用户名: 密码: 验证码:
低温扫描隧道显微镜系统研制及层状材料缺陷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状材料因其低维性(二维或准二维)在低温下呈现出许多奇异的电子态行为:超导电性,量子霍尔效应,电荷密度波,庞磁电阻,电荷或轨道有序,金属绝缘体转变等。对这些奇异现象的测量和理解一直是凝聚态物理前沿且基础的课题。层状材料涵盖了当前研究热点的石墨烯体系材料、高温超导体和新近发现的铁基超导体、拓扑绝缘体,低温下发生电荷密度波现象的过渡金属二硫族化物(比如1T-TiSe2)等等。扫描隧道显微镜(STM)因其具有实空间原子级别的分辨率,尤其适合从事此类材料的表面物性研究。
     为此,我们自制了一套低温STM专门从事上述问题的研究。低温(液氦或液氮温区)是凝聚态领域研究物性必不可少的一个物理维度,但它也带来了一系列的诸如压电材料性能急剧下降、低温液体振动等问题。这些问题会直接影响STM的压电马达能否正常工作、STM的成像质量优劣等事关STM成败的基础性指标。为了解决上述问题,我们进行了两项先导性的探索(本文第四章)。其一,我们提出了一种普适无畸变的螺旋线扫描,与传统的逐行扫描不同,它能够:①给出样品真实的晶格结构;②通过我们提出的自矫正理论,确定图像漂移大小与方向;③实现快速扫描成像。更重要的是当遇到未知样品时,它对正确认识其晶格结构,起到传统扫描方式无法替代的作用。目前,该项工作已发表在国际著名仪器期刊Rev. Sci.Instrum.上。后该文主要内容又被全球知名出版商Taylor&Francis出版的Fundamentals of Picoscience一书录用在第17章(该章由我的导师陆轻铀教授受邀撰写)。其二,为了解决低温下压电马达需要高电压控制这一困扰人们的问题(高压意味着更高的电子学噪音及高至8倍以上研发成本),我们以堆栈与管式惯性马达为载体,发现两者的驱动信号加一段短暂延时能够显著提升其性能(步长与启动电压)。结果通过理论模拟,发现这个现象的根源是压电材料的蠕变效应,也解决了此间长期存在的争议。这一成果也已发表在Rev. Sci. Instrum.上。
     在研制仪器过程中,许多切实而重要的问题也需要一一克服,比如我们需要对微弱的隧道电流信号(纳安级别)进行放大,还要完成真空环境下样品的制备、探针与样品的更换以及对整个装置减振隔音与屏蔽设计。依循上述的种种问题并基于仪器的基本原理我们研制了一套具有原子分辨率的STM(本文第二章)。它具备以下独特的优势与特点:(1)独立于压电马达的可分离式扫描结构,因而隧道结获得了更高的稳定性;(2)全新的旋转悬吊式机构,使低温STM装置不再受限于楼层高度,是低温STM一大技术突破;(3)可原位处理样品;(4)真空中高可靠的更换探针与样品机构;(5)优于20fA电流分辨率的前置放大器;(6)独特的磁吸式降温方式以及低成本方式的可连续低温实验。经过实验表明,我们设计的STM能够获得高清的原子分辨率。在低压下能够实现步进,可以精确定位感兴趣的区域进行扫描成像。低温温度能够达到12K,真空度可以达到超高真空水平。
     由于自主研发的STM在控制方式方面的独特性,客观上需要我们开发仪器控制软件。第三章详细介绍了由我本人开发基于Labview的扫描探针显微镜(SPM)控制软件。与商业软件不同,该软件可以很容易地兼容到各种SPM上,因此它特别适合各种自主开发的该类设备。经过实际测量表明,该软件可以很友好地应用到我们自主研制的SPM上,包括扫STM,原子力显微镜以及磁力显微镜等。目前利用该套STM控制软件,能够对感兴趣区域进行纳米级别的精确定位、高效地搜索和实时成像。
     纳米级别上缺陷由于其低维性和对称性的破缺,对研究材料的电子学、磁学、力学性质等提供了一个绝佳的研究视角。第五章中,我们用自制的STM测量了层状过渡金属二硫族化物1T-TiSe2,获得了高分辨率的原子图像。我们发现其单晶表面大量存在着原子缺陷,从原子图像上看,这些空位并没有引起大的电子态扰动,这可能跟其表面电子局域化有关。与1T-TiSe2不同,我们发现石墨晶界附近存在大量的形态各样的“超晶格”结构,同时也测量到了由于边界散射引起的电子之间干涉所形成的驻波现象。另外,在石墨的zigzag边界由于其特定的几何构型,产生了局域电子态的调制现象。
     石墨层间的作用力是很弱的范德华力,到现在为止对其本质仍然缺乏认识,特别是在原子级别上的。仍然还有很多基础问题并没有明确,比如石墨表面原子为蜂窝状晶格,为何STM很难测到,取而代之的是三角晶格结构。我们首次测量到了存在于第二层的原子分辨率的刃型位错,这提供了绝佳的机会,用于研究下层原子如何改变上层电子态的分布。为了充分研究下层原子的影响,通过长时间热处理改变石墨最上面两层碳网之间的层间相互作用,进而发现了在晶界附近有很多奇异电子态结构。为了解释这些特征,我们提出了集体干涉模型。该理论能够定量的模拟下层原子对表面电子态的影响。同时,我们也提供了一种在原子尺度上研究层间相互作用的方法。最后,我们捕捉到了石墨晶体位错的运动及其原子分辨率的演化过程,我们认为这些现象可能是石墨里存在的应力引起的。
     基于以上研究内容,我目前已经发表4篇SCI论文,其中2篇以第一作者发表在学校认可的二区期刊Rev. Sci.Instrum.上,满足了中国科技大学的博士毕业要求。另外,有一篇投在Nanoscale(一区期刊),处于Under Review状态;还有一篇处于撰写状态。在2013届微尺度国家实验室研究生论坛上,在众多的博士研究生当中,我的报告荣获“一等奖”。
