用户名: 密码: 验证码:
城市污染河道底泥疏浚与吹填的重金属环境行为及生态风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温瑞塘河是温州市重要的滨海平原河网水系,由于近年来温州市经济快速发展,温瑞塘河生态环境受到了严重破坏,突出表现在其水质和底泥的极度污染。为此,温州市对河道底泥进行疏浚处理,并将疏浚后的底泥运至灵昆浅滩进行吹填造陆。本研究依托国家重大水专项课题《城市黑臭河道外源阻断、工程修复与原位多级生态净化关键技术研究与示范》(2009ZX07317-006),以温瑞塘河底泥为研究对象,开展底泥疏浚及近海吹填过程中重金属环境行为及其生态风险的研究,旨在为科学评价和合理规划河道底泥污染治理及资源化利用提供理论依据和技术支持。论文重点研究了如下内容:1)对温州市牛桥底河疏浚过程中上覆水及底泥中的理化因子和重金属含量进行跟踪监测,研究疏浚对河道上覆水水质和底泥重金属含量及形态的影响;2)对灵昆浅滩底泥吹填区土壤柱状样重金属含量、形态的时空变化特征及吹填区邻近土壤和植物中重金属分布进行研究,分析底泥吹填对邻近环境的影响;3)采用重金属生态风险评价模型和发光细菌、热带爪蟾胚胎毒性检测实验对疏浚过程及吹填区底泥进行生态风险分析;4)选取两种吹填区优势植物——南方碱蓬和芦苇,开展植物对重金属耐受性和修复效果的研究。
     本论文研究主要得到以下结论:
     (1)牛桥底河底泥疏浚显著降低了上覆水中的CODCr浓度,提高了DO含量和透明度。在疏浚不同阶段,上覆水中NH4+-N、TN、TP及重金属含量呈现“先升高,后降低”的变化趋势。表层底泥的TP、TOC和重金属含量呈现“先降低、后升高”的变化趋势,疏浚后1到3个月内底泥重金属含量最低。虽然疏浚工程可以暂时地显著削减河道中污染物的总量,但其对河道水质和底泥的改善效果仅能维持3-9个月。因此要实现河道水环境的彻底治理,须把外源污染控制、内源污染治理和水体原位修复三者结合起来实施。
     (2)牛桥底河疏浚前底泥中重金属的弱酸溶态所占的比例依次为Ni(34.8%)>Mn(33.7%)>Zn(30.6%)>Cd(16.7%)>Pb(13.4%)>Cu(9.8%)>Cr(4.4%), Ni.Zn和Mn对环境潜在危害性相对较大。疏浚结束后,表层底泥的氧化还原电位逐渐降低,有机质和硫化物含量下降,导致可还原态和可氧化态比例减少、弱酸溶态比例增大,重金属潜在生态风险增大。疏浚9个月后各重金属元素(除Pb)形态分布趋势与疏浚前基本一致。
     (3)灵昆岛底泥吹填区及外围区土壤受Cd和Hg污染严重,底泥吹填区土壤重金属Cd、Cr、Cu、Mn、Ni、Pb和Zn含量高于外围区土壤,其中Cd、Hg、 Cu、Zn和Ni含量超过土壤环境质量二级标准。在2012年7月到2013年4月期间,土壤重金属平均含量总体上呈现降低趋势,4号采样点重金属下降最显著,平均降幅依次为Hg(23.0%)>As(17.7%)>Cd(10.9%)>Zn(5.6%)>Mn(5.4%)>Cr(4.7%)>Cu(4.2%)>Pb(2.4%)>Ni(1.0%),重金属可能随雨水淋溶扩散至邻近土壤中,对邻近环境造成污染。邻近区土壤和植物中重金属含量随着离吹填区距离增大而逐渐降低,在距离吹填区25m范围内及余水排放渠附近含量较高。在2012年7月到2013年4月期间,灵昆岛底泥吹填区表层土壤重金属的生物有效态比例升高,生态风险增大。40-60cm处重金属可氧化态比例有所提高。
     (4)地累积指数(Igeo)评价表明,疏浚前牛桥底河底泥Cd、Zn和Pb为严重污染,潜在生态风险指数评价(RI)表明,疏浚前牛桥底河底泥存在极强的生态风险,Cd和Hg是主要的生态风险因子。Igeo和RI评价均表明疏浚工程的实施在一定程度上减轻了牛桥底河底泥的污染水平和生态风险。灵昆岛底泥吹填区土壤重金属污染严重,大部分样点具有极强生态风险,最主要的污染元素是Cd、Hg和Cu。灵昆岛底泥吹填区重金属元素的污染程度及潜在的生态风险高于外围区,同时邻近区的土壤受到吹填底泥的污染,其重金属污染及生态风险程度高于外围区。
     (5)发光细菌毒性检测结果表明,底泥疏浚前牛桥底河的上覆水具有中等毒性,其底泥具有较大毒性,发光细菌和热带爪蟾胚胎毒性检测实验均表明,疏浚工程实施后,牛桥底河的上覆水和底泥浸出液生物毒性先增强后减弱。总体而言,疏浚有助于减轻牛桥底河上覆水和底泥生物毒性。添加EDTA螯合重金属后,疏浚不同阶段底泥的相对发光强度较未加入EDTA时均有所提高,提高幅度为11.7%-18.9%,热带爪蟾胚胎存活率从处理前的14.8%-50.0%提高到27.4%-65.5%,底泥整体生物毒性降低。灵昆岛底泥吹填区土壤主要表现为中等毒性,邻近区土壤表现为轻微毒性,外围区土壤无毒性。暴露于底泥吹填区土壤浸出液中的热带爪蟾胚胎平均孵化率为86.5%,平均存活率为80.4%,平均畸形率为13.2%,平均体长为3.92mm,毒性高于外围区土壤。
     (6)盆栽实验结果表明,当栽培介质中底泥比例低于25%时,南方碱蓬在介质中生长更具有优势,但芦苇对高浓度重金属具有更强的耐受性。南方碱蓬和芦苇对重金属的修复效果随底泥比例的升高而逐渐降低。两种植物对介质中的Cd有较好的去除效果,对照组中南方碱蓬对介质中Cd的去除率为21.2%,芦苇对介质中Cd的去除率为25.2%。两种植物作用下介质中的Cu生物有效性提高。两种植物对重金属元素的吸收随着底泥比例的升高而逐渐升高,Cd主要分布南方碱蓬叶片和芦苇根中,最高积累量分别为70.96mg/kg和133.12mg/kg。两种植物对重金属的富集系数均在对照组达到最高,且对Cd和Cu的富集能力较强。南方碱蓬对Cd和Zn的转运系数均大于1,芦苇对Cr的转运系数大于1。
Wenruitang River is the important coastal plain river network of Wenzhou City. With the fast economic development of Wenzhou City, the ecological environment of Wenruitang River has been seriously damaged, especially the water quality and sediment which was extremely polluted. In order to control the pollution, the sediment was dredged from the polluted river and transported to Linkun Shoal for land reclamation.With the support of the National Major Project (2009ZX07317-006), this dissertation took Wenruitang River as the research object and carried out research on the environmental behaviors of heavy metals in the whole process of sediment dredging and hydraulic reclamation, hopefully to provide a theoretical basis and technical support for the scientific assessment and reasonable planning of pollution control and resource disposal of polluted sediment. The main investigations of this research were as follows:1) monitoring physicochemical factors and heavy metal contents of surface water and sediment in the process of sediment dredging of Niuqiaodi River in Wenzhou City to determine the effect of dredging on water qulity and heavy metal removal of sediment;2) investigating temporal and spatial variation of heavy metal contents and speciations in core soil samples from sediment reclamation district in Linkun shoral and distribution of heavy metals in adjacent soils and plants to assess the effect of sediment reclamation on adjacent area;3)analysis of ecological risk of sediments in the process of dredging and hydraulic reclamation by the ecological risk assessment model of heavy metal and toxicity test of Luminescent bacteria and Xenopus tropicalis embryos;4) carring out research on the tolerance and phytoremediation of heavy metals by two dominant plants in reclamation district-Suaeda australis and Phragmites australis.
