用户名: 密码: 验证码:
湖泊群水环境数学模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊作为陆地上最为重要的水资源载体之一,是人类赖以生存和可持续发展的自然依托,但以湖泊富营养化为代表的诸多水环境问题,已成为我国经济发展的瓶颈。近年来,江(河)湖连通作为人们遏制湖泊富营养化的新途径,在长江中下游湖群中进行了大量尝试,并被确定我国在新时期的重要水利发展战略。对于连通工程形成的“自然-人工”复合水系,连通方式的选择和连通效应的评估是两大核心问题,直接关系到连通工程对湖泊水环境的改善效果,而湖泊水环境数学模型作为解决这两个问题的重要途径,一直是江(河)湖连通研究领域的热点和前沿。
     湖泊水环境数学模型是以湖泊水动力学模型为基础,并与水质模型和水温模型耦合后得到的。本文首先以武汉“大东湖生态水网构建工程”所涉及的湖泊群为对象,基于静压水动力学模型建立了湖泊群水环境数学模型,对连通工程的引水调度模式和水环境效应进行了研究。鉴于静压模型无法模拟地形突变区的水流和短波等存在明显垂向流动的水流现象,应用对象的范围有限,本文又分别建立了平面二维和垂向二维的非静压水动力学模型,并对模型的多种求解方法和计算效率作了创新性的科学研究工作。主要工作和创新性成果如下:
     (1)以沙湖、东湖、严西湖和北湖组成的大型城市湖泊群为研究对象,建立了平面二维湖泊群水动力-水质模型,模拟分析了三种引水调度模式的湖泊群水质改善效果,提出了推荐调度模式。然后对推荐调度模式的三种引水规模进行了模拟,分析了引水规模与水质改善效果之间的关系,为连通工程的实施提供了科学的决策依据。
     (2)以沙湖和东湖为研究对象,建立了三维湖泊水动力-水温-水质模型,以气温典型年为背景,模拟了江湖连通前和江湖连通后(推荐调度模式)两种情景,通过对比两种情景下的湖流运动规律、子湖间水体交换和温度场,分析了江湖关系变化的水动力与水环境效应。此外,通过分析江湖连通后湖泊群的水体置换率和总磷变化情况,探索性的提出了“三循环”调度策略。
     (3)推导了非静压的平面二维水动力学控制方程,并分别采用显格式法、θ法和新ADI法对其进行求解。其中新ADI法不仅避免了前两种求解方法中须将开边界动压设为零的通行做法,更加符合真实情况,而且还具有极高的计算效率。
     (4)针对目前已有的非静压垂向二维水动力学模型将水体进行分层而求解效率低的问题,提出了一种单层模式的非静压垂向二维水动力学模型,大大提高了模型的计算效率,同时也具有较高的精度。
     最后,总结了本文的研究成果,提出了今后进一步研究的方向。
As an important water carrier on land, lakes are the natural basement on which people liveand keep sustainable development. However, lake eutrophication, the typical one of manyenvironmental issues, has become a bottleneck of Chinese economy. In the past few years,river-lake connection, a new way to prevent the lake eutrophication, has been tried in thelake group located in the middle and lower reaches of Changjiang River and also beendetermined as a significant hydraulic development stragety in China. In thenatural-artificial river systems formed by connection projects, the way of connecting andits effect are the two essential problems, which directively involve the improvement effectof the projects. Lake water environment mathematical models, an important approach tosolving the two problems, are always the focus and front field.
     A lake water environment mathematical model often consists of a hydrodynamicmodel which is the basement and a water quality and temperature model. In thedissertation, the project of East lakes ecological water network in Wuhan is the object, anda lake group water environment mathematical model based on hydrostatic models wasdeveloped. The water diversion scheme and environmental effects of the project werestudied using this model. Because hydrostatic models have a limited application range,they are unable to simulate the flows with significant vertical velocity, such as flows overabruptly changed bottom, short wave, and so on, a depth-integrated and a verticalnon-hydrostatic model were developed, respectively. Multiple innovative solution methodsand their computational efficiency are studied. The main work and innovations are asfollows.
     (1) A depth-integrated hydrodynamic and water quality model was developed, whichincluded Sha lake, East lake, Yanxi lake, and Bei lake. Using the model, the improvementeffects of three water diversion schemes were simulated and one of them wasrecommended. After that, three sizes of inflow of the recommended scheme were alsosimulated, and the relationship between its inflow and improvement effect wasinvestigated. The obtained results provided a scientific support to the project.
     (2) A three dimensional hydrodynamic model which was coupled with water temperature and quality model was established, including Sha lake and East lake. Usingthe data from a typical temperature year, two scenes, which are before and aftern theproject, respectively, were simulated using the model. By comparing the lake current,water exchange between sub-lakes, and water temperature field in the two scenes, thehydrodynamical and environmental effects induced by the change of river-lakerelationship were analyzed. In addition, by analyzing the water exchange rate and totalphosphorus in the second scene, an exploratory diversion tactics―three cycles‖wasproposed.