At low temperature many novel and important electron behaviors, such as superconductivity, quantum hall effect, charge density wave(CDW), colossal magnetoresistance, charge or orbit order, metal-insulator transition, occur in layered materials due to its low dimension. It has long been fundamental and edge-cutting to understand/measure these phenomena in condensed matter physics. The layered materials include graphene-like materials which recently has received lots of attention, high-temperature superconductors and the newly discovered iron-based superconductor, topological insulator and transition metal dichalcogenides(such as1T-TiSe2) which exhibit CDW transition at low temperature. Scanning tunneling microscope because of its atomic resolution in real space is very suitable for its surface physics.
     To study these subjects above, we have built a new low temperature STM. Low temperature (liquid nitrogen or helium) is an essential dimension in condensed matter physics, which also bring a series of problems such as the performance of piezoelectric materials being bad, vibration caused by low temperature liquid, etc. These problems will directly affect whether the piezoelectric motor can work normally or not, the imaging quality of a STM, which is basis for a STM. So, two previous works have been done (seen in Chapter4). The first, we proposed a new spiral scan mode which can produce a STM image without distortion when scanning. In compared with traditional line-by-line mode, the spiral mode can:(1) reveal the true lattice arrangement on sample surface;(2) give the strength and orientation of drift;(3) realize fast scan. What more, for an unknown sample, it can give its real structure, which the traditional mode cannot replace. Now this work has been published in Rev. Sci. Instrum. And then it also has been published in chapter17of "Fundamentals of Picoscience"(was invited to write by my advisor Prof. Qingyou Lu) which was published by the famous Taylor&Francis. The second, it has been long puzzled by the problem which people need to operate high voltage to drive a STM motor at low temperature (high voltage would result in high electronic noise and8times or higher cost because we need high-voltage controller). To end it, we carefully investigate two type inertial motors including piezoelectric stacks and tube motor. To our surprise, we found the performance (larger step size and lower onset voltage) of both type motor is apparently improved when adding a delay in driving signals. By simulation, we find this phenomenon is related to the creeping effect of the piezoelectric materials, clearing some controversies. And this work has also been published in Rev. Sci. Instrum.