     The major results of this dissertation were listed as follows:
     (1) After the sediment dredging of Niuqiaodi River, the CODCr concentration in surface water was significantly reduced, while the DO content and transparency were enhanced. In different stages of dredging, the contents of NH4+-N, TN, TP and heavy metal in surface water were first increased, then decreased, while the contents of TP, TOC and heavy metal in sediment exhibited the opposite trend. The heavy metal contents in sediment reached the lowest level in one to three months after dredging, The contents of the pollutants in the river were significantly reduced after sediment dredging, but the improvement of water quality and sediment only lasts three to nine months. Therefore, the exogenous pollution control, endogenous pollution control and in situ remediation should be combined to achieve complete treatment of the river.
     (2) The acid-soluble fraction of heavy metals in sediments before dredging was Ni(34.8%)>Mn(33.7%)>Zn(30.6%)>Cd(16.7%)>Pb(13.4%)>Cu(9.8%)>Cr(4.4%), showing the potential hazards of Ni, Zn and Mn were relatively greater. After dredging, the oxidation reduction potential and the contents of organic matter and sulphide were decreasing, which resulted in the decrease of reducible fraction and oxidizable fraction and the increase of acid-soluble fraction, indicating greater potential ecological risk of heavy metals.The acid-soluble fraction of heavy metals was reduced again in9months after dredging.
     (3) The soils of sediment reclamation district and peripheral area were polluted by Cd and Hg. The contents of heavy metal Cd, Cr, Cu, Mn, Ni, Pb and Zn in soils of sediment reclamation were higher than that of peripheral area, with the contents of Cd, Hg, Cu, Zn and Ni higher than the second standard of soil environtmental quality. In general, the average contents of heavy metals in vertical direction decreased throughout the study from July2012to April2013, while the heavy metal contents in NO.4sample exhibited the most significant reduction, with the drop order of Hg(23.0%)>As(17.7%)>Cd(10.9%)>Zn(5.6%)>Mn(5.4%)>Cr(4.7%)>Cu(4.2%)>Pb(2.4%)>Ni(1.0%). The reduced heavy metals might spread to the adjacent soil with rainwater leaching solution and caused pollution to adjacent environment. The heavy metal contents in soils and plants of the adjacent area decreased with increasing distance from sediment reclamation district, while the heavy metals contents of the adjacent area were highest in25cm range of sediment reclamation district and near the drainage of remaining water. The bioavailable state of heavy metals in surface soils show a rise throughout the study from July2012to April2013, indicating greater ecological risk, while the oxidizable fraction of heavy metals in soils of40-60cm depth increased at the same time.
     (4) The evaluation results of the geoaccumulation index (Igeo) showed that heavy metal Cd, Zn and Pb in sediment of Niuqiaodi River before dredging belonged to serious pollution. The results of the potential ecological risk evaluation indicated the sediments of Niuqiaodi River were seriously polluted by heavy metals, mainly due to heavy metal Cd and Hg. The pollution index and ecological risk index both significantly decreased after the sediment dredging, with reduction of pollution levels of heavy metals in sediment. The soils of sediment reclamation district were seriously polluted, while most of sampling sites showed extremely strong ecological risk, mainly account for Cd, Hg and Cu. The geoaccumulation index and ecological risk index both illustrated that the pollution level and ecological risk of heavy metals in soils was sediment reclamation district> adjacent area> peripheral area, which was attributed to the pollution of sediment reclamation.