     (3) The governing equations of a depth-integrated, non-hydrostatic model werederivated. Three solution method, an explicit method, a θ method, and a new ADI method,were applied to solve the equations. The new ADI method not only avoids the conventionthat the dynamic pressure at the open boundary is set as zero, but also has a highefficiency.
     (4) A new vertical two dimensional non-hydrostatic model with a single layer wasproposed. Unlike the other established vertical models which have multiple vertical layersand need much time to solve the equations, the present model has only one layer. As aresult, it’s accurate and highly efficient.
     At last, the achievement in the dissertation was summarized and some worthyresearch orientations were proposed.
引文
[1]古滨河,刘正文,李宽意,等译.湖沼学——内陆水生态系统[M].北京:高等教育出版社,2011
    [2]金相灿等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990
    [3]秦伯强,许海,董百丽.富营养化湖泊治理的理论与实践[M].北京:高等教育出版社,2011
    [4] Qin B.Q., Liu Z.W., Karl Havens. Eutrophication of Shallow Lakes with SpecialReference to Lake Taihu[M]. Springer,2007
    [5]魏晓华,孙阁.流域生态系统过程与管理[M].北京:高等教育出版社,2009
    [6]水利部太湖流域管理局,江苏省水利厅,江苏省环保厅.引江济太应急调水改善太湖水源地水质效果分析[J].中国水利,2007,(17):1-2
    [7]何金土,裴洪平,章向明.杭州西湖水质预测方法和结果分析[J].生物数学学报,1994,9(2):85-90
    [8]裴洪平,等.杭州西湖引水后生态系统中磷循环模型[J].生态学报,1998,18(6):648-653
    [9]杨益洪.西湖混合流三维数值模拟研究[D].浙江大学,2007
    [10]朱军政,韩曾萃.西湖引水淡化总磷浓度效果研究[J].水力发电学报,2010,29(3):137-142
    [11]李共国,吴芝瑛,虞左明.引水和疏浚工程对杭州西湖轮虫群落结构的影响[J].水生生物学报,2007,31(3):386-392
    [12]董浩平.城市湖泊底泥污染释放规律及在水质模型中的应用[D].河海大学,2005
    [13]刘臣炜.城市浅水湖泊富营养化数值模拟研究[D].河海大学,2007
    [14]薛欢.城市湖泊引清调水数值模拟与调度模式研究[D].河海大学,2007
    [15]华祖林,顾莉,薛欢,刘晓东.基于改善水质的浅水湖泊引调水模式的评价指标[J].湖泊科学,2008,20(5):623-629
    [16]沈爱春.望虞河引江对太湖的影响研究[J].水资源保护,2002,(1):29-32
    [17]吴浩云,胡艳.引江济太调水试验工程对黄浦江上游水环境的影响分析[J].河海大学学报(自然科学版),2005,33(2):144-147
    [18]曹雪华,周锷.望虞河引水对常熟市西岸地区水环境的影响[J].水资源保护,2006,22(6):47-50
    [19]马巍,廖文根,李锦秀,彭静,禹雪中.引水调控改善太湖湖湾水环境及其效果预测[J].长江流域资源与环境,2007,16(1):52-56
    [20]田向荣,马巍,廖文根,李锦秀,彭静.调水对梅梁湖、五里湖水环境影响研究[J].人民长江,2007,38(2):69-72
    [21]李大勇,王济干,董增川.引江调水改善太湖贡湖湖湾的水环境效应[J].水力发电学报,2011,30(5):132-138
    [22]赫文彬,唐春燕,滑磊, ACHARYA Kumud.引江济太调水工程对太湖水动力的调控效果[J].河海大学学报(自然科学版),2012,40(2):129-133
    [23]甘升伟,张红举,冯赟昀.无锡水源地贡湖引水改善水质效果分析[J].人民长江,2012,43(5):72-75
    [24]董增川,卞戈亚,王船海,李大勇.基于数值模拟的区域水量水质联合调度研究[J].水科学进展,2009,20(2):184-189
    [25]戴甦,王船海,金科.引江济太水量水质联合调度研究[J].中国水利,2008,(1):15-17
    [26]吴时强,范子武,周杰,吴修锋.引江济太措施对太湖西北部湖区污水滞留和转移风险评估[J].水利水运工程学报,2009,(2):1-8
    [27]吴时强,范子武,周杰,吴修锋.引江济太措施对太湖西北部湖区污水滞留和转移风险评估[J].中国工程科学,2011,(1):102-108
    [28]禹雪中,彭期冬,廖文根,张红举.引江济太泥沙模拟分析[J].中国水利,2008,(1):34-36
    [29]李香华,胡维平,翟淑华,逄勇.引江济太对太湖水体碱性磷酸酶活性的影响[J].水利学报,2005,36(4):478-483
    [30]路娜,胡维平,邓建才,翟淑华,周小平,陈效民.引江济太对太湖水体碱性磷酸酶动力学参数的影响[J].水科学进展,2010,21(3):413-420
    [31]周小平,翟淑华,袁粒.2007~2008年引江济太调水对太湖水质改善效果分析[J].水资源保护,2010,26(1):40-43
