用户名: 密码: 验证码:
广义非球面透镜的设计、制作及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光学技术的发展,光学系统中对光学元件的要求越来越高也越来越多样化,传统的球面透镜在一些场合已经不能很好的满足要求,比如对大发散角光束的准直,消除激光二极管的固有像散等,此时需要具有特殊面形的透镜形式,比如非球面透镜或者柱透镜等来实现,但传统制作透镜的方法如研磨法,较为适合球面透镜,对其它面形的透镜制作则比较繁琐,需要开发新的制作方式,如单点金刚石切削法,模压法等。这些方法各有优缺点,适合不同的需求。本文中我们主要研究使用电场调控液滴法来制作非球面透镜,具有成本低,表面质量高的特点,主要研究内容包括透镜的制作、检测及应用三个方面:
     1.搭建了电场调控液滴制作非球面透镜的实验系统,系统能够施加电场改变液滴透镜面形,并通过检测模块测量透镜的质量,符合预期要求的时候使用紫外光固化透镜得到非球面透镜。对电场调控液滴面形的现象基于有限元软件COMSOL进行了数值模拟,分别使用水平集法及移动网格法对面形进行了求解,前者得到了面形的时变过程,后者可以得到稳态的面形,最终计算了不同电极形状下的电场力分布,讨论其可能的影响。对在椭圆基底上的液滴形状使用解析法和数值法进行了求解,前者能够获得长短轴曲率半径、液滴体积及基底尺寸之间的解析关系,后者基于Surface Evolver软件首先对解析法进行了验算,然后计算了重力对椭球面形的影响。对固化时光固胶收缩的问题进行了研究,使用神经网络的数值方法建立了固化前与固化后面形的映射关系,预测了固化后的面形,并与实验结果进行了对比。
     2.对具有不同特点的非球面透镜进行了制作,首先为光纤准直透镜,将光纤放置在玻璃管内,在玻璃管端面放置液滴,调节面形后固化得到非球面透镜,从而获得一体化的光纤准直器,并通过实验进行了检测,光纤为单模时,发散角被压缩到2.5。,可以通过细致的调节进一步提高准直能力;然后制作得到了对数型锥透镜,在双凹透镜的基底上放置液滴,通过ZEMAX计算来检测是否符合锥透镜的要求,固化后得到对数型锥透镜,实验测量了锥透镜在平行光入射时的光斑分布特性,能够得到高分辨率的焦线,分别使用CCD及实验室自行研制的光斑测量仪基于相位复原技术测量了透镜出射的波前;最终基于非轴对称基底制作了非轴对称透镜,分别为机加工的方法制作了金属基底以及基于3D打印制作了椭圆基底,在两种基底上打孔以让光通过,使用此透镜开展了LD快轴方向准直的实验,测量了面形并与数值模拟结果进行了对比,验证了模拟的有效性,测量了平行光正入射及斜入射时的光强分布。
     3.研究了对数型锥透镜的成像性质及其在复眼系统中的应用前景,表明在斜入射时光斑中心产生十字形状,便于实现光斑中心定位,在探测器倾斜时,探测到的光斑可视为在无衍射光束不同角度截面上的光斑,与非倾斜时相比光斑在一个方向上被拉伸,模拟了在对数型锥透镜中主动引入像散的情况,表明此时的相位形式能够在大视场入射时实现消像散,从而可以应用于平面复眼。研究了三次相位模板在复眼系统中的应用前景,表明在小视场入射时点扩散函数与正入射时几乎相同,适合成像的应用,大视场入射时单个透镜产生的像散会对成像质量有严重的影响,可以通过使用椭球透镜代替球透镜来克服,从而使其可应用于平面复眼中,实现大视场大景深,探测器倾斜时,三次相位模板能够改善一定视场内的成像质量,使其可以应用于球面复眼中。研究了单个椭球透镜应用于三维位置探测的特性,计算了光斑半径在不同视场入射时变化的解析解,并使用数值模拟得到了平行光入射时的光斑情况,进行了验证。研究了像散对双螺旋点扩散函数的影响,结果表明像散的影响与光斑的取向有关,在一个方向上影响与离焦类似,另一个方向上则几乎没有影响。
With the development of technology, more and more kinds of lenses have been adopted in modern optical systems. Traditional spherical lens will lead to relative poor performance in some applications, such as collimating beam with large divergence angle and correcting an astigmatic laser diode beam, where specific lenses are needed, such as aspherical lens and cylindrical lens. But traditional fabrication method for spherical lens, such as grinding, cannot be simply applied to fabricate these new types of lens, new technologies such as molding method and single point diamond turning have been developed to overcome this problem. In this thesis, we will study the fabrication, measurement and application of aspherical lens which is based on modulating the lens shape by electric field, listed as follows:
     1. The experimental setup for the fabrication of aspherical lens is introduced, in which the liquid lens is modulated by applying electric field in the system, inspected by the measuring module and cured by UV light when its performance meets the requirements. Commercial software COMSOL based on finite element method (FEM) is employed to solve the deformation of droplet shape in an electric field. Level-set method and moving mesh method are used, respectively, the former can get the transition process of droplet deformation, while the latter can get the steady shape. Electrical force at the droplet interface under electrodes with different shapes is calculated to show the effects of electrode shape. Liquid lens shape on an elliptic substrate is solved both analytically and numerically. Analytical method reveals the relationship among the two curvatures, droplet volume, major axis length and minor axis length of the substrate. Numerical method based on Surface Evolver is then used to verify the analytical solution and study the effect of gravity. Phenomena of shrinkage of lens during UV curing are studied. Curve compensation is realized based on artificial neural network that maps the lens shape before UV curing to that after UV curing.
