Institute,2009,32,2551-2558.
    [30]L.H. Hu, K.H. Lu, M.A Delichatsios, L.H. He, F. Tang, An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [C]. Combustion and Flame,2012,159:1178-1184.
    [31]K. Goble, Height of flames projecting from compartment openings [D]. University of Canterbury.2007.
    [32]F. Tang, L.H. Hu, M.A Delichatsios, K.H. Lu, W. Zhu, Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire [J]. International Journal Heat and Mass Transfer,2012,55:93-101.
    [33]Schmidt W. Turbulent propagation of a stream of heated air [J]. Z. angew. math, mech,1941,21: 265-278.
    [34]Rouse H, Yih C S, Humphreys H W. Gravitational convection from a boundary source [J].Tellus,1952,4(3):201-210.
    [35]Morton B R. Modeling fire plumes [C], Symposium (International) on Combustion. Elsevier,1965,10(1):973-982.
    [36]霍然, 胡源, 李元洲. 建筑火灾安全工程导论[M].中国科学技术大学出版社,2009。
    [37]Zukoski E E, Kubota T, Cetegen B. Entrinment in fire plumes [J]. Fire Safety Journal,1981, 3(3):107-121.
    [38]Heskestad G. Luminous heights of turbulent diffusion flames [J]. Fire Safety Journal,1983, 5(2):103-108.
    [39]Cox G, Chitty R. A study of the deterministic properties of unbounded fire plumes [J]. Combustion and Flame,1980,39(2):191-209.
    [40]Heskestad G. Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames [C], Symposium (International) on Combustion. Elsevier,1981,18(1):951-960.
    [41]Kung H C, Stavrianidis P. Buoyant plumes of large-scale pool fires [C], Symposium (International) on Combustion. Elsevier,1982,19(1):905-912..
    [42]Gengembre E, Cambray P, Karmed D, et al. Turbulent diffusion flames with large buoyancy effects [J]. Combustion Science and Technology,1984,41(1-2):55-67.
    [43]McCaffrey B. Flame height [J]. SFPE Handbook of Fire Protection Engineering. National Fire Protection Association, Quincy, MA,1995.
    [44]Heskestad G. Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames [C], Symposium (International) on Combustion. Elsevier,1981,18(1):951-960.
    [45]Heskestad G. A reduced-scale mass fire experiment [J]. Combustion and Flame,1991,83(3): 293-301.
    [46]Heskestad G. Fire plume behavior in temper ature-stratified ambients [J]. Combustion science and technology,1995,106(4-6):207-228.
    [47]McCaffrey B. Flame height [J]. SFPE Handbook of Fire Protection Engineering. National Fire Protection Association, Quincy, MA,1995.
    [48]McCaffrey B J. Purely buoyant diffusion flames:some experimental results [M].1979.
    [49]Schonbucher A, Brotz W, Balluff C, et al "Visualization of organized structures in buoyant diffusion flames [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1985,89(6): 595-603.
    [50]Brotz W, Schonbucher A, Scheller V,et al. Electronically produced equidensities from time exposures and instantaneous photographs in the investigation of pool flames [J]. Combustion and Flame,1980,37:1-24.
    [51]Weckman E J, Sobiesiak A The oscillatory behaviour of medium-scale pool fires [C], Symposium (International) on Combustion. Elsevier,1989,22(1):1299-1310.
    [52]Weckman E J, Strong A B. Experimental investigation of the turbulence structure of medium-scale methanol pool fires [J]. Combustion and Flame,1996,105(3):245-266.
    [53]McCaffrey B J. Purely buoyant diffusion flames:some experimental results [M].1979. Detriche P, Lanore J C. An acoustic study of pulsation characteristic s of fires [J]. Fire Technology,1980,16(3):204-211. Corlett R C. Gas fires with pool-like boundary conditions [J]. Combustion and Flame,1968,12(1):19-32.