    [32]冯晓晶,金科,梁忠民,常文娟.引江济太工程调水效益评估[J].水电能源科学,2012,30(6):135-138
    [33]谢兴勇,钱新,钱瑜,张玉超,田丰.“引江济巢”工程中水动力及水质数值模拟[J].中国环境科学,2008,28(12):1133-1137
    [34]谢兴勇,钱新,张玉超,钱瑜,田丰.引江济巢对巢湖的水环境影响分析[J].环境科学研究,2009,22(8):897-901
    [35]谢兴勇,钱新,张玉超,钱瑜,田丰.基于地理信息系统的引江济巢数值模拟系统的研究[J].环境污染与防治,2010,32(2):1-3
    [36]王玲,沈家涛.“引江济巢”调水试验对巢湖水环境的影响分析[J].安徽水利水电职业技术学院学报,2009,9(2):12-14
    [37]王万,陈昌才.引江济巢工程调水规模研究[J].中国农村水利水电,2011,(8):13-15
    [38]郜会彩,李义天,何用,陈建.改善汉阳湖群水环境的调度方案研究,水资源保护[J].水资源保护,2006,22(5):41-44
    [39]张军花,项久华等.大东湖生态水网构建工程总体构架设计[J].城市道桥与防洪,2008,(10):24-27
    [40]姜铁兵,黄天荣,刘金秀.湖北省武汉市构建江城生态水网,打造人水和谐城市[J].中国水利,2011,(1):68
    [41]金伯欣,李新民,刘苏峡.武汉东湖引江灌湖控制水质可行性的初步研究[J].华中师范大学学报(自然科学版),1991,25(1):125-128
    [42]周俊,李国斌,梁震,王焰新,蔡鹤生.引水冲污工程治理东湖磷污染[J].环境科学与技术,2002,25(4):27-29
    [43]王学立.东湖生态水网工程调度模型及其应用研究[D].华中科技大学,2008
    [44]余成,任宪友,班璇,杜耘.二维水质模型在武汉东湖引水工程中的应用[J].湖泊科学,2012,24(1):43-50
    [45]赵琰鑫,张万顺,吴静,王艳.水利调度修复东湖水质的数值模拟[J].长江流域资源与环境,2012,21(2):168-173
    [46]李志军,马经安,蔡建清.武汉市大东湖引水工程钉螺问题研究[J].人民长江,2009,40(3):97-99
    [47]雷明军,蒋固政.武汉大东湖水网构建工程对生物多样性影响研究[J].人民长江,2012,43(3):59-61
    [48]王中根,李宗礼,刘昌明,等.河湖水系连通的理论探讨[J].自然资源学报,2011,26(3):523-529
    [49]夏军,高扬,左其亭,等.河湖水系连通特征及其利弊[J].地理科学进展,2012,31(1):26-31
    [50]李宗礼,李原园,王中根,等.河湖水系连通研究:概念框架[J].自然资源学报,2011,26(3):513-522
    [51]崔国韬,左其亭.河湖水系连通与最严格水资源管理的关系[J].南水北调与水利科技,2012,10(2):129-132
    [52]李原园,郦建强,李宗礼,等.河湖水系连通研究的若干问题与挑战[J].资源科学,2011,33(3):386-391
    [53]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [54] Dragutin T. Mihailovic, Carlo Gualtieri. Advances in Environmental FluidMechanics[M]. World Scientific,2010
    [55]谭维炎.计算浅水动力学[M].北京:清华大学出版社,1998
    [56]谭维炎.浅水动力学的回顾和当代前沿问题[J].水科学进展,1999,10(3):296-303
    [57] Rainer Ansorge, Thomas Sonar. Mathematical Models of Fluid Dynamics: Modeling,Theory, Basic Numerical Facts-An Introduction[M]. John Wiley&Sons,2009
    [58] John C. Tannehill, Dale Arden Anderson, Richard H. Pletcher. Computational FluidMechanics and Heat Transfer[M]. Taylor&Francis,1997
    [59] Anil Waman Date. Introduction To Computational Fluid Dynamics[M]. CambridgeUniversity Press,2005
    [60] Karkenahalli Srinivas, C. A. J. Fletcher. Computational Techniques for FluidDynamics: A Solutions Manual[M]. Springer,1992
    [61] David A. Caughey, M. M. Hafez. Frontiers of Computational Fluid Dynamics2006[M]. World Scientific,2005
    [62] S. Y. Wang. Verification and Validation of3D Free-Surface Flow Models[M]. ASCEPublications,2009
    [63] Paul D. Bates, Stuart N. Lane, Robert I. Ferguson. Computational Fluid Dynamics:Applications in Environmental Hydraulics[M]. John Wiley&Sons,2005
    [64] Mark H. Holmes. Introduction to Numerical Methods in Differential Equations[M].Springer,2007
    [65] Yorsef Saad. Iterative methods for sparse linear systems (Second Edition)[M]. SIAMPublications,2003
    [66]王谦谦.太湖风成流的数值模拟[J].河海大学学报(增刊2),1987:11-18
    [67]张利民,濮培民.一个斜压水动力学模型的建立及其在日本琵琶湖中的应用[J].湖泊科学,1996,8(1):1-7