     (5) The toxicity test of Luminescent bacteria showed the surface water before sediment dredging belonged to medium toxicity, while the sediment belonged to great toxicity. Both the Luminescent bacteria and Xenopus tropicalis embryos tests indicated the toxicity of surface water and sediment firstly weakened, then enhanced in different stages of dredging. Generally speaking, sediment dredging were helpful for alleviating toxicity of surface water and sediment. The relative luminous intensity of sediment in different stages of dredging increased by11.7%-18.9%after the addition of EDTA for chelating heavy metals, while the survival rate of Xenopus tropicalis embryos increased from14.8%-50.0%to27.4%-65.5%, indicating the addition of EDTA reduced the toxicity of sediment. The soils of sediment reclamation district mainly belonged to medium toxicity. The soils of adjacent area belonged to slight toxicity, while the soils of peripheral area exhibited no toxicity. According to the toxicity test of Xenopus tropicalis embryos against soil leaching, the average hatching rate, survival rate, teratogenic rate and length was86.5%,80.4%,13.2%and3.92mm, respectively. The toxicity of sediment reclamation district was greater than peripheral area.
     (6) The results of pot experiment indicated Suaeda australis showed more vigorous growth than Phragmites australis under the treatment of low concentration of heavy metals. But Phragmites australis exhibited stronger tolerance to high concentration of heavy metals. The removal of heavy metals by Suaeda australis and Phragmites australis increased with the decreasing sediment ratio. Suaeda australis and Phragmites australis showed better removal of Cd, with removal rate of21.2%and25.2%respectively in the control group. The two plants had a positive effect on the bioavailability of Cu. The accumulation of heavy metals by two plants increased with the increasing sediment ratio, while Cd was mainly distributed in leaves of Suaeda australis and roots of Phragmites australis, with the maximum accumulation of70.96mg/kg and133.12mg/kg respectively. The bioaccumulation factors of two plants reached the highest value in the control group, while the two plants had stronger accumulation ability of Cd and Cu. The transportation factors (TF) of Suaeda australis for Cd and Zn and TF of Phragmites australis for Cr were higher than one.
引文
[1]徐祖信,张锦平,廖振良,等.苏州河底泥对上复水水质污染影响[J].城市环境与城市生态,2005,18(6):1-3.
    [2]中华人民共和国环境保护部.2012中国环境状况公报[R].北京:中华人民共和国环境保护部,2013.
    [3]艾伦,鲍尔,立成,等.水和沉积物中有毒污染物评估[M].北京:中国环境科学出版社,1993.
    [4]石正宝.苏州河底泥的污染特性、污染控制指标与处置方式研究[D].合肥工业大学水利工程,2008.
    [5]魏明蓉.受污染武汉南湖底泥特征分析及其处置方法研究[D].武汉理工大学市政工程,2012.
    [6]王俊杰,朱德清,臧淑英.松嫩平原中西部湖泊底泥营养盐的空间变异特征[J].地理与地理信息科学,2011,27(2):92-95.
    [7]李勇,朱智兵.里运河底泥COD和NH3-N空间分布及对水质的影响[J].水资源保护,2009,24(6):72-75.
    [8]Lazaro T R. Urban Hydrology (revised edition)[M]. Boca Raton:CRC Press,1990.
    [9]廖国礼,吴超.矿山不同片区土壤中Zn、Pb、Cd、Cu和As的污染特征[J].环境科学,2005,26(3):157-162.
    [10]Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969,2(3):108-118.
    [11]Woitke P, Wellmitz J, Helm D, et al. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube[J]. Chemosphere,2003,51(8):633-642.
    [12]Le Cloarec M, Bonte P H, Lestel L, et al. Sedimentary record of metal contamination in the Seine River during the last century[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011,36(12):515-529.
    [13]Meybeck M, Lestel L, Bonte P, et al. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005)[J]. Science of the Total Environment,2007,375(1):204-231.
    [14]Bellucci L G, Frignani M, Paolucci D, et al. Distribution of heavy metals in sediments of the Venice Lagoon:the role of the industrial area[J]. Science of The Total Environment,2002,295(1-3):35-49.
    [15]Alonso Castillo M L, Sanchez Trujillo I, Vereda Alonso E, et al. Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Malaga Bay, Region of Andalucia, Southern Spain)[J]. Marine Pollution Bulletin,2013,76(1-2):427-434.
    [16]Yi Y, Yang Z, Zhang S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin[J]. Environmental Pollution,2011,159(10):2575-2585.
    [17]Yang Z, Wang Y, Shen Z, et al. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China[J]. Journal of Hazardous Materials,2009,166(2):1186-1194.
    [18]Liu C, Xu J, Liu C, et al. Heavy metals in the surface sediments in Lanzhou Reach of Yellow River, China[J]. Bulletin of environmental contamination and toxicology,2009,82(1):26-30.
    [19]罗先香,田静,杨建强,等.黄河口潮间带表层沉积物重金属和营养元素的分布特征[J].生态环境学报,2011(05):892-897.
    [20]Zhang H, Shan B. Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China[J]. Science of the Total Environment,2008,399(1):113-120.
    [21]Yan J, He Y, Huang H. Characteristics of heavy metals and their evaluation in sediments from middle and lower reaches of the Huaihe river[J]. Journal of China University of Mining and Technology,2007,17(3):414-417.