     Of course, during building the STM, many actual and important problems also need to be solved. For example, we need to amplify the weak tunneling current (~nA). We also need to realize the preparation of sample, exchange of tip/sample in vacuum and the design of anti-vibration, sound-proofing and electromagnetic shielding for the whole setup. Based on the principle of STM, we present our home-made high atomic resolution STM in Chapter2. Many unique advantages and characteristics are included as follows:(1) a unique scan head which can separate from piezoelectric motor, thus provide higher stability;(2) a novel rotate-suspension mechanism, which is very useful for low temperature STM built in high floor;(3) sample can be prepared in-situ;(4) high reliability on replacing tip and sample under our special design;(5) using a pre-amplifier with better than20fA resolution;(6) a special magnetic cooling method and a low cost way to realize continuous measurement at low temperature. By experiments, our homebuilt STM can reach high atomic resolution, operated at low voltage, and can scan the interested area by positioning precisely. The temperature can reach12K, where would be ultra-high vacuum.
     Because of the special control of our homemade STM, it needs us to develop a controller software. In Chapter3, we introduce a SPM controller software based labview language which is developed by me. The software can be suitable for many type SPMs readily which is different from commercial one. In present, it has been applied on our SPMs friendly, such as STM, atomic force microscppe and magnetic force microscope. And it can locate at the region of interest at nanometer scale, search with high effectiveness and real-time image.
     Defects at nanometer scale duo to its low dimension and broken symmetry, thus provide a very good view angle to study the electronic, magnetic and mechanical properties. In Chapter5, we present high atomic resolution STM images of1T-TiSe2(the transition metal dichalcogenides) in which exist lots of atom vacancies, which don't result in huge electron distortions. Unlike1T-TiSe2, we observed rich and novel superstructures near grain boundaries (GBs) of graphite. At the same time, we also observed the standing wave related to the interference between the scattered electrons in the vicinity of graphite boundary. And, the local electronic modulation is presented near a zigzag edge caused by its special geometrical structure.
     The interlayer interaction in graphite is weak Van der Waals force. However, up to date, its nature physics at atomic level is poorly understood. Some fundamental problems is not clear, for example, why the true honeycomb structure on graphite surface is hardly observed, in place of, the triangular lattice is shown in STM image. We for the first time observed the edge dislocation in the second layer of graphite, which provide direct evidence on how the underlying atoms distribute the surface charge density. To further study, the interactions between the top two layers of graphite were varied by our special thermal treatment and rich and novel electronic structure have been observed. To explain, we propose a collective interference model, which can simulated the function between surface density states and the interlayer interactions quantitatively. Thus, we provide a new method to study interlayer interaction at atomic level. At last, we captured the motion of the dislocation in graphite and its atomically resolved evolution, and we believe this may be caused by the strains in graphite.
     Based on the studies above, I have recieved4SCI papers. Two of them have been published in Rev. Sei. Instrunm., which is the second order journal accepted by USTC (I am the first author). So I have met the graduation requirements of USTC. I also have submitted a paper in Nanoscale which is under review and another paper is in preparation. Among many PhDs, my report was award "the first prize" at the "2013-Graduate Forum".