    [68]胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究——1.风生流和风涌增减水的三维数值模拟[J].湖泊科学,1982,10(4):17-25
    [69]胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究——2.典型风场风生流的数值计算[J].湖泊科学,1982,10(4):26-34
    [70]胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究——3.马山围垦对太湖风生流的影响[J].湖泊科学,2000,12(4):335-342
    [71]梁瑞驹,仲金华.太湖风生流的三维数值模拟[J].湖泊科学,1994,6(4):289-297
    [72]逄勇,濮培民.太湖风生流的三维数值模拟试验[J].地理学报,1996,51(4):322-328
    [73]张利民,濮培民,大西行雄.一个三维斜压水动力模型的建立及其在日本琵琶湖中的应用[J].湖泊科学,1996,8(1):1-7
    [74]刘桂林,赵林,庞亮等.海洋三维非定常斜压数值模型研究[J].中国水运,2008,8(9):148-150
    [75]黄平,毛荣生.湖泊三维风生流隐式差分模式的研究[J].湖泊科学,1997,9(1):15-21
    [76]康玲,王学立.东湖水环境动力学特征研究[J].水电能源科学,2007,25(2):14-16
    [77] Vincenzo Casulli, Roy A Walters. An unstructured grid, three-dimensional modelbased on the shallow water equations [J]. International Journal for NumericalMethods in Fluids,2000,32(3):331-348
    [78] Vincenzo Casulli, Ralph T.CHENG. Semi-implicit finite difference methods forthree-dimensional shallow water flow [J]. International Journal for NumericalMethods in Fluids,1992,15(6):629-648
    [79] Vincenzo Casulli, Cattani E. Stability accuracy and efficiency of a semi-implicitmethod for three-dimensional shallow water [J]. Computers&Mathematics withApplications,1994,27(4):99-112
    [80] Clifford Hiley Mortimer. Lake Michigan in Motion: Responses of an Inland Sea toWeather, Earth-Spin, and Human Activities[M]. University of Wisconsin Press,2004
    [81]胡维平,秦伯强.太湖水动力学三维数值试验研究——4.保守物质输移扩散[J].湖泊科学,2002,14(4):310-316
    [82]姚静,张长宽,陶建峰.海湾电厂三维斜压水流和温排水数值模拟[J].水道港口,2010,31(2):90-97
    [83] Hamrick J.M. A three-dimensional Environmental Fluid Dynamic Computer Code:Theoretical and Computational Aspects[R]. Virginia Institute of Marine Science,The College of William and Mary,1992
    [84] James Lenial Martin, Steve C. McCutcheon, Robert W. Schottman. Hydrodynamicsand Transport for Water Quality Modeling[M]. Lewis Publishers,1999
    [85] Alan B. Prescott, Thomas U. Barkely. Trends in Water Resources Research[M].Nova Publishers,2008
    [86] Morin J., Leclerc M., Secretan Y., Boudreau P. Integrated2Dmacrophytes-hydrodynamic modeling[J]. Journal of Hydraulic Research,2000,38(3),163-172.
    [87] Rueda F.J., Schladow S.G. Dynamics of large polymictic lake, II: Numericalsimulations[J]. Journal of Hydraulic Engineering,2003,129(2),92-101.
    [88] Thackeray S.J., George, D.G., Jones, R. I., and Winfield, I. J. Quantitative analysisof the importance of wind-induced circulation for the spatial structuring ofplanktonic populations[J]. Freshwater Biology,2004,49(9),1091-1102.
    [89] Tufford D.L., and McKellar, H.N. Spatial and temporal hydrodynamic and waterquality modeling analysis of a large reservoir on the South Carolina (USA) coastalplain[J]. Ecological Modeling,1999,114(2-3):137-173.