    [22]Li Q, Wu Z, Chu B, et al. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China[J]. Environmental Pollution,2007,149(2):158-164.
    [23]Niu H, Deng W, Wu Q, et al. Potential toxic risk of heavy metals from sediment of the Pearl River in South China[J]. Journal of Environmental Sciences,2009,21(8):1053-1058.
    [24]Guo S, Wang X, Li Y, et al. Investigation on Fe, Mn, Zn, Cu, Pb and Cd fractions in the natural surface coating samples and surficial sediments in the Songhua River, China[J]. Journal of Environmental Sciences,2006,18(6):1193-1198.
    [25]张凤英,阎百兴,朱立禄.松花江沉积物重金属形态赋存特征研究[J].农业环境科学学报,2010,29(1):163-167.
    [26]张婧,王淑秋,谢琰,等.辽河水系表层沉积物中重金属分布及污染特征研究[J].环境科学,2008,29(9):2413-2418.
    [27]周秀艳,王恩德,朱恩静.辽东湾河口底泥中重金属的污染评价[J].环境化学,2004,23(3):321-325.
    [28]Liu L, Li F, Xiong D, et al. Heavy metal contamination and their distribution in different size fractions of the surficial sediment of Haihe River, China[J]. Environmental Geology, 2006,50(3):431-438.
    [29]Yuan C, Jiang G, Liang L, et al. Sequential extraction of some heavy metals in Haihe River sediments, People's Republic of China[J]. Bulletin of environmental contamination and toxicology,2004,73(1):59-66.
    [30]Cheng J, Li X D, Hua R M, et al. Distribution and ecological risk assessment of heavy metals in sediments of Chaohu Lake[J]. Journal of Agro-Environment Science,2008,27(4):1403-1408.
    [31]Tang W, Shan B, Zhang H, et al. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China[J]. Journal of Hazardous Materials,2010,176(1):945-951.
    [32]Luo M, Li J, Cao W, et al. Study of heavy metal speciation in branch sediments of Poyang Lake[J]. Journal of Environmental Sciences,2008,20(2):161-166.
    [33]Yuan G, Liu C, Chen L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles:Poyang Lake in China[J]. Journal of hazardous materials, 2011,185(1):336-345.
    [34]秦延文,张雷,郑丙辉,等.太湖表层沉积物重金属赋存形态分析及污染特征[J].环境科学,2012,33(12):4291-4299.
    [35]Chi Q, Zhu G, Langdon A. Bioaccumulation of heavy metals in fishes from Taihu Lake, China[J]. Journal of Environmental Sciences,2007,19(12):1500-1504.
    [36]胡国成,许木启,许振成,等.府河-白洋淀沉积物中重金属污染特征及潜在风险评价[J].农业环境科学学报,2011,30(1):146-153.
    [37]刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究 [J].环境科学,2007,28(6):1377-1383.
    [38]张远,石陶然,于涛,等.滇池典型湖区沉积物粒径与重金属分布特征[J].环境科学研究,2013,26(4):370-379.
    [39]范文宏,张博,张融,等.锦州湾沉积物中重金属形态特征及其潜在生态风险[J].海洋环境科学,2008,27(1):54-58.
    [40]Wang S, Jia Y, Wang S, et al. Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China[J]. Journal of Environmental Sciences,2010,22(1):23-31,
    [41]Gao X, Chen C A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay[J]. water research,2012,46(6):1901-1911.
    [42]MENG W, QIN Y, ZHENG B, et al. Heavy metal pollution in Tianjin Bohai Bay, China[J]. Journal of Environmental Sciences,2008,20(7):814-819.
    [43]张珂,王朝晖,冯杰,等.胶州湾表层沉积物重金属分布特征及污染评价[J].分析测试学报,2011,30(12):1406-1411.
    [44]Li Y, Yu Z, Song X, et al. Trace metal concentrations in suspended particles, sediments and clams (Ruditapes philippinarum) from Jiaozhou Bay of China[J]. Environmental monitoring and assessment,2006,121(1-3):489-499.
    [45]张弛,高效江,宋祖光,等.杭州湾河口地区表层沉积物中重金属的分布特征及污染评价[J].复旦学报(自然科学版),2008,47(4):535-540.
    [46]Che Y, He Q, Lin W. The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China[J]. Marine Pollution Bulletin, 2003,46(1):123-131.
    [47]盛菊江,范德江,杨东方,等.长江口及其邻近海域沉积物重金属分布特征和环境质量评价[J].环境科学,2008,29(9):2405-2413.
    [48]方明,吴友军,刘红,等.长江口沉积物重金属的分布、来源及潜在生态风险评价[J].环境科学学报,2013,33(2):563-570.
    [49]陈康,方展强,安东,等.珠江口沿岸水域表层沉积物中重金属含量分布及污染评价[J].应用海洋学学报,2013,32(01):20-29.
    [50]Ip C, Li X, Zhang G, et al. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China[J]. Environmental Pollution,2007,147(2):311-323.
    [51]滑丽萍,华珞,高娟,等.中国湖泊底泥的重金属污染评价研究[J].土壤,2006,38(4):366-373.
    [52]朱青青,王中良.中国主要水系沉积物中重金属分布特征及来源分析[J].地球与环境,2012,40(03):305-314.
    [53]朱丽青.杭州主要城区河道的污染特征与生态危害分析[D].浙江大学农业资源利用,2012.
    [54]周立旻,郑祥民,殷效玲.苏州河上海段底泥重金属的污染特征[J].城市环境与城市生态,2008,21(2):1-5.
    [55]薄录吉,王德建,颜晓,等.底泥环保资源化利用及其风险评价[J].土壤通报,2013,44(4):1017-1024.