     2. Different kinds of aspherical lens are fabricated. Firstly is fiber collimator lens. A fiber is put in a glass tube, on the end surface of which a droplet is injected. The collimator lens can then be obtained by curing the droplet after modulating the lens shape by electric field. Secondly is logarithmic axicon (LA). A droplet is put on a biconcave substrate which is used to extend the focal length. Commercial optical software is employed to evaluate the performance of the LA. Characteristic of the fabricated LA is measured by experiments, showing that a focal line with high resolution is obtained. Phase retrieval is then used to retrieve the wavefront exiting the LA based on multiple plane intensity distribution measured by a CCD with low resolution and a home-built scanning optical probe system with high resolution. Finally is anamorphic lens. Non-axisymmetric substrate fabricated by machinery and3D printing is used to form the anamorphic lens shape. Characteristic of the lens for laser diode beam collimation and3D position detection is studied by experiments.
     4. Characteristic of LA is studied to show its application prospects in compound eye. Results show that the spot turns into cross bar under oblique illumination, which means that LA can be used to determine the positon of spot center. When the measuring plane is tilted, the spot on the plane is shown to be an elongation of the original spot in one dimension. Astigmatism is introduced in the simulation, showing that the phase can correct the astigmatism under large field of vie, which means it can be used in planar compound eye to get large field of view and large depth of field simultaneously. Application of cubic phase mask in compound eye is studied. Results show that the point spread function under small field of view is almost the same as that under normal illumination, meaning that it can be used in imaging, but under large field of view, the generated astigmatism will severely deteriorate the resolution. Ellipsoidal lens model is used to correct the astigmatism. Characteristic of single ellipsoidal lens for3D position detection is studied. Analytical solution and numerical solution of the spot shape under different fields of view are obtained. Effects of astigmatism on double helix point spread function are studied, results show that the effects are related to the orientation of the spot and it behalves like defocus in the orthogonal direction while it affects very little in the parallel direction.
引文
[1]Wang S G, Su D Q, Chu Y Q, et al. Special configuration of a very large Schmidt telescope for extensive astronomical spectroscopic observation [J]. Appl Optics,1996,35:5155-5161.
    [2]Zhou X Q, Ngoi B K A, Koh S S. Single aspherical lens for deastigmatism, collimation, and circularization of a laser beam [J]. Appl Optics,2000,39:1148-1151.
    [3]Woods A, Docherty T, Koch R. Image distortions in stereoscopic video systems [C]. Stereoscopic Displays and Applications IV. San Jose; Proc. of SPIE.1993:36-48.
    [4]www.micromanufacturing.com.
    [5]Blough C G, Rossi M, Mack S K, et al. Single-point diamond turning and replication of visible and near-infrared diffractive optical elements [J]. Appl Optics,1997,36:4648-4654.