    [90] Jin K.R.,Hamrick J.H.,Todd T. Application of three-dimensional hydrodynamicmodel for lake Okeechobee [J]. Journal of Hydraulic Engineering,2000,126(10):758-771
    [91] Jin K.R., Ji Z.G. Case study: Modeling of sediment transport and wind-wave impactin Lake Okeechobee[J]. Journal of Hydraulic Engineering,2004,130(11),1055-1067
    [92] Hamblin P.F., Stevens C.L., Lawrence G.A. Simulation of vertical transport inMining Pit Lake[J]. Journal of Hydraulic Engineering,1999,125(10),1029-1038.
    [93] Patrick O'Sullivan, C. S. Reynolds. The Lakes Handbook: Lake Restoration andRehabilitation[M]. John Wiley&Sons,2008
    [94] Stuart M. Stein, Stuart Stein. TMDLs in the Urban Environment: Case Studies[M].ASCE Publications,2010
    [95] Robert G. Wetzel. Limnology: Lake and River Ecosystems[M]. Academic Press,2001
    [96] Ahsan A.K.M.Q., Blumberg A.F. Three-dimensional hydrothermal model ofOnondaga Lake, New York[J]. Journal of Hydraulic Engineering,1999,125(9),912-923
    [97] Bailey M. C., and Hamilton, D. P.1997. Wind induced sediment resuspension: Alake-wide model[J]. Ecological Modeling,99(2-3),217-228
    [98] Ben-Dan T. B., Shteinman, B., Kamenir, Y., Itzhak, O., and Hochman, A.2001.Hydrodynamical effects on spatial distribution of enteric bacteria in the JordanRiver-lake Kinneret contact zone[J]. Water Research,35(1),311-314
    [99] Zhao L.H., Li T.C., Wang L. Fractional-step finite element for calculation of3-Dfree surface problem using level set method[J]. Journal of Hydrodynamics, Ser.B,2006,18(6):742-747
    [100] Peter K. Stansby. Semi-implicit finite volume shallow-water flow and solutetransport solver with k-turbulence model [J]. International Journal for NumericalMethods in Fluids,1997,25(3):285-313
    [101] Lin P.Z., Li C.W. A-coordinate three-dimensional numerical model for surfacewave propagation[J]. International Journal for Numerical Methods in Fluids,2002,38(11):1045-1068
    [102] Jon Bergh, Jarle Berntsen. Numerical studies of wind forced internal waves with anon-hydrostatic model [J]. Ocean Dynamics,2009,59(6):1025-1041
    [103] Oliger J, Sundstrom A. Theoretical and practical aspects of some initial boundaryvalue problem in fluid dynamics[J]. SIAM Journal on Applied Mathematics,1978,35(3):419-446
    [104] Mahadevan A, Oliger J, Street R. A non-hydrostatic mesoscale ocean model, PartⅠ:Well posedness and scaling[J]. Journal ofphysicaland Oceanography,1996,26(9):1868-1880
    [105] Kocyigit MB, Falconer RA. Three-dimensional numerical modeling of wind-drivencirculation in a homogeneous lake[J]. Advances in Water Resources,2004,27(12):1167-1178
    [106] Jean-Michel Hervouet. Hydrodynamics of Free Surface Flows: Modelling With theFinite Element Method[M]. John Wiley&Sons,2007
    [107] P.K. Stansby, J.G. Zhou. Shallow-water flow solver with non-hydrostatic pressure:2D vertical plane problems[J]. International Journal for Numerical Methods inFluids,1998,28(3):541-563
    [108] Casulli V., Stelling G. Numerical simulation of3D quasi-hydrostatic, free-surfaceflows[J]. Journal of Hydraulic Engineering,1998,124(7):678-686
    [109] Kocyigit MB, Falconer RA, Lin B. Three-dimensional numerical modelling of freesurface flows with non-hydrostatic pressure[J]. International Journal for NumericalMethods in Fluids,2002,40(9):1145-1162
    [110] Casulli V., Zanolli P. Semi-implicit numerical modeling of non-hydrostaticfree-surface flows for environmental problems[J]. Mathematical and ComputerModeling,2002,36(9-10):1131-1149
    [111] Fatemeh C., Masoud M.N. A new approach to solving Poisson system for freesurface nonhydrostatic flow simulations[J]. International Journal for NumericalMethods in Fluids,2012,70(5):562-577
    [112] Zhou J.G., Stansby P.K. An arbitrary Lagrangian-Eulerian (ALES) model withnon-hydrostatic pressure for shallow water flow[J]. Computational Methods inApplied Mechanics and Engineering,1998,178(1-2):199-214