    [54]Corlett R C. Gas fires with pool-like boundary conditions:Further results and interpretation [J]. Combustion and Flame,1970,14(3):351-360.
    [55]Rasbash D, Ramachandran G, Kandola B, et aL Evaluation of fire safety [M]. Wiley,2004.
    [56]Sibulkin M, Hansen A G. Experimental study of flame spreading over a horizontal fuel surface [J]. Combustion Science and Technology,1975,10(1-2):85-92.
    [57]B.P. Whelan, A J. Robinson, Nozzle geometry effects in liquid jet array impingement, Appl. Therm. Eng.,29 (2009) 2211-2221.
    [58]M.A.R. Sharif, A Banerjee, Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate, Appl. Therm. Eng.,29 (2009) 532-540.
    [59]R.L. Alpert, Turbulent ceiling-jet induced by large-scale fires [J]. Combustion Science and Technology,1975,11:197-213.
    [60]Alpert RL. Calculation of response time of ceiling-mounted fire detector. Fire Technology, 1972; 8:181-95.
    [61]G. Heskestad, M.A Delichatsios, The initial convective flow in fire[C]. Proceedings of the 17th Symposium (International) on Combustion, the Combustion Institute,1979:1113-1123.
    [62]Heskestad G, Delichatsios MA The initial convective flow in fire. Proceedings of the Seventeenth International Symposium on Combustion. The Combust. Inst.1979; 1113-23.
    [63]Oka Y, Imazeki O, Sugawa O. Temperature profile of ceiling jet flow along an inclined unconfined ceiling. Fire Safety Journal. 2010; 45:221-7.
    [64]Oka Y, Ando M, Imazeki O. Study on ceiling jet thickness under an inclined ceiling. In: Proceedings of Sixth International Seminar on Fire and Explosion Hazards, Leeds, UK,2010; 185-96.
    [65]Yasushi O, Ando M. Temperature and velocity properties of a ceiling jet impinging on an unconfined inclined ceiling. Fire Safety Jounal 2013; 55:97-105.
    [66]J. Stern-Gottfried, G. Rein, Travelling Fires for Structural Design. Part I:Literature Review. Fire Safety Journal 2012; 54:74-85.
    [67]J. Stern-Gottfried, G. Rein, Travelling Fires for Structural Design. Part I:Literature Review. Fire Safety Journal 2012; 54:96-112.
    [68]HZ. You, G.M. Faeth, Ceiling heat transfer during fire plume and fire impingement, Fire and Materials.1979; 3:140-147.
    [69]Homas PH, Hinkley PL,Theobald CR, Simms DL. Investigations into the Flow of Hot Gases in Roof Venting [J]. Fire Research Technical Paper No.7, HMSO, London,1963.
    [70]L.Audouin G. Kolb JL.Torero.etc.Average Centerline Temperature of a Buoyant Pool Fire Obtained by Image processing of Video Recordings [J].Fire Safety Journal,1995,24:167-187.
    [71]Cetegen BM, Ahmed TA Experiments on the periodic instability of buoyant plumes and pool fires[J]. Combustion and Flame,1993,93(1-2):157-184
    [72]Most JM, Mandin P, Chen JP. Joulain.Influence of gravity and pressure on pool fire-type diffusion flames [C].Proceedings of the 26th Symposium (International) on Combustion, The Combustion Institute,1996:1311-1317.
    [73]Wieser D, Jauch P,WiUi U.The Influence of High Altitude on Fire Detector Test [J]. Fire Safety Journal.1997,29:195-204.
    [74]Fang Jun,Yu Chun-Yu,Tu Ran.The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires [J] Journal of Hazardous Materials.2008,154:476-483.
    [75]Zhen-hua Li, Yaping He, Hui Zhang. Combustion characteristics of n-heptane and wood crib fires at different altitudes [J].Proceedings of the Combustion Institute.2009,32:2481-2488.