引文
[1]G. Binnig, H. Rohrer, Scanning Tunneling Microscopy, Helev. Phys.Acta.,55,726(1982)
    [2]Ying Jiang, Qing Huan, Laura Fabris, Guillermo C. Bazan & Wilson Ho, Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules, Nature Chemistry 5,36-41 (2013)
    [3]W. D. Wise, Kamalesh Chatterjee, M. C. Boyer, Takeshi Kondo, T. Takeuchi, H. Ikuta, Zhijun Xu, Jinsheng Wen, G. D. Gu, Yayu Wang & E. W. Hudson, Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor, Nature Physics 5,213-216 (2009)
    [4]Ilija Zeljkovic, Elizabeth J. Main,Tess L. Williams,M. C. Boyer, Kamalesh Chatterjee,W. D. Wise, Yi Yin, Martin Zech, Adam Pivonka,Takeshi Kondo, T. Takeuchi, Hiroshi Ikuta, Jinsheng Wen, Zhijun Xu, G. D. Gu, E. W. Hudson & Jennifer E. Hoffman, Scanning tunnelling microscopy imaging of symmetry-breaking structural distortion in the bismuth-based cuprate superconductors, Nature Materials 11,585-589 (2012)
    [5]A. R. Schmidt,M. H. Hamidian,P. Wahl, F. Meier, A. V. Balatsky, J. D. Garrett,T. J. Williams, G. M. Luke & J. C. Davis, Imaging the Fano lattice to'hidden order'transition in URu2Si2, Nature 465,570-576 (2010)
    [6]Lei Shan, Yong-Lei Wang, Bing Shen, Bin Zeng, Yan Huang, Ang Li,Da Wang, Huan Yang, Cong Ren, Qiang-Hua Wang, Shuheng H. Pan & Hai-Hu Wen, Observation of ordered vortices with Andreev bound states in Ba0.6K0.4Fe2As2, Nature Physics 7,325-331 (2011)
    [7]David Serrate, Paolo Ferriani, Yasuo Yoshida, Saw-Wai Hla, Matthias Menzel, Kirsten von Bergmann, Stefan Heinze, Andre Kubetzka & Roland Wiesendanger, Imaging and manipulating the spin direction of individual atoms, Nature Nanotechnology 5,350-353 (2010)
    [8]J. Tersoff and D. R. Hamann, Theory and Application for the Scanning Tunneling Microscope, Physical Review Letters,50,1998-2001 (1983)
    [9]L E C van de Leemput and H van Kempen, Scanning tunnelling microscopy, Rep. Prog. Phys. 55 1165(1992)
    [10]Yutaka Mera, Hironori Yanagisawa, Masahiko Uota and Koji Maeda, Scanning tip microscope for study of electrical inhomogeneityon submicron scale, Journal of Vacuum Science & Technology A 8,561 (1990)
    [11]Ch. Loppacher, M. Bammerlin, M. Guggisberg, S. Schar, R. Bennewitz, A. Baratoff, E. Meyer, and H.-J. Guntherodt, Dynamic force microscopy of copper surfaces:Atomic resolution and distance dependence of tip-sample interaction and tunneling current, PHYSICAL REVIEW B 62,16946(2000)
    [12]S. A. Elrod, A. L. de Lozanne, and C. F. Quate, Low-temperature vacuum tunneling microscopy, Appl. Phys. Lett.45,11(1984)
    [13]A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499,419-425 (2013)
    [14]N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, M. F. Crommie, Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles, Science,329,5991:544-547(2010)
    [15]Can-Li Song, Yi-Lin Wang, Peng Cheng, Ye-Ping Jiang, Wei Li, Tong Zhang, Zhi Li, Ke He, Lili Wang, Jin-Feng Jia, Hsiang-Hsuan Hung, Congjun Wu, Xucun Ma, Xi Chen, Qi-Kun Xue, Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor, Science, 332 (6036):1410-1413(2011)
    [16]Yi Zhang, Ke He, Cui-Zu Chang, Can-Li Song, Li-Li Wang, Xi Chen, Jin-Feng Jia, Zhong Fang, Xi Dai,Wen-Yu Shan, Shun-Qing Shen, Qian Niu, Xiao-Liang Qi, Shou-Cheng Zhang, Xu-Cun Ma & Qi-Kun Xue, Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nature Physics 6,584-588 (2010)
    [17]K. Besocke, An easily operable scanning tunneling microscope, Surf. Sci.181,145(1987)
    [18]S. H. Pan, E. W. Hudson, and J. C. Davis,3He refrigerator based very low temperature scanning tunneling microscope, Rev. Sci. Instrum.70,2(1999)
    [19]Miller, David Lee, Atomic-scale spectroscopy and mapping of magnetic states in epitaxial graphene, Dissertation.