    [113] Casulli V. A semi-implicit finite difference method for non-hydrostatic, free-surfaceflows[J]. International Journal for Numerical Methods in Fluids,1999,30(4):425-440
    [114] Stelling G., Busnelli M. Numerical simulation of the vertical structure ofdiscontinuous flows[J]. International Journal for Numerical Methods in Fluids,2001,37(1):23-43
    [115] Yuan H.L., Wu C.H. A fully non-hydrostatic three-dimensional model with animplicit algorithm for free-surface flows[C]. Estuarine and Coastal Modeling,2003,pp:591-607
    [116] Yuan H.L., Wu C.H. An implicit three-dimensional fully non-hydrostatic model forfree-surface flows[J]. International Journal for Numerical Methods in Fluids,2004,46(6):709-733
    [117] Yuan H.L., Wu C.H. A two-dimensional vertical non-hydrostatic model with animplicit method for free-surface flows[J]. International Journal for NumericalMethods in Fluids,2004,44(8):811-835
    [118] D. Y. Choi, H.L. Yuan. A horizontally curvilinear non-hydrostatic model forsimulating nonlinear wave motion in curved boundaries [J]. International Journal forNumerical Methods in Fluids,2012,69(12):1923-1938
    [119]王昆,金生,刘刚.隐式完全非静压模型求解三维自由面的Navier-Stokes方程[J].科技导报,2008,26(18):35-38
    [120] Ai C.F., Jin S., Lv B. A new fully non-hydrostatic3D free surface flow model forwater wave motions [J]. International Journal for Numerical Methods in Fluids,2011,66(11):1354-1370
    [121] Stelling G., Zijlema M. An accurate and efficient finite-difference algorithm fornon-hydrostatic free-surface flow with application to wave propagation[J].International Journal for Numerical Methods in Fluids,2003,43(1):1-23
    [122] Keller H.B. A new difference scheme for parabolic problems. Numerical Solutionsof Partial Differential EquationsⅡ[M]. Hubbard B (ed.). Academic Press: New York,1971,327-350
    [123] Van der Vorst H.A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CGfor the solution of nonsymmetric linear systems[J]. SIAM Journal on Scientific andStatistical Computing,1992,13(2):631-644.
    [124] Zijlema M., Stelling G. Further experiences with computing non-hydrostaticfree-surface flows involving water waves [J]. International Journal for NumericalMethods in Fluids,2005,48(2):169-197
    [125] Bai Y.F., Cheung K.F. Depth-integrated free-surface flow with a two-layernon-hydrostatic formulation[J]. International Journal for Numerical Methods inFluids,2012,69(2):411-429
    [126] Bai Y.F., Cheung K.F. Depth-integrated free-surface flow with parameterizednon-hydrostatic pressure[J]. International Journal for Numerical Methods in Fluids,2013,71(4):403-421
    [127] Henk Kaarle Versteeg, Weeratunge Malalasekera. An Introduction to ComputationalFluid Dynamics: The Finite Volume Method[M]. Pearson Education Limited,2007
    [128] Ai C.F., Jin S. Three-dimensional non-hydrostatic model for free surface flows withunstructured grid[J]. Journal of Hydrodynamics,2008,20(1):108-116
    [129] Ham DA, Pietrzak J, Stelling GS. A scalable unstructured grid3-dimensional finitevolume model for the shallow water equations[J]. Ocean Modeling,2005,10(1-2):153-169
    [130] Lian Cheng Guo, Shuai Zhang, Koji Morita, et al. Fundamental validation of thefinite volume particle method for3D sloshing dynamics[J]. International Journal forNumerical Methods in Fluids,68(1):1-17
    [131] Peyman B., Masoud M.N., Afshin A. A three-dimensional non-hydrostatic verticalboundary fitted model for free-surface flows[J]. International Journal for NumericalMethods in Fluids,56(6):607-627
    [132] Afshin A., Peyman B., Masoud M.N. An implicit two-dimensional non-hydrostaticmodel for free-surface flows[J]. International Journal for Numerical Methods inFluids,54(9):1055-1074
    [133] L. Cea, G. Stelling, M. Zijlema. Non-hydrostatic3D free surface layer-structuredfinite volume model for short wave propagation[J]. International Journal forNumerical Methods in Fluids,61(4):382-410