    [76]李振华.西藏高原低压低氧条件下可燃物燃烧特性和烟气特性研究[D].合肥:中国科学技术大学,2009
    [77]孙晓乾,李元洲,霍然,曾文茹,李思成,叶永飞.西藏古建筑常用木材的着火特性试验[J].中国科学技术大学学报,2006.1
    [78]Sun Xiaoqian, Li Yuanzhou, Huo Ran, Zeng Wenru, Ren Binbin, Li Kaiyuan, Ye Yongfei Comparison on Generation Principle of Carbon Monoxide Concentration in Pine Combustion between Plain and Altiplano Regions[C].18th International Symposium on Analytical and Applied Pyrolysis, May,2008
    [79]孙晓乾,李元洲,霍然,胡隆华,李开源.基于羽流中CO浓度分析木材燃烧过程的实验研究[C].中国工程热物理学会燃烧学分会2008年年会,2008.10.
    [80]任彬彬.高原环境下木材着火特性及油池火羽流特性研究[D].合肥:中国科学技术大学,2009
    [81]涂然,于春雨,肖霞,方俊,王进军,张永明.TF5池火平均质量损失速率简化模型及其高原环境下的适用性研究[J].火灾科学,2009,2:73-79.
    [82]徐伯乐.高原环境下油池火的火焰及羽流特性研究[D].合肥:中国科学技术大学,2010。
    [1]Rouse H,Yih C S, Humphreys H W. Gravitational convection from a boundary source [J].Tellus,1952,4(3):201-210.
    [2]孙晓乾,火灾烟气在高层建筑竖向通道内的流动及控制研究[D].中国科学技术大学博士论文,2009.
    [3]Schmidt W. Turbulent propagation of a stream of heated air [J]. Z. angew. Math. Mech,1941, 21:265-278.
    [4]崔嵛,竖直壁面条件下常用有机外墙保温材料的火灾行为研究[D].中国科学技术大学博士学位论文,2012。
    [5]Y. P. Lee. Heat fluxes and flame heights in external facade fires [D]. University of Ulster, FireSERT,2006.
    [6]Beitelmal AH, Saad MA, Padel CD. The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet [J]. International Journal of Heat Fluid Flow 2000; 21:156-63.
    [7]阎一新,如何正确使用转子流量计修正公式[J].山西化工,1988,3:54-56。
    [8]胡隆华,唐飞,朱伟,祝实,霍然,阳东,城市建筑外壁面火灾模拟实验装置[P].ZL2009 10184963.0。
    [9]霍然;阳东;祝实;唐飞;等.一种火灾烟气流场示踪方法,已授权:ZL 200910089091.X。
    [10]迟立发,油罐火灾的辐射热及其预测[J],消防科学与技术,1983(2),10-16.
    [11]刘帅.水平环境风对油池火热反馈及燃烧速率的影响研究.博士学位论文,2011。
    [12]祝实,基于动态仿真与图像处理的火羽流形态与动力学参数特征研究[D],博士学位论文,2013。
    [13]Hu, L., Lu, K, Delichatsios, M., He, L., Tang, F. An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [J]. Combustion and Flame.2012,159:1178-1184.
    [14]Tang F, Hu L, Delichatsios M, Lu K, Zhu W. Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire [J]. International Journal of Heat and Mass Transfer.2012,55:93-101.
    [15]Hu L, Tang F, Delichatsios M, Wang Q, Lu K, Zhang X. Global behaviors of enclosure fire and facade flame heights in normal and reduced atmospheric pressures at two altitudes [J]. International Journal of Heat and Mass Transfer.2013,56:119-126.
    [16]Tomoaki Nakao, Akito Yanagisawa, Akihide Jo, Kaoru Wakatsuki, Yoshifumi Ohmiya, Fire plume ejected from an opening in unconfined space part 1 experimental outline [J]. Fire Science and Technology.2007,26 (4) 497-503.