    [6]Braat J J M, Smid A, Wijnakker M M B. Design and Production Technology of Replicated Aspheric Objective Lenses for Optical Disk Systems [J]. Appl Optics,1985,24:1853-1855.
    [7]Moriyasu S, Nakagawa T, Morita S, et al. Aspherical form control system of prototype plastic lens with Electrolytic In-Process Dressing (ELID) grinding [J].1998 Japan-USA Symposium on Flexible Automation-Proceedings, Vols I and Ii,1998,291-296.
    [8]Mugele F, Baret J C. Electrowetting:From basics to applications [J]. J Phys-Condens Mat, 2005,17:R705-R774.
    [9]Yang A J M, Gibbs J H, Fleming P D. Molecular Theory of Surface-Tension [J]. B Am Phys Soc,1975,20:305-305.
    [10]Berge B, Peseux J. Variable focal lens controlled by an external voltage:An application of electrowetting [J]. Eur Phys J E,2000,3:159-163.
    [11]Krupenkin T, Yang S, Mach P. Tunable liquid microlens [J]. Appl Phys Lett,2003,82: 316-318.
    [12]Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras [J]. Appl Phys Lett,2004,85:1128-1130.
    [13]Hendriks B H W, Kuiper S, Van As M a J, et al. Electrowetting-based variable-focus lens for miniature systems [J]. Opt Rev,2005,12:255-259.
    [14]www.varioptic.com.
    [15]王大振,彭润玲,陈家璧,et al.双液体变焦透镜变焦迟滞现象的研究[J].光学学报,2011,31:0612001:0612001-0612005.
    [16]彭润玲,陈家璧,庄松林.电湿效应变焦光学系统的设计与分析[J].光学学报,2008,28:1141-1146.
    [17]Gui K, Zheng J H, Wang K N, et al. Electrically Controlled Fast Response Cascading Tunable Polymer Dispersed Liquid Crystal Focusing Lenses [J]. Microw Opt Techn Let, 2013,55:2830-2835.
    [18]Peng R L, Chen J B, Zhuang S L. Electrowetting-actuated zoom lens with spherical-interface liquid lenses [J]. J Opt Soc Am A,2008,25:2644-2650.
    [19]胡骁,李玖,刘进峰,et al.光轴可调的电湿润变焦透镜[J].光学仪器,2011,33:76-82.
    [20]Kang J R, Yu H B, Chen H Q. Liquid tunable lens integrated with a rotational symmetric surface for long depth of focus [J]. Appl Optics,2010,49:5493-5500.
    [21]吴建刚,岳瑞峰,曾雪锋,et al.用于微全分析系统的数字化微流控芯片的研究[J].分析化学,2006,34:1042-1046.
    [22]康明,吴建刚,曾雪锋,et al.基于介质上电润湿的微流体变焦透镜的研究进展[J].光学技术,2006,32:702-709.
    [23]O'neill F T, Owen G, Sheridan J T. Alteration of the profile of ink-jet-deposited UV-cured lenses using applied electric fields [J]. Optik,2005,116:158-164.
    [24]Hung K Y, Tseng F G, Liao T H. Electrostatic-force-modulated microaspherical lens for optical pickup head [J]. J Microelectromech S,2008,17:370-380.
    [25]Hung K Y, Chang L W, Tseng F G, et al. Optimum electrostatic force control for fabricating a hybrid UV-curable aspheric lens [J]. J Micromech Microeng,2010,20.
    [26]Wu C C, Tseng Y D, Kuo S M, et al. Fabrication of asperical lensed optical fibers with an electro-static pulling of SU-8 photoresist [J]. Opt Express,2011,19:22993-22998.
    [27]Tseng Y T, Huang J B, Hung T Y, et al. Lensed plastic optical fiber employing hyperbolic end filled with high-index resin using electrostatic force [J]. Precis Eng,2014,38:183-189.
    [28]Zhan Z X, Wang K Y, Yao H T, et al. Fabrication and characterization of aspherical lens manipulated by electrostatic field [J]. Appl Optics,2009,48:4375-4380.
    [29]Hung C H, Hung S Y, Shen M H, et al. Semiellipsoid microlens fabrication method using UV proximity printing [J]. Appl Optics,2012,51:1122-1130.