    [134] Robert J. L., Julie D. P. A fully three dimensional unstructured grid non-hydrostaticfinite element coastal model[J]. Ocean Modelling,2005,10(1-2):51-67
    [135] Roy A. Walters. A semi-implicit finite element model for non-hydrostatic (dispersive)surface waves [J]. International Journal for Numerical Methods in Fluids,2005,49(7):721-737
    [136] C.Leupi, M.S.Altinakar. Finite element modelling of free-surface flows withnon-hydrostatic pressure and k–turbulence model[J]. International Journal forNumerical Methods in Fluids,2005,49(2):149-170
    [137] Choi D.Y., Wu C.H. A new efficient3D non-hydrostatic free-surface flow model forsimulating water wave motions[J]. Ocean Engineering,2006,33(5-6):587-609
    [138] Choi D.Y., Wu CH, Young CC. An efficient curvilinear non-hydrostatic model forsimulating surface water waves[J]. International Journal for Numerical Methods inFluids,2011,66(9):1093-1115
    [139] Jacek A. Jankowski. Parallel implementation of a non-hydrostatic model for freesurface flows with semi-Lagrangian advection treatment [J]. International Journalfor Numerical Methods in Fluids,2009,59(10):1157-1179
    [140]吴修广,沈永明,王敏,等.非静压假定的σ坐标下垂向二维浅水模型的应用研究[J].水力发电学报,2005,24(1):93-97
    [141]金生,王昆.半隐式离散方法求解非静水压强假设下的三维自由面流动[J].水利水运工程学报,2008,(3):15-21
    [142]艾丛芳,金生.模拟波浪运动的三维自由表面流动数值模拟[J].水动力学研究与进展(A辑),2008,23(3):1-10
    [143]吕彪,金生,艾丛芳.基于非结构化网格上的三维微幅自由表面流动非静压数值模型[J].水动力学研究与进展(A辑),2009,24(3):350-357
    [144]胡德超,张红武,钟德钰. C-D无结构网格上的三维自由水面非静水压力流动模型Ⅰ:算法[J].水利学报,2009,40(8):948-955
    [145]胡德超,张红武,钟德钰. C-D无结构网格上的三维自由水面非静水压力流动模型Ⅱ:验证[J].水利学报,2009,40(9):1077-1084
    [146]胡德超,张红武,哈岸英,等.基于无结构、坐标网格的半隐式三维水沙数学模型Ⅰ—算法[J].水力发电学报,2011,30(6):221-229
    [147]哈岸英,胡德超,张红武,等.基于无结构、坐标网格的半隐式三维水沙数学模型Ⅱ—验证[J].水力发电学报,2011,30(6):230-236
    [148]胡德超,张红武,钟德钰,等.三维悬沙模型及河岸边界追踪方法Ⅰ-泥沙模型[J].水力发电学报,2010,29(6):99-105
    [149]胡德超,张红武,钟德钰,等.三维悬沙模型及河岸边界追踪方法Ⅱ-河岸边界追踪[J].水力发电学报,2010,29(6):106-113
    [150]胡德超,赵维阳,钟德钰,等.欧拉-拉格朗日方法在三维水流模型中的时间阻力[J].水科学进展,2009,20(6):818-823.
    [151] Hu Dechao, Zhang Hongwu, Zhoung Deyu. Properties of the Eulerian-Lagrangianmethod using linear interpolation in a three-dimensional shallow water model usingz-level co-ordinates[J]. International Journal of Computational Fluid Dynamics,2009,23(3):271-284.
    [152]胡德超.三维水沙运动及河床变形数学模型研究[D].北京:清华大学,2009
    [153]孙先,杨文俊,王国栋.基于σ坐标变换和水位函数法的立面二维水动力学模型[J].长江科学院院报,2012,29(7):6-9
    [154] Yamazaki Y, Kowalik Z, Cheung KF. Depth-integrated, non-hydrostatic model forwave breaking and run-up[J]. International Journal for Numerical Methods in Fluids,2009,61(5):473-497.(平面二维非静压,一层)
    [155] Yamazaki Y, Cheung KF, Kowalik Z. Depth-integrated, non-hydrostatic model withgrid nesting for tsunami generation, propagation, and run-up[J]. InternationalJournal for Numerical Methods in Fluids,2011,67(12):2081-2107
    [156] Kolumban Hutter, Yongqi Wang, Irina P. Chubarenko. Physics of Lakes: Volume1:Foundation of the Mathematical and Physical Background [M]. Springer,2010
    [157] Smagorinsky J. General circulation experiments with the primitive equationsⅠ: Thebasic experiment [J]. Monthly Weather Rev,1963,91(3):99-164
    [158]王学立,康玲,熊其玲.东湖水温与气温相互关系的研究[A].第五届中国水论坛.北京:中国水利水电出版社,2007
    [159] Ioannis K.Tsanis. Environmental Hydraulics: Hydrodynamic and Pollutant TransportModelling of Lakes and Coastal Water[M]. Elsevier,2007
    [160]卢金友,黄悦等.三峡工程运用后长江中下游冲淤变化[J].人民长江,2006,37(9):55-57
    [161] Tiina Noges. European Large Lakes: Ecosystem Changes and Their Ecological andSocioeconomic Impacts[M]. Springer,2008
    [162] Abid A. Ansari. Eutrophication: Causes, Consequences and Control[M]. Springer,2010
    [163] Ji Z.G. Hydrodynamics and Water Quality Modeling: Modeling Rivers, Lakes, andEstuaries[M]. New York: John Wiley&Sons,2007
    [164] Glen George. The Impact of Climate Change on European Lakes[M]. Springer,2009
    [165] C. Fai Fung, Ana Lopez, Mark New. Modelling the Impact of Climate Change onWater Resources[M]. John Wiley&Sons,2010