    [17]陈志斌,胡隆华,霍然,等.基于图像相关性提取的火焰振荡频率[J].燃烧科学与技术,2008,14(4):367-371.
    [18]唐飞,不同外部边界及气压条件下建筑外立面开口火溢流行为特征研究[D],博士学位论文,2012。
    [19]N. Otsu, Athreshold selection method from gray-level histogram [J]. IEEE Trans. Systems Man, and Cybernetics.1979,9:62-66.
    [20]S. Brohez, C. Delvosalle. A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires [J], Fire Safety. Journal. 2004,39:399-411.
    [21]M. Luo, Effects of Radiation on Temperature Measurement in a Fire Environment [J]. Journal of Fire Science.1997,15:443-461.
    [1]D. Sophie, L.B. Miche, B. Serge, D. Rene, P. Franck, C. Giovanni, E. Berend, L. Chris, R. Toon. Analysis of Fire Gases Released from Polyurethane and Fire-Retarded Polyurethane Coatings [J]. Journal of fire science.2000,18 (6):456-482.
    [2]T. Yoshio. Chemical Modeling of Fire Gases [J], Journal of fire science,1995,13(3):214-233.
    [3]S. Rimkevicius, A Kaliatka, M. Valincius, G. Dundulis, R Janulionis, A Grybenas, et al. Development of approach for reliability assessment of pipeline network systems [J]. Applied Energy.2012,94:22-33.
    [4]C. Howard, P. Oosthuizen, B. Peppley. An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations [J], Applied Thermal Engineering.2011,31:2165-2170.
    [5]L.H. Hu, Q. Wang, F. Tang, M. Delichatsios, X.C. Zhang.Axial temperature profile in vertical buoyant turbulent jet fire in a reduced pressure atmosphere[J]. Fuel 2013,106:779-786
    [6]MA Delichatsios. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships [J]. Combustion and Flame.1993,92:349-364.
    [7]MA Delichatsios, L. Orloff. Proc. Entrainment measurements in turbulent buoyant jet flames and implications for modeling [J]. Proceedings of the Combustion Institute.1985,20:367-375.
    [8]MA Delichatsios. Air entrainment into buoyant jet flames and pool fires [J].Combustion and Flame.1987,70:33-46.
    [9]KM. Lyons. Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames:Experiments [J]. Progress in Energy and Combustion Science.2007,33:211-231.
    [10]G.T. Kalghatgi. Lift-off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air [J]. Combustion Science and Technology.1984,41:17-29.
    [11]C.O. Iyogum, M Birouk. Effect of Fuel Nozzle Geometry on the Stability of a Turbulent Jet Methane Flame [J]. Combustion Science and Technology.2008,180:2186-2209.
    [12]M.S. Cha, S.H Chung. Characteristics of lifted flames in nonpremixed turbulent confined jets [J]. Proceedings of the Combustion Institute.1996,26:121-128.
    [13]D.Y Kiran, D.P. Mishra. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame [J]. Fuel. 2007,86:1545-1551.
    [14]ASantos, M. Costa. Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames [J]. Combustion and Flame.2005,142:160-169.
    [15]K Wohl, N.M. Kapp, G. Gazley. The stability of open flames [J]. Proceedings of the Combustion Institute.1949,3:3-21.
    [16]L.Vanquickenborne, A.Tiggelen Van. The stabilization mechanism of lifted diffusion flames [J]. Combustion and Flame.1966,10:59-69.
    [17]M. Chen, M. Herrmann, N. Peters, Proc. Combustion and Flame.28 (2000) 167-174.
    [18]G. Heskestad. Turbulent jet diffusion flames:consolidation of flame height data [J]. Combustion and Flame.1999,118:51-60.
    [19]M.A. Delichatsios. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships [J]. Combustion and Flame.1993,92:349-364.