    [30]Hung C H, Hung S Y, Shen M H, et al. Semiellipsoid microlens fabrication method using the lift-off and alignment exposure processes [J]. J Micromech Microeng,2012,22:
    [31]Cadarso V J, Perera-Nunez J, Jacot-Descombes L, et al. Microlenses with defined contour shapes [J]. Opt Express,2011,19:18665-18670.
    [32]Duparre J, Wippermann F, Dannberg P, et al. Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence [J]. Opt Express,2005,13: 10539-10551.
    [33]Wang Z Y, Meng H, Fu J H. Method for extracting Bessel-structured light fringes' center lines in a triangulation measurement system [J]. Opt Laser Technol,2009,41:809-814.
    [34]邾继贵,王浩,任同群,et al.便携式激光扫描三维形貌测量系统[J].机械工程学报,2005,41:166-169.
    [35]Hung Y Y, Lin L, Shang H M, et al. Practical three-dimensional computer vision techniques for full-field surface measurement [J]. Opt Eng,2000,39:143-149.
    [36]Huan H, Sasaki O, Suzuki T. Multiperiod fringe projection interferometry using a backpropagation method for surface profile measurement [J]. Appl Optics,2007,46: 7268-7274.
    [37]Chen L C, Tsai S H, Fan K C. A new three-dimensional profilometer for surface profile measurement using digital fringe projection and phase shifting [J]. Key Eng Mater,2005, 295-296:471-476.
    [38]周英钢.激光扫描测量技术在自由曲面快速反求工程中的应用研究[D].沈阳;沈阳工业大学,2003.
    [39]Liang J Z, Grimm B, Goelz S, et al. Objective Measurement of Wave Aberrations of the Human Eye with the Use of a Hartmann-Shack Wave-Front Sensor [J]. J Opt Soc Am A, 1994, 11:1949-1957.
    [40]Takahashi T, Takajo H, Maeyama T, et al. Global wavefront reconstruction algorithm from its image in the focal plane and Shack-Hartmann sensor images [J]. Adaptive Optics and Applications Ii,2002,4926:235-242.
    [41]Topa D M. Wavefront reconstruction for the Shack-Hartmann wavefront sensor [J]. Optical Design and Analysis Software Ii,2002,4769:101-115.
    [42]Seifert L, Tiziani H J, Osten W. Wavefront reconstruction with the adaptive Shack-Hartmann sensor [J]. Opt Commun,2005,245:255-269.
    [43]Barbero S, Rubinstein J, Thibos L N. Wavefront sensing and reconstruction from gradient and Laplacian data measured with a Hartmann-Shack sensor [J]. Opt Lett,2006,31: 1845-1847.
    [44]Starikov F A, Kochemasov G G, Kulikov S M, et al. Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor [J]. Opt Lett,2007,32:2291-2293.
    [45]Streibl N. Phase Imaging by the Transport-Equation of Intensity [J]. Opt Commun,1984,49: 6-10.
    [46]Dorrer C. Characterization of nonlinear phase shifts by use of the temporal transport-of-intensity equation [J]. Opt Lett,2005,30:3237-3239.
    [47]Dorrer C, Zuegel J D. Optical testing using the transport-of-intensity equation [J]. Opt Express,2007,15:7165-7175.
    [48]Darudi A, Shomali R, Tavassoly M T. Determination of the refractive index profile of a symmetric fiber preform by the transport of intensity equation [J]. Opt Laser Technol,2008, 40:850-853.
    [49]Pinhasi S V, Alimi R, Perelmutter L, et al. Topography retrieval using different solutions of the transport intensity equation [J]. J Opt Soc Am A,2010,27:2285-2292.
    [50]Keast V J, Gladys M J, Petersen T C, et al. Energy-filtered phase retrieval using the transport of intensity equation [J]. Appl Phys Lett,2011,99:221905-1-3
    [51]Ferrari J A, Ayubi G A, Flores J L, et al. Transport of intensity equation:Validity limits of the usually accepted solution [J]. Opt Commun,2014,318:133-136.
    [52]Martinez-Carranza J, Falaggis K, Kozacki T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers [J]. Opt Lett,2014, 39:182-185.
    [53]Waller L, Luo Y A, Yang S Y, et al. Transport of intensity phase imaging in a volume holographic microscope [J]. Opt Lett,2010,35:2961-2963.
    [54]Waller L, Kou S S, Sheppard C J R, et al. Phase from chromatic aberrations [J]. Opt Express, 2010,18:22817-22825.