    [20]J. Wiebe, A. Wachowiak, F. Meier, D. Haude, T. Foster, M. Morgenstern and R. Wiesendanger, Ultra-High Vacuum Scanning Tunneling Microscope for Spin-Polarized Spectroscopy at High Energy Resolution, Rev. Sci. Instrum.75,4871(2004)
    [21]Saikat Bhaumik and Amlan J. Pal, Quantum Dot Light-Emitting Diodes in the Visible Region:Energy Level of Ligands and Their Role in Controlling Interdot Spacing and Device Performance, J. Phys. Chem. C 48,117 (2013)
    [22]Ch. Gerber, G. Binnig, H. Fuchs, O. Marti and H. Rohrer, Scanning tunneling microscope combined with a scanning electron microscope, Rev. Sci. Instrum.57,221 (1986)
    [23]N. Shimizu, T. Kimura, T. Nakamura and I. Umebu, An ultrahigh vacuum scanning tunneling microscope with a new inchworm mechanism, J. Vac. Sci. Technol. A 8,333 (1990)
    [24]王楠林,雒建林,陈根富,过渡金属化合物中的竞争序与多体合作现象,物理,37卷3期426-427(2008年)
    [1]D. Dunlap, S. Smith, C. Bustamante, J. Tamayo, R. Garcia, A very low current scanning tunneling microscope, Rev. Sci. Instrum.,66,4876 (1995)
    [2]Kirill Bobrov, Andrew J. Mayne & GeA rald Dujardin, Atomic-scale imaging of insulating diamond through resonantelectron injection, NATURE 413,617(2001)
    [3]David Dunlap, et al, Rev. Sci. Instrum.66,4876(1995)
    [4]Christopher C. Umbach, et al, Appl. Surf. Sci.175,746(2001)
    [5]M. Carla, et al, Rev. Sci. Instrum.75,497(2004)
    [6]Wei Tao, Yufei Cao, Huafeng Wang, Kaiyou Wang and Qingyou Lu, Rev. Sci. Instrum.83,123701 (2012)
    [7]Atif Imtiaz, Steven M. Anlage, Ultramicroscopy 94,209-216 (2003)
    [8]B. Such, J.J. Kolodziej, P. Czuba, F. Krokb, P. Piatkowski, P. Struski, M. Szymonskia, Surface Science 530,149-154 (2003)
    [9]Pongpun Rerkkumsup, Masato Aketagawa, Koji Takada, Tomonori Watanabe and Shin Sadakata, Rev. Sci. Instrum.74,1205 (2003)
    [10]G. Karapetrov, M. Iavarone, W. K. Kwok, G. W. Crabtree, and D. G. Hinks, Phys. Rev. Lett.86,4374(2001)
    [11]Hidefumi Hiura, Tailoring graphite layers by scanning tunneling microscopy, Applied Surface Science 222,374-381 (2004)
    [12]Valdis Corradinia, et al, Surface Science 601,2618-2622 (2007)
    [13]D. Sarid, Scanning Force microscopy, New York:Oxford University Press(1991)
    [14]D. W. Pohl, IBM J. Res. Develop.30,417 (1986)
    [15]S. I. Park and C. F. Quate, Rev. Sci. Instrum.58,2004(1987)
    [16]T. Tiedje and A. Brown, J. Appl. Phys.68,649(1990)
    [1]引自NI官网:http://www.ni.com/labview/zhs/.
    [2]D. J. Kim and Z. Fisk, Rev. Sci. Instrum.83,123705 (2012)
    [3]Yexian Qin and R. Reifenberger, Rev. Sci. Instrum.78,063704 (2007)
    [4]K. J. Yi, X. N. He, Y. S. Zhou, W. Xiong and Y. F. Lu, Rev. Sci. Instrum.79, 073706 (2008)
    [5]Eika Tsunemi, Kei Kobayashi, Kazumi Matsushige and Hirofumi Yamada, Rev. Sci. Instrum.82,033708 (2011)
    [6]G. H. Kwon, T. Y. Kim and S. J. Kim, Rev. Sci. Instrum.84,043706 (2013)
    [7]Junting Wang, Jihui Wang, Yubin Hou and Qingyou Lu, Rev. Sci. Instrum.81, 073705(2010)
    [8]S. Meckler, M. Gyamfi, O. Pietzsch and R. Wiesendanger, Rev. Sci. Instrum. 80,023708(2009)
    [9]Guoguang Qian, Swatilekha Saha and K. M. Lewis, Rev. Sci. Instrum.81, 016110(2010)
    [1]A. J. Fleminga and S. O. R. Moheimani Rev. Sci. Instrum.76,073707 (2005).