    [166] Mellor G.L., and Yamada T. Development of a turbulence closure model forgeophysical fluid problems[J]. Reviews of Geophysics and Space Physics,1982,20(4),851-875
    [167] BlumbergA. F., Galperin, B., and O’Connor, D. J. Modeling vertical structure ofopen-channel flows[J]. Journal of Hydraulic Engineering,1992,118(8),1119-1134
    [168] Galperin B., Kantha L. H., Hassid, S., and Rosati, A. A quasi-equilibrium turbulentenergy model for geophysical flows[J]. Journal of the Atmospheric Sciences,1988,45(1),55-62
    [169]李一平,逄勇,吕俊,等.水动力条件下底泥中氮磷释放通量[J],湖泊科学,2004,16(4),318-324
    [170] Mellor G.L., Oey, L.Y., and Ezer, T. Sigma coordinate pressure gradient errors andthe seamount problem[J]. Journal of Atmospheric and Oceanic Technology,1998,15(5),1122-1131
    [171] Rosati A., Miyakoda K. A general circulation model for upper ocean simulation[J].Journal of Physical Oceanography,1988,18(11),1601-1626
    [172] Madala R.V., Piacsek S.A. A semi-implicit numerical model for BaroclinicOceans[J]. Journal of Computational Physics,1977,23(2),167-178
    [173] Sheng Y.P., Butler H.L. Modeling coastal currents and sediment transport[C].Proceedings of18th International Conference on Coastal Engineering,1982,1127-1148. New York: ASCE
    [174]金伯欣,范业尧,邓兆仁,等.武昌东湖水文特性调查[J].华中师院学报,1980,(3):79-92
    [175]代清,颜华.2005年武汉市高温天气特征及其预报误差的初步分析[J].湖北气象,2006,25(1),16-18
    [176] Xiaoming Guo, Ling Kang. Research on Tactics of Water Diversion of Lake Dong[J].Advanced Materials Research,2012,356:2358-2361.
    [177]华祖林,顾莉,刘晓东.调水对改善浅水型湖泊水体的置换率研究[J].水资源保护,2009,25(1):9-17
    [178]王洪铸,王海军.富营养化治理应放宽控氮,集中控磷,以大幅度降低污水处理成本[J].科技导报,2008,26(22):10
    [179]王海军,王洪铸.富营养化治理应放宽控氮、集中控磷[J].自然科学进展,2009,19(6):599-604
    [180] Wang H.J., Liang X.M., Jiang P.H., et al. TN:TP ratio andplanktivorous fish do notaffect nutrient-chlorophyII relationships in shallow lakes[J]. Freshwat Biol.,2008,53(5):935-944
    [181] Schindler D.W., Hecky R.E., et al. Eutrophication of lakes cannot be controlled byreducing nitrogen input:Results of a37-year whole-ecosystem experiment[C]. Proc.Natl. Acad. Sci. USA,2008,105:11254-11258
    [182] Z.Li, B.Johns. A numerical method for the determination of weekly non-hydrostaticnon-linear free surface wave propagation [J]. International Journal for NumericalMethods in Fluids,2001,35(3):299-317
    [183] M.M. Namin, B.Lin, and R.A. Falconer. An implicit numerical algorithm for solvingnon-hydrostatic free-surface flow problems [J]. International Journal for NumericalMethods in Fluids,2001,35(3):341-356
    [184] Winninghof F.J. On the adjustment toward a geostrophic balance in a simpleprimitive equation model with application to problem of initizlization and objectiveanalysis[D]. University of California, Los Angles.
    [185] Orlanski I. Simple boundary-condition for unbounded hyperbolic flows[J]. Journalof computational Physics,1976,21(3):251-269
    [186]钱力强,杜勇,俞光耀.一维水域潮波运动的变浅效应[J].海洋与湖沼(增刊),1995,26(5):32-39
    [187] Madsen O.S., Mei C.C. The transformation of a solitary wave over uneven bottom[J]. Journal of Fluid Mechanics,1969,39(4):781-791
    [188] Beji S., Battjes J.A. Experimental investigation of wave propagation over a bar[J].Coastal Engineering,1993,19(1-2):151-162
    [189] Luth H.R., Klopman G., Kitou N. Projec13G. Kinematics of waves breakingpartially on an offshore bar; LDV measurements for waves with and without a netonshore current[R]. Technical Report H1573, Delft Hydraulics,1994
    [190] Nadaoka K., Beji S., Nakagawa Y. A fully-dispersive nonlinear wave model and itsnumerical solutions[C]. Proceedings of the International Conference on CoastalEngineering,1994,427-441
    [191] Vincent C.L., Briggs M.J. Refraction-diffraction of irregular waves over a mound[J].Journal of Waterway, Port, Coastal, and Ocean Engineering (ASCE),1989,115:269-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700