    [20]M.A. Delichatsios, L. Orloff. Entrainment measurements in turbulent buoyant jet flames and implications for modeling [J]. Proceeding Combustion institute.1984,20:367-375.
    [21]M.A. Delichatsios. Air entrainment into buoyant jet flames and pool fires [J]. Combust and Flame.1987,70:33-46.
    [22]Y. Hasemi, M. Nishihata. Fuel shape effect on the deterministic properties of turbulent diffusion flames [J]. In Proc.2nd International Symposium on Fire Safety Science. Hemisphere, New York, pp.1988,275-284.
    [23]P. H. Thomas. The size of flames from natural fires. In 9th International Symposium on Combustion [J]. Academic Press, New York, pp.1963,844-859.
    [24]L.M. Yuan, G. Cox. An Experimental Study of Some Line Fire [J]. Fire Safety Journal 1996, 27:123-139.
    [25]J.G. Quintiere, B.S. Grove. A unified analysis for fire plumes [J]. Proceedings of the Combustion Institute.1988,27:2757-2766.
    [26]L.H. Hu, Q. Wang, M.A. Delichatsios, F. Tang, X.C. Zhang, S.X. Lu. Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere [J]. Fuel. 2013,109: 234-240.
    [27]Otsu N. Athreshold selection method from gray level histograms [J]. IEEE Trans Systems Man, and Cybernetics.1979,9:62-66.
    [28]L.H. Hu, K.H. Lu, MA Delichatsios, L.H. He, F. Tang. An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [J]. Combustion and Flame.2012,159:1178-1184.
    [29]A. Santos, M. Costa Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames [J]. Combustion and Flame.2005,142:160-169.
    [1]D. Sophie, L.B. Miche, B. Serge, D. Rene, P. Franck, C. Giovanni, E. Berend, L. Chris, R. Toon.. Analysis of Fire Gases Released from Polyurethane and Fire-Retarded Polyurethane Coatings [J]. Journal of fire science.2000,18 (6):456-482.
    [2]T. Yoshio. Chemical Modeling of Fire Gases [J], Journal of fire science,1995,13(3):214-233.
    [3]S. Rimkevicius, A Kaliatka, M. Valincius, G. Dundulis, R. Janulionis, A Grybenas, et al. Development of approach for reliability assessment of pipeline network systems [J]. Applied Energy.2012,94:22-33.
    [4]C. Howard. P. Oosthuizen, B. Peppley. An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations [J]. Applied Thermal Engineering.2011,31:2165-2170.
    [5]Drysdale D. Pool fires, in:An Introduction to Fire Dynamics [J],2nd ed., John Willy & Sons Ltd., Baffms Lanes, Chichester, West Sussex PO19 IUD, England.1999, p.160-169.
    [6]Quintiere JG. Fire plumes, fundamentals of fire phenomena [J]. Chichester:John Wiley & Sons, Inc,2006, p.297-336.
    [7]Quintiere JG, Grove BS. Aunified analysis for fire plumes [J]. Proceedings of the Combustion Institute.1998,27:2757-2766.
    [8]Hasemi Y, Nishihata M Fuel shape effect on the deterministic properties of turbulent diffusion flames [J]. Proceedings of Fire Safety Science.1988,2:275-284.
    [9]Hu LH, Wang Q, Tang F, Delichatsios MA, Zhang XC. Axial temperature profile in vertical buoyant turbulent jet fire in a reduced pressure atmosphere. Fuel [J].2013,106:779-786.
    [10]Drysdale D. Pool fires, in:An Introduction to Fire Dynamics [J].2nd ed., John Willy & Sons Ltd., Baffins Lanes, Chichester, West Sussex PO19 IUD, England,1999, p.160-169.
    [11]Heskestad G. Virtual origins of fire plumes [J]. Fire Safety.1983; 5:109-114.