    [2]H. J. M. T. A. Adriaens, W. L. de Koning and R. Banning, EEE/ASME Trans. Mechatron.5, 331 (2000).
    [3]P. Ge and M. Jouaneh, Precision Eng.17, pp.211-221 (1995).
    [4]S. Hudlet, M. S. Jean, D. Royer, J. Berger and C. Guthmann, Rev. Sci. Instrum.66,2848 (1995).
    [5]D. Croft, G. Shed and S. Devasia, J. Dyn. Sys., Meas., Control 123,35 (2001).
    [6]R. S. Robinson, J. Comput-Assist. Microsc.2,53 (1996).
    [7]T. Fett. and G. Thun, J. Mater. Sci. Lett.17,1929 (1998).
    [8]G. Binnig and D. P. E. Smith, Rev. Sci. Instrum.57,1688 (1986).
    [9]M. Goldfarb and N. Celanovic, J. Dyn. Sys., Meas., Control 119,478 (1997).
    [10]R. B. Mrad and H. Hu, IEEE/ASME Trans. Mechatron.7,479 (2002).
    [11]S. H. Lee and T. J. Royston, J. Acoust. Soc. Am.108,2843 (2000).
    [12]I. Mayergoyz, Mathematical Models of Hysteresis, Springer, New York (1991).
    [13]P. Ge and M. Jouaneh, Precision Eng.17,211 (1995).
    [14]A. Sebastian and S. M. Salapaka, IEEE Trans. Control Syst. Technol.13,868 (2005).
    [15]B. M. Chen, T. H. Lee, H. Chang-Chieh, Y. Guo and S. Weerasooriya, IEEE Trans. Control Syst. Technol.7,160 (1999).
    [16]Yubin Hou, Jihui Wang and Qingyou Lu, Rev. Sci. Instrum.79,113707 (2008).
    [17]Introduction to Advanced Mathematics, by USTC Teaching and Research Group on Advanced Mathematics, USTC Press, China,238 (2007).
    [18]D. W. Pohl, Rev. Sci. Instrum.58,54 (1987).
    [19]P. Niedermann, R. Emch, and P. Descouts, Rev. Sci. Instrum.59,368 (1988).
    [20]J. W. Lyding, S. Skala, J. S. Hubacek, R. Brockenbrough, and G. Gammie, Rev. Sci. Instrum.59,1897(1988).
    [21]Ch. Renner, Ph. Niedermann, A. D. Kent, and O. Fischer, Rev. Sci. Instrum.61,965 (1990).
    [22]O. Probst, S. Grafstrom, J. Kowalski, R. Neumann, and M. Wortge, J. Vac. Sci. Technol. B 9,626 (1991).
    [23]B. L. Blackford, M. H. Jericho, and M. G. Boudreau, Rev. Sci. Instrum.63,2206 (1992).
    [24]R. R. Schlittler and J. K. Gimzewski., J. Vac. Sci. Technol. B 14,827 (1996).
    [25]F. Mugele, Ch. Kloos, P. Leiderer, and R. Moller, Rev. Sci. Instrum.67,2557 (1996).
    [26]V. N. Yakimov, Rev. Sci. Instrum.67,384 (1996).
    [27]W. F. Smith, M. C. Abraham, J. M. Sloan, and M. Switkes, Rev. Sci. Instrum.67,3600 (1996).
    [28]V. N. Yakimov, Rev. Sci. Instrum.68,137 (1997).
    [29]A. K. Gupta and K. W. Ng, Rev. Sci. Instrum.72,3552 (2001).
    [30]W. R. Silviera and J. A. Marohn, Rev. Sci. Instrum.74,267 (2003).