    [56]曹承进,陈振楼,王军,等.城市黑臭河道底泥生态疏浚技术进展[J].华东师范大学学报(自然科学版),2011,1:32-42.
    [57]Fan C, Zhang L, Wang J, et al. Processes and mechanism of effects of sludge dredging on internal source release in lakes[J]. Chinese Science Bulletin,2004,49(17):1853-1859.
    [58]钟继承,范成新.底泥疏浚效果及环境效应研究进展[J].湖泊科学,2007,19(1):1-10.
    [59]安琪,李发荣.滇池草海底泥疏挖对水体水质及底泥影响分析研究[J].云南地理环境研究, 2002,14(2):65-69.
    [60]朱敏,王国祥,王建,等.南京玄武湖清淤前后底泥主要污染指标的变化[J].南京师范大学学报:工程技术版,2004,4(2):66-69.
    [61]濮培民,王国祥.底泥疏浚能控制湖泊富营养化吗?[J].湖泊科学,2000,12(3):269-279.
    [62]王栋,孔繁翔,刘爱菊,等.生态疏浚对太湖五里湖湖区生态环境的影响[J].湖泊科学,2005,17(3):263-268.
    [63]刘爱菊,孔繁翔,王栋.太湖底泥疏浚的水环境质量风险性分析[J].环境科学,2006,27(10):1946-1952.
    [64]姜霞,石志芳,刘锋,等.疏浚对梅梁湾表层沉积物重金属赋存形态及其生物毒性的影响[J].环境科学研究,2010(9):1151-1157.
    [65]彭涛,黄少康.吹填淤泥填海造陆技术在深圳地区的应用[J].水文地质工程地质,2001,28(1):68-70.
    [66]杨顺安,刘志欣.深圳南油“314”造地吹填淤泥加固改良浅析[J].中国地质灾害与防治学报,1998,9(4):8-12.
    [67]朱宏伟,罗兆辉,钟平,等.我国吹填土地基预加固研究进展[J].天津建设科技,2006,15(6):25-26.
    [68]梁启斌,邓志华,崔亚伟.环保疏浚底泥资源化利用研究进展[J].中国资源综合利用,2010,28(012):23-26.
    [69]朱广伟,周根娣.景观水体疏浚底泥的农业利用研究[J].应用生态学报,2002,13(3):335-339.
    [70]朱本岳,朱荫湄,李英法,等.底泥化肥复混肥的加工及其在蔬菜上的应用效果[J].浙江农业科学,2000,6:28 1-283.
    [71]赵伟,祝长龙,陈雅君.马家沟底泥对多年生花卉及草坪的肥效作用[J].北方园艺,2004(3):39.
    [72]秦峰,吴志超.苏州河疏浚污泥作填埋场封场覆土的实验研究[J].上海环境科学,2002,21(3):163-165.
    [73]刘贵云,姜佩华.河道底泥资源化的意义及其途径研究[J].东华大学学报:自然科学版,2002,28(1):33-36.
    [74]Tay J, Show K, Hong S Y. Reuse of industrial sludge as construction aggregates[J]. Water Science & Technology,2001,44(10):269-272.
    [75]Show K, Lee D, Tay J, et al. Lightweight Aggregates from Industrial Sludge-Marine Clay Mixes[J]. Journal of Environmental Engineering,2005,131(7):1106-1113.
    [76]Dalton J L, Gardner K H, Seager T P, et al. Properties of Portland cement made from contaminated sediments[J]. Resources, Conservation and Recycling,2004,41(3):227-241.
    [77]张春雷,朱伟,李磊,等.湖泊疏浚泥固化筑堤现场试验研究[J].中国港湾建设,2007(1):27-29.
    [78]任乃林,许佩芸.用底泥吸附处理含铬废水[J].水处理技术,2002,28(3):172-174.
    [79]刘贵云,李承勇,奚旦立.河道底泥陶粒对生活污水中NH3-N的深度处理试验研究[J].东华大学学报:自然科学版,2004,29(5):100-103.
    [80]Martin M J, Artola A, Balaguer M D, et al. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions[J]. Chemical Engineering Journal, 2003,94(3):231-239.
    [81]李明明,甘敏,朱建裕,等.河流重金属污染底泥的修复技术研究进展[J].有色金属科学与工程,2012,3(1):67-71.
    [82]李慧,王增长,黄仁华,等.上海苏州河底泥重金属淋洗效果的研究[J].有色冶金设计与研 究,2010,31(2):41-44.
    [83]陈桂秋,曾光明,袁兴中,等.治理重金属污染河流底泥的生物淋滤技术[J].生态学杂志,2008,27(4):639-644.
    [84]王聪,李强,李保宾,等.生物淋滤法去除污泥中的重金属[J].微生物学通报,2010,37(4):615-621.
    [85]Silverman M P, Ehrlich H L. Microbial formation and degradation of minerals[J]. Advances in Applied Microbiology,1964,6:153-206.
    [86]王电站,周立祥,王世梅.生物酸化污泥回用在批式运行的污泥生物淋滤工工艺中的效果[J].环境科学,2006,27(3):599-603.
    [87]邬思丹,刘云国,曾光明,等.表面活性剂强化污泥生物淋滤Cu, Zn的研究[J].中国环境科学,2010(6):791-795.
    [88]杨洁,汪群慧,罗启仕,等.硅酸盐细菌脱硅处理对垃圾焚烧飞灰生物淋滤效果的影响[J].环境科学,2010,31(1):266-272.
    [89]Wang Q, Yang J, Wang Q, et al. Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash[J]. Journal of hazardous materials, 2009,162(2):812-818.