    [12]McCaffrey BJ. Purely buoyant diffusion flames:some experimental results[R]. NBSIR, National Bureau of Standards, Washington, DC.1979,79-1910.
    [13]姜玉曦,任玉新,刘秋生.室内火灾中外部燃烧现象的数值模拟[J].火灾科学.2006,15(2):92-101.
    [14]重庆市地方标准,《重庆市坡地高层民用建筑设计防火规范》[S].重庆市建设委员会, 重庆,2004。
    [15]霍然,胡源,李元洲.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社,2009年9月。
    [16]Stephen R. Turns燃烧学导论:概念与应用[M].清华大学出版社。
    [17]Yuan LM,Cox G. An experimental study of some fire lines [J]. Fire Safety.1996,27:123-139.
    [18]X.C Zhang, L.H Hu, X.L. Zhang, L.Z. Yang, S.F. Wang. Non-dimensional correlations on flame height and axial temperature profile of a buoyant turbulent line-source jet fire plume [J]. Journal of fire science. (In Press).
    [19]Quintiere JG. Fire plumes, fundamentals of fire phenomena Chichester:John Wiley & Sons, Inc.2006, p.297-336.
    [20]Quintiere JG, Grove BS. Aunified analysis for fire plumes [J]. Proceedings of the Combustion Institute.1998,27:2757-2766.
    [21]De ris J L, Kanury A M, Yuen MC. Pressure Modeling of Fires [J]. Proceedings of the Combustion Institute.1973,1033-1042.
    [1]霍然,胡源,李元洲,建筑火灾安全工程导论[M].中国科学技术大学出版社,2009.
    [2]B.P. Whelan, A J. Robinson, Nozzle geometry effects in liquid jet array impingement [J]. Applied Thermal Engineering,2009,29:2211-2221.
    [3]MAR. Sharif, A Banerjee, Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate [J]. Applied Thermal Engineering,2009,29:532-540.
    [4]H.S. Zhen, C.W. Leung, C.S. Cheung, Heat transfer characteristics of an impinging premixed annular flame jet [J]. Applied Thermal Engineering,2012,36:386-392.
    [5]Y Zhang, KN.C. Bray, Characterization of impinging jet flames [J]. Combustion and Flame, 1999,116:671-674.
    [6]L.H. Hu, W. Tang, L.F. Chen, L. Yi, A non-dimensional global correlation of maximum gas temperature beneath ceiling with different blockage-fire distance in a longitudinal ventilated tunnel [J]. Applied Thermal Engineering,2013,56:77-82.
    [7]W.K Chow, Y Gao, Oscillating behavior of fire-induced air flow through a ceiling vent [J]. Applied Thermal Engineering,2009,29:3289-3298.
    [8]Q. Wang, H.W. Huang, Y Zhang, C.Y Zhao, Impinging flame ignition and propagation visualization using Schlieren and colour-enhanced stereo imaging techniques [J]. Fuel,2013, 108:177-183.
    [9]Q. Li, YM. Xuan, F. Yu, Experimental investigation of submerged single jet impingement using Cu-water nanofluid [J]. Applied Thermal Engineering,2012,36:426-433.
    [10]M. Attalla, M. Salem, Effect of nozzle geometry on heat transfer characteristics from a single circular air jet [J]. Applied Thermal Engineering,2013,51:723-733.
    [11]A Ianiro, G. Cardone, Heat transfer rate and uniformity in multichannel swirling impinging jets [J]. Applied Thermal Engineering,2012,49:89-98.
    [12]E. Baydar, Y Ozmen, An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers [J]. Applied Thermal Engineering,2005,25:409-421.
    [13]J.Z. Zhang, X.M. Tan, B. Liu, X.D. Zhu, Investigation for convective heat transfer on grinding work-piece surface subjected to an impinging jet [J]. Applied Thermal Engineering,2013,51: 653-661.