    [31]K. Svensson, Y. Jompol, H. Olin, and E. Olsson, Rev. Sci. Instrum.74,4945 (2003).
    [32]S. Reymond and (?). Fischer, Rev. Sci. Instrum.75,694 (2004).
    [33]S. Patil, G. Matei, H. Dong, P. M. Hoffmann, M. Karakose, and A. Oral, Rev. Sci. Instrum. 76,103705 (2005).
    [34]Ch. Meyer, O. Sqalli, H. Lorenz, and K. Karrai, Rev. Sci. Instrum.76,063706 (2005).
    [35]C. Dubois, P. E. Bisson, A. A. Manuel,(?). Fischer, and S. Reymond, Rev. Sci. Instrum.77, 043712(2006).
    [36]A. Z. Stieg, P. Wilkinson, and J. K. Gimzewski, Rev. Sci. Instrum.78,036110 (2007).
    [37]K. Anantheshwara, N. S. Murali and M. S. Bobji, Sadhana 33,225 (2008).
    [38]Z. Pang, J.Wang and Q. Lu, Meas. Sci. Technol.20 065503 (2009).
    [39]R. W. Basedow and T. D. Cocks, J. Phys. E:Sci. Instrum.13,841 (1980).
    [40]S. Vieira, IBM J. Res. Develop.30,553 (1986).
    [1]E. Morosan et al., Nature Phys.2,544 (2006).
    [2]P. Simonis et al., Surf. Sci.511,319-322 (2002).
    [3]Laszlo P Bir and P. Lambin, New J. Phys.15,035024 (2013).
    [4]J.S. Foster, J.E. Frommer, P.C. Arnett, Nature 331,324(1988).
    [5]J.T.P. Beebe, T.E. Wilson, D.F. Ogletree, J.E. Katz, R.Balhorn, M.B. Salmeron, W.J. Siekhaus, Science 243,370 (1989).
    [6]D.P.E. Smith, J.K.H. HoErber, G. Binnig, H. Nejoh, Nature 344,641(1990).
    [7]J. Mou et al.,, J. Vac. Sci. Technol. B 9,1566(1991).
    [8]R. Sonnefeld, B.C. Schardt, Appl. Phys. Lett.49,1172(1986).
    [9]B. Drake, R. Sonnenfeld, J. Schneir, P.K. Hansma, Surf. Sci.181,92 (1987).
    [10]J. J. Yan et al., J. Appl. Phys.75,1390 (1994).
    [11]J. Xhie et al., Phys. Rev. B 43,8917 (1991).
    [12]H. Xu, H. Permana, Y. Lu, and K.Y.S. Ng, Surf. Sci.325,285-293 (1995).
    [13]P. Ruffieux et al., Phys. Rev. Lett.84,4910 (2000).
    [14]T. Kondo et al., Phys. Rev. B 82,153414 (2010).
    [15]M. M. Ugeda, et al., Phys. Rev. Lett.104,096804 (2010).
    [16]R. Faccio et al., Phys. Rev. B 77,035416 (2008).
    [17]J. Kanasaki, et al., Phys. Rev. Lett.102,087402 (2009).
    [18]D. Tomanek, et al., Phys. Rev. B 35,7790(1987).
    [19]J. Tersoff, Phys. Rev. Lett.57,440(1986).
    [20]I.P. Batra, N. Garcia, H. Rohrer, H. Salemink, E. Stoll, S. Ciraci, Surf. Sci.181, 126(1987).
    [21]J.M. Soler, et al., Phys. Rev.Lett.57,444(1986).
    [22]Z. Liu, et al., Phys. Rev. B 85,205418 (2012).
    [23]H. Rydberg, et al., Phys Rev Lett 91,126402-4(2003).
    [24]G. M. Rutter et al., Science 317,219 (2007).
    [25]H. Yang et al., Nano Lett.10,943-947 (2010).
    [26]E. Stolyarova et al., Proc. Natl. Acad. Sci. USA 104,9209-9212 (2007).
    [27]H. A. Mizes and J. S. Foster, Science 244,559 (1989).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700