    [90]Xin B, Jiang W, Aslam H, et al. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration[J]. Bioresource Technology,2012,106(0):147-153.
    [91]Xin B, Zhang D, Zhang X, et al. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria[J]. Bioresource Technology,2009,100(24):6163-6169.
    [92]谭险夷,袁兴中,曾光明,等.丝状菌对生物淋滤去除底泥中重金属的促进作用[J].环境工程学报,2010,4(12):2853-2859.
    [93]李梅,曾德华.重金属污染的植物修复研究进展[J].贵州农业科学,2007,35(3):135-138.
    [94]Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration,1977,7:49-57.
    [95]Pletsch M, de Araujo B S, Charlwood B V. Novel biotechnological approaches in environmental remediation research[J]. Biotechnology Advances,1999,17(8):679-687.
    [96]王向健,郑玉峰,赫冬青.重金属污染土壤修复技术现状与展望[J].环境保护科学,2004,30(2):48-49.
    [97]刘捷,贾海勇.温州市河道水环境污染状况与防治对策[J].浙江水利科技,2007(4):73-74.
    [98]陈玉辉.典型城市黑臭河道治理后的富营养化分析与预测研究[D].华东师范大学环境工程,2013.
    [99]宋力.温瑞塘河中持久性有毒物质的污染特征与源解析[D].华东师范大学环境工工程,2013.
    [100]黄哲浩.温州半岛浅滩二期围涂工程促淤方案初步研究[J].黑龙江水专学报,2009(2):48-50.
    [101]陈恩慈.温州沿海产业带围垦建设与航道疏浚结合论证[J].中国高新技术企业,2009(7):66-67.
    [102]Barbosa M C, de Souza Soares De Almeida M. Dredging and disposal of fine sediments in the state of Rio de Janeiro, Brazil[J]. Journal of Hazardous Materials,2001,85(1-2):15-38.
    [103]范成新,张路,王建军,等.湖泊底泥疏浚对内源释放影响的过程与机理[J].科学通报,2004,49(15):1523-1528.
    [104]Van Den Berg G A, Meijers G G A, van der Heijdt L M, et al. Dredging-related mobilisation of trace metals:a case study in The Netherlands[J]. Water Research,2001,35(8):1979-1986.
    [105]李文红,陈英旭,孙建平.疏浚对影响底泥向上覆水体释放污染物的研究[J].农业环境科学 学报,2003,22(4):446-448.
    [106]吴敏,汪雯,黄岁樑.疏浚深度和光照对海河表层沉积物氮磷释放的实验研究[J].农业环境科学学报,2009,28(7):1458-1463.
    [107]Blazquez C A, Adams T M, Keillor P. Optimization of mechanical dredging operations for sediment remediation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2001,127(6):299-307.
    [108]鲁如坤.土壤农化分析[M].北京:中国农业科技出版社,2000.
    [109]水和废水监分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [110]Lewis M A, Weber D E, Stanley R S, et al. Dredging impact on an urbanized Florida bayou: effects on benthos and algal-periphyton[J]. Environmental Pollution,2001,115(2):161-171.
    [111]Lohrer A M, Wetz J J. Dredging-induced nutrient release from sediments to the water column in a southeastern saltmarsh tidal creek[J]. Marine Pollution Bulletin,2003,46(9):1156-1163.
    [112]Kleeberg A, Kohl J. Assessment of the long-term effectiveness of sediment dredging to reduce benthic phosphorus release in shallow Lake Muggelsee (Germany)[J]. Hydrobiologia, 1999,394:153-161.
    [3]王小庆,郑乐平,孙为民.淀山湖沉积物孔隙水中重金属元素分布特征[J].中国环境科学,2004,24(4):400-404.
    [114]Edwards S C, Williams T P, Bubb J M, et al. The success of elutriate tests in extended prediction of water quality after a dredging operation under freshwater and saline conditions[J]. Environmental Monitoring and Assessment,1995,36(2):105-122.
    [115]戚仁海,徐亚同,刘赞.苏州河底泥疏浚对围隔中水生生态系统的影响[J].华东师范大学学报:自然科学版,2006(4):127-133.
    [116]汪庆华,董岩翔,周国华,等.浙江省土壤地球化学基准值与环境背景值[J].生态与农村环境学报,2007,23(2):81-88.
    [117]李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,13(2):154-155.
    [118]Cukrov N, Franciskovic-Bilinski S, Hlaca B, et al. A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia[J]. Marine Pollution Bulletin, 2011,62(1):154-167.
    [119]Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port[J]. Chemosphere,2005,61 (6):800-809.
    [120]汤莉莉,牛生杰,徐建强,等.外秦淮河疏浚后底泥重金属污染与潜在生态风险评价[J].长江流域资源与环境,2008,17(3):424-434.
    [121]Rubio B, Nombela M A, Vilas F. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain):an assessment of metal pollution[J]. Marine Pollution Bulletin, 2000,40(11):968-980.
    [122]莫争,王春霞.重金属Cu Pb Zn Cr Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9-12.
    [123]Mao M Z. Speciation of metals in sediments along the Le An River[J]. CERP Final Report, France:Imprimerie Jouve Mayenne,1996:55-57.
    [124]Kelderman P, Osman A A. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands)[J]. Water Research,2007,41(18):4251-4261.
    [125]谢国樑,卢其明,魏小铎,等.咸潮对重污染底泥中重金属释放的影响[J].水土保持学报, 2009,23(1):137-140.
    [126]宋力,顾敦罡,黄民生,等.温州河网沉积物中重金属分布布特征与污染评价[J].光谱学与光谱分析,2012,32(9):2540-2545.