    [14]R.F. Dou, Z. Wen, G.Zhou, X.L. Liu, X.H. Feng, Experimental study on heat-transfer characteristics of circular water jet impinging on high-temperature stainless steel plate[J]. Applied Thermal Engineering,2014,62:738-746.
    [15]Z. Zhao, D.W. Yuen, C.W. Leung, T.T. Wong, Thermal performance of a premixed impinging circular flame jet array with induced-swirl [J]. Applied Thermal Engineering,2009,29:159-166.
    [16]R.L. Alpert, Turbulent ceiling-jet induced by large-scale fires [J]. Combustion Science and Technology,1975,11:197-213.
    [17]G. Heskestad, M.A Delichatsios, The initial convective flow in fire[C]. Proceedings of the 17th Symposium (International) on Combustion, The Combustion Institute,1979:1113-1123.
    [18]HZ.You, G.M. Faeth, Ceiling heat transfer during fire plume and fire impingement [J]. Fire and Materials,1979,3:140-147.
    [19]G. Heskestad, T. Hamada, Ceiling jets of strong fire plumes [J]. Fire Safety Journal,1993, 21:69-82.
    [20]J. Stern-Gottfried, G. Rein, Travelling fires for structural design-Part I:Literature review [J], Fire Safety Journal 2012,54:74-85.
    [21]J. Stern-Gottfried, G. Rein, Travelling fires for structural design-Part II:Design methodology [J]. Fire Safety Journal,2012,54:96-112.
    [22]YOka, K. Matsuyama, Scale Similarity on Ceiling Jet Flow [J]. Fire Safety Journal,2013,61: 289-297.
    [23]YOka, Masaki Ando, Temperature and velocity properties of a ceiling jet impinging on an unconfined inclined ceiling [J]. Fire Safety Journal,2013,55:57-105.
    [24]J. G. Quintiere, Scaling Application in Fire Research [J]. Fire Safety Journal,1989,15(1):3-29.
    [25]孙晓乾.火灾烟气在高层建筑竖向通道内的流动及控制研究[D].合肥:中国科学技术大学博士论文,2009.
    [26]B.M. Cetegen, Phenomenological Model of Near-Field Fire Entrainment [J]. Fire Safety Journal, 1998,31:299-312.
    [27]N. Otsu, Athreshold selection method from gray-level histograms [J]. IEEE Transactions on Systems,1979,9:62-66.
    [28]L.H. Hu, K.H. Lu, MA Delichatsios, L.H. He, F. Tang, An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [J]. Combustion and Flame,2012,159:1178-1184.
    [29]B.J. McCaffrey, Purely buoyant diffusion flames:some experimental results [D]. NBSIR 79-1910, National Bureau of Standards, Washington, DC (1979).
    [30]Heskestad G. Virtual origins of fire plumes [J]. Fire Safety Journal,1983,5:109-114.
    [31]J.C. Quitinere, B.S. Grove, A unified analysis for fire plumes [J]. Proceedings of the 27th Symposium (International) on Combustion, The Combustion Institute,1998:2757-2766.
    [32]C.L. Beyler, Handbook of Fire Protection Engineering:Section 2[M], by the National Fire Protection Association, Quincy, Massachusetts,2002:18-31.
    [1]Thomas PH, Hinkley PL,Theobald CR., Simms DL. Investigations into the Flow of Hot Gases in Roof Venting [J]. Fire Research Technical Paper No.7, HMSO, London,1963.
    [2]L.Audouin G. Kolb JL.Torero.etc.Average Centerline Temperature of a Buoyant Pool Fire Obtained by Image processing of Video Recordings [J].Fire Safety Journal,1995,24:167-187.
    [3]Cetegen BM, Ahmed TA Experiments on the periodic instability of buoyant plumes and pool fires[J]. Combustion and Flame,1993,93(1-2):157-184.
    [4]Most JM, Mandin P, Chen JP. Joulain.Influence of gravity and pressure on pool fire-type diffusion flames [C].Proceedings of the 26th Symposium (International) on Combustion, The Combustion Institute,1996:1311-1317.