    [127]陈华林,周江敏,金煜彬,等.温州城市土壤Cu, Zn, Pb含量及其形态研究[J].水土保持学报,2008,21(6):75-78.
    [128]Cagador I, Vale C, Catarino F. Seasonal variation of Zn, Pb Cu and Cd concentrations in the root-sediment system of spartina and Halinmone porulacoide from Tagus estuary salt marshes[J]. Marine Environmental Research,2000,49:279-291.
    [129]Barbanti A, Bergamini M C, Frascari F, et al. Diagenetic processes and nutrient fluxes at the sediment-water interface, northern Adriatic Sea, Italy[J]. Marine and Freshwater Research, 1995,46(1):55-67.
    [130]R. S S. Changes in the leachability of metals from dredged canal sediments during drying and oxidation[Z]. J. A B.2001:114,407-413.
    [131]包丹丹,李恋卿,潘根兴,等.垃圾堆放场周边土壤重金属含量的分析及污染评价[J].土壤通报,2011,42(1):185-190.
    [132]王心义,杨建,郭慧霞.矿区煤矸石堆放引起上壤重金属污染研究[J].煤炭学报,2006,31(6):808-812.
    [133]Kalbitz K, Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter[J]. Science of the Total Environment,1998,209(1):27-39.
    [134]李雪转,樊贵盛.土壤有机质含量对土壤入渗能力及参数影响的试验研究[J].农业工程学报,2006,22(3):188-190.
    [135]贾英,方明,吴友军,等.上海河流沉积物重金属的污染特征与潜在生态风险[J].中国环境科学,2013(1):147-153.
    [136]周斌,刘伟,刘有刚,等.渤海湾南部典型生态区表层沉积物重金属潜在生态风险分析[J].海洋环境科学,2013,32(4):533-538.
    [137]Zahra A, Hashmi M Z, Malik R N, et al. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan[J]. Science of The Total Environment,2014,470-471(0):925-933.
    [138]刘赟,洪蓉,朱文杰,等.苏州河底泥及河水生物毒性的研究[J].华东师范大学学报:自然科学版,2004(1):93-98.
    [139]Richards S M, Cole S E. A toxicity and hazard assessment of fourteen pharmaceuticals to Xenopus laevis Iarvae[J]. Ecotoxicology,2006,15(8):647-656.
    [140]Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research,1980,14(8):975-1001.
    [141]朱文杰,郑天凌,李伟民.发光细菌与环境毒性检测[M].北京:中国轻工业出版社,2009.
    [142]Amiard J C. Bioavailability of sediment-bound metals for benthic aquatic organisms[J]. Impact of Heavy Metals on the Environment, Elsevier, Amsterdam,1992:183-202.
    [143]刘爱菊,孔繁翔.底泥疏浚对五里湖沉积物生物毒性的影响[J].环境污染与防治,2007,28(12):881-883.
    [144]Murado M A, Vazquez J A. The notion of hormesis and the dose-response theory:a unified approach[J]. Journal of Theoretical Biology,2007,244(3):489-499.
    [145]杨波,朱攀,袁静,等.运用热带爪蟾胚胎检测黑臭河道底泥的生态毒性[J].华东师范大学学报(自然科学版),2012(3):145-154.
    [146]Shi H, Yuan J, Dai Z, et al. The teratogenic effects of sediments from the Yangtze Estuary and adjacent bay, China, on frog embryos[J]. Environmental Earth Sciences,2013,68(8):2385-2391.
    [147]陈瑞瑞,蔡晓妍,杨波,等.典型城市黑臭河道水体生物毒性研究[J].生态毒理学报,2012,7(2):201-208.
    [148]Ho K T, Burgess R M, Pelletier M C, et al. An overview of toxicant identification in sediments and dredged materials[J]. Marine Pollution Bulletin,2002,44(4):286-293.
    [149]Shi H, Yang B, Huang M, et al. The toxicity of sediments from the black-odors river of WenZhou, China to the embryos of Xenopus tropicalis[J]. Fresenius Environmental Bulletin, 2012,21(12 B):3952-3958.
    [150]王学礼,常青山,侯晓龙,等.三明铅锌矿区植物对重金属的富集特征[J].生态环境学报,2010,19(1):108-112.
    [151]谢景千,雷梅,陈同斌,等.蜈蚣草对污染土壤中As, Pb, Zn, Cu的原位去除效果[J].环境科学学报,2010,30(1):165-171.
    [152]刘艳丽,吴凤霞,徐莹,等.杨树修复重金属污染土壤的研究进展[J].林业科学,2012,48(9):139-144.
    [153]孙涛,张玉秀,柴团耀.印度芥菜(Brassica juncea L.)重金属耐性机理研究进展[J].中国生态农业学报,2011,19(001):226-234.
    [154]庄瑶,孙一香,王王中生,等.芦苇生态型研究进展[J].生态学报,2010,30(8):2173-2181.
    [155]林石狮,叶有华,孙延军,等.多彩红树林景观营造——彩叶乡土红树林植物海漆和南方碱蓬的调研与应用[J].生物学通报,2013,48(1):10-12.
    [156]朱鸣鹤,丁永生,郑道昌,等.潮滩植物翅碱蓬对Cu, Zn, Pb和Cd累积及其重金属耐性[J].海洋环境科学,2005,24(2):13-16.
    [157]Hegedus A, Erdei S, Horvath G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress[J]. Plant Science,2001,160(6):1085-1093.
    [158]汤章城.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [159]张志良,瞿伟菁.植物生理学实验指导(第四版)[M].北京:高等教育出版社,2009.
    [160]关松萌.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [161]Lin Q, Mendelssohn I A. Potential of restoration and phytoremediation with Juncus roemerianus for diesel-contaminated coastal wetlands[J]. Ecological Engineering,2009,35(1):85-91.
    [162]刘亚云,孙红斌,陈桂珠,等.秋茄(Kandelia candel)幼苗对多氯联苯污染的生理生态响应[J].生态学报,2007,27(2):746-755.
    [163]Feller U K, Soong T T, Hageman R H. Leaf proteolytic activities and senescence during grain development of field-grown corn (Zea mays L.)[J]. Plant physiology,1977,59(2):290-294.
    [164]宋晓林,吕宪国.中国退化河口湿地生态恢复研究进展[J].2009,7(4):379-385.
    [165]林茂兹,邱雪芬,林能文,等.空心莲子草对污泥重金属的响应与吸附效应[J].草业科学,2012,29(005):681-686.
    [166]于君宝,阚兴艳,王雪宏,等.黄河三角洲石油污染对湿地芦苇和碱蓬幼苗生长影响的模拟研究[J].2012,32(10):1254-1262.
    [167]李秀珍,李彬.重金属对植物生长发育及品质的影响[J].安徽农业科学,2008,36(14):5742-5746.
    [168]王雪峰,陈桂珠,许夏玲.白骨壤对石油污染的生理生态响应[J].生态学报,2005,25(5):1095-1101.
    [169]张凤琴,王友绍,董俊德,等.重金属污水对木榄幼苗几种保护酶及膜脂质过氧化作用的影响[J].热带海洋学报,2006,25(2):66-70.
    [170]袁红艳,刘嘉琦,陆小平.铅胁迫对费菜叶绿素含量及抗氧化酶活性的影响[J].安徽农业科 学,2010(23):12445-12447.
    [171]李铮铮,伍钧,唐业,等.铅,锌及其交互作用对鱼腥草(Houttuynia cordata)叶绿素含量及抗氧化酶系统的影响[J].生态学报,2008,27(12):5441-5446.
    [172]吴琦,季辉,张卫建.土壤铅和镉胁迫对空心菜生长及抗氧化酶系统的影响[J].中国农业科技导报,2010(2):122-127.
    [173]滑丽萍,华珞,王学东,等.芦苇对白洋淀底泥重金属污染程度的影响效应研究[J].水土保持学报,2006,20(2):102-105.
    [174]倪才英,陈英旭,骆永明.土壤-植物系统铜污染与修复的研究进展[J].浙江大学学报(农业与生L命科学版),2003,29(3):237-243.
    [175]杨卓,寇建林,李博文,等.白洋淀底泥在芦苇生境下的变化规律初探[J].生态环境,2008,17(1):81-85.
    [176]朱鸣鹤,丁永生,丁德文.翅碱蓬(Suaeda heteroptera)根际与非根际沉积物常见重金属总量及化学形态变化[J].海洋与湖沼,2006,37(5):393-400.
    [177]吴卿,高亚洁,李东梅,等.高羊茅对河道底泥中复合重金属污染的修复[J].水土保持学报,2012,26(6):219-223.
    [178]Yanqun Z, Yuan L, Schvartz C, et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China[J]. Environment International, 2004,30(4):567-576.
    [179]Stoltz E, Greger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings[J]. Environmental and Experimental Botany, 2002,47(3):271-280.
    [180]Acosta-Martinez V, Cruz L, Sotomayor-Ramirez D, et al. Enzyme activities as affected by soil properties and land use in a tropical watershed[J]. Applied Soil Ecology,2007,35(1):35-45.
    [181]杨期和,刘惠娜,李清华,等.粤东铅锌尾矿区3种优势植物根际土壤微生物的活性研究[J].中国农学通报,2012,28(30):56-64.
    [182]郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3):470-474.
    [183]周礼恺,张志明,曹承绵,等.土壤的重金属污染与土壤酶活性[J].环境科学学报,1985,5(2):176-183.
    [184]Marzadori C, Ciavatta C, Montecchio D, et al. Effects of lead pollution on different soil enzyme activities[J]. Biology and Fertility of Soils,1996,22(1-2):53-58.
    [185]高扬,毛亮,周培,等.Cd, Pb污染下植物生长对土壤酶活性及微生物群落结构的影响[J].北京大学学报(自然科学版),2010(3):339-345.
    [186]Nannipieri P, Pankhurst C E, Doube B M, et al. The potential use of soil enzymes as indicators of productivity, sustainability and pollution.[J]. Soil biota:management in sustainable farming systems,1994:238-244.
    [187]李廷强,舒钦红,杨肖娥.不同程度重金属污染土壤对东南景天根际土壤微生物特征的影响[J].浙江大学学报:农业与生命科学版,2008,34(6):692-698.
    [188]王焕校.污染生态学[M].北京:高等教育出版社,2000.
    [189]和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139-142.
    [190]李伟,韦晶晶,刘爱民,等.吊兰生长对锌污染土壤微生物数量及土壤酶活性的影响[J].水土保持学报,2013,27(2):276-281.
    [191]方晰,田大伦,武丽花,等.植被修复对锰矿渣废弃地土壤微生物数量与酶活性的影响[J]. 水土保持学报,2009(4):221-226.
    [192]孙铁珩,周启星.污染生态学[M].上海:科学出版社,2001.
    [193]Kozdroj J, van Elsas J D. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches[J]. Soil Biology and Biochemistry,2000,32(10):1405-1417.
    [194]蔡信德,仇荣亮,陈桂珠,等.植物修复对重金属镍污染土壤微生物群落的影响[J].土壤学报,2006,43(6):919-925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700