    [5]Wieser D, Jauch P, WiUi U.The Influence of High Altitude on Fire Detector Test [J]. Fire Safety Journal.1997,29:195-204.
    [6]Fang Jun,Yu Chun-Yu,Tu Ran. The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires [J].Journal of Hazardous Materials.2008,154:476-483.
    [7]Zhen-hua Li, Yaping He, Hui Zhang.Combustion characteristics of n-heptane and wood crib fires at different altitudes [J].Proceedings of the Combustion Institute.2009,32:2481-2488.
    [8]李振华.西藏高原低压低氧条件下可燃物燃烧特性和烟气特性研究[D].合肥:中国科学技术大学,2009.
    [9]孙晓乾,李元洲,霍然,曾文茹,李思成,叶永飞.西藏古建筑常用木材的着火特性试验[J].中国科学技术大学学报,2006.
    [10]Sun Xiaoqian, Li Yuanzhou, Huo Ran, Zeng Wenru, Ren Binbin, Li Kaiyuan, Ye Yongfei. Comparison on Generation Principle of Carbon Monoxide Concentration in Pine Combustion between Plain and Altiplano Regions[C].18th International Symposium on Analytical and Applied Pyrolysis, May,2008.
    [11]孙晓乾,李元洲,霍然,胡隆华,李开源.基于羽流中CO浓度分析木材燃烧过程的实验研究[C]中国工程热物理学会燃烧学分会2008年年会,2008.10.
    [12]任彬彬.高原环境下木材着火特性及油池火羽流特性研究[D].合肥:中国科学技术大学,2009.
    [13]涂然,于春雨,肖霞,方俊,王进军,张永明.TF5池火平均质量损失速率简化模型及其高原环境下的适用性研究[J].火灾科学,2009,2:73-79.
    [14]徐伯乐.高原环境下油池火的火焰及羽流特性研究[D].合肥:中国科学技术大学,2010。
    [15]Y P. Lee, MA Delichatsios, G.W.H. Silcock. Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [J].Proceedings of the Combustion Institute.2007: 2521-2528.
    [16]Y P. Lee. Heat fluxes and flame heights in external facade fires [D]. University of Ulster, FireSERT,2006.
    [17]L.H. Hu, K.H. Lu, MA Delichatsios, L.H He, F. Tang, An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [J]. Combustion and Flame,2012,159:1178-1184.
    [18]F. Tang, L.H. Hu, M.A Delichatsios, KH Lu, W. Zhu, Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire [J]. International Journal Heat and Mass Transfer.2012,55:93-101.
    [19]Y P. Lee, M. A Delichatsios, and Y Ohmiya, Effect of a Facing Wall on Facade Flames [C]. Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK, 23-27 April 2007:381-392.
    [20]Y P. Lee, M. A Delichatsios, Y Ohmiya, K. Wakatsuki, A Yanagisawa, D. Goto, Heat fluxes on opposite building wall by flames emerging from an enclosure [J]. Proceedings of the Combustion Institute.2009,32:2551-2558.
    [21]A Yanagisawa, D. Goto, Y Ohmiya, MA Delichatsios, Y P. Lee, and K. Wakatsuki, flame heights and heat fluxes on a building facade and an opposite building wall by flames emerging from an opening [C].9th International Symposium on Fire Safety Science, Germany,2008.
    [22]MA Delichatsios, Y.P. Lee, P. Tofilo, Anew correlation for gas temperature inside a burning enclosure [J]. Fire Safety Journal. 2009,44:1003-1009.
    [23]Karlsson, B. and Quintiere, J.G. Fire Plumes and Flame Heights, Chapter 4, Enclosure Fire Dynamics [M]. CRC Press LLC,2000 N.W Corporate Blvd., Boca Raton, Florida 33431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700