    [55]Gecherberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik,1972,35:227-246.
    [56]Nietovesperinas M, Navarro R, Fuentes F J. Performance of a Simulated-Annealing Algorithm for Phase Retrieval [J]. J Opt Soc Am A,1988,5:30-38.
    [57]Taylor J R, King B A, Steincamp J, et al. Genetic algorithm phase retrieval for the systematic image-based optical alignment test bed [J]. Publ Astron Soc Pac,2006,118:319-323.
    [58]Fienup J R, Matron J C, Schulz T J, et al. Hubble Space Telescope Characterized by Using Phase-Retrieval Algorithms [J]. Appl Optics,1993,32:1747-1767.
    [59]Smith J S, Aronstein D L, Davila P S, et al. Optical wavefront characterization using phase retrieval for the NIRSpec demonstration model for the James Webb Space Telescope [J]. Space Telescopes and Instrumentation 2010:Optical, Infrared, and Millimeter Wave,2010, 7731:
    [60]詹珍贤.非球面液滴微透镜及其阵列的制作和应用研究[D].合肥;中国科学技术大学,2009.
    [61]Kuo S M, Lin C H. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electrostatic pulling method [J]. Opt Express,2010,18:19114-19119.
    [62]http://www.microchem.com/products/su_eight.htm.
    [63]Latham J, Roxburgh I W. Disintegration of Pairs of Water Drops in an Electric Field [J]. Proc R Soc Lon Ser-A,1966,295:84.
    [64]Taylor G. Disintegration of Water Drops in an Electric Field [J]. Proceedings of the Royal Society of London Series a-Mathematical, Physical and Engineering Sciences,1964,280: 383-397.
    [65]Benselama A M, Achard J L, Pham P. Numerical simulation of an uncharged droplet in a uniform electric field [J]. J Electrostat,2006,64:562-568.
    [66]Higuera F J. Breakup of a supported drop of a viscous conducting liquid in a uniform electric field [J]. Phys Rev E,2008,78:016314.
    [67]Paknemat H, Pishevar A R, Pournaderi P. Numerical simulation of drop deformations and breakup modes caused by direct current electric fields [J]. Phys Fluids,2012,24:102101.
    [68]Abdella K, Rasmussen H, Inculet Ⅱ. Interfacial deformation of liquid drops by electric fields at zero gravity [J]. Comput Math Appl,1996,31:67-82.
    [69]Olsson E, Kreiss G, Zahedi S. A conservative level set method for two phase flow Ⅱ [J]. J Comput Phys,2007,225:785-807.
    [70]Olsson E, Kreiss G. A conservative level set method for two phase flow [J]. J Comput Phys, 2005,210:225-246.
    [71]COMSOL Multiphysics, Help documentation.2008.
    [72]http://www.susqu.edu/brakke/evolver/evolver.html.
    [73]Yi A Y, Jain A. Compression Molding of Aspherical Glass Lenses-A Combined Experimental and Numerical Analysis [J]. J Am Ceram Soc,2005,88:579-586.
    [74]Lim J, Choi M, Kim H, et al. Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method [J]. Jpn J Appl Phys,2008,47:6719-6722.
    [75]Yuan S F, Riza N A. General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses (vol 38, pg 3214,1999) [J]. Appl Optics, 1999,38:6292-6292.
    [76]袁志林,杨睿,杨柳,et al.基于单准直透镜的阵列准直器研究[J].物理学报,2012,61:184217(184211-184217).
    [77]Jitsuno T, Tokumura K. Fabrication of fiber collimate lens with liquid resin droplet [M]. Optical Fiber Communication Conference.2004.
    [78]Durnin J. Exact-Solutions for Nondiffracting Beams.1. The Scalar Theory [J]. J Opt Soc Am A,1987,4:651-654.
    [79]Durnin J, Miceli J J, Eberly J H. Diffraction-Free Beams [J]. Phys Rev Lett,1987,58: 1499-1501.
    [80]Saikaley A, Chebbi B, Golub I. Imaging properties of three refractive axicons [J]. Appl Optics,2013,52:6910-6918.
    [81]Arimoto R, Saloma C, Tanaka T, et al. Imaging Properties of Axicon in a Scanning Optical-System [J]. Appl Optics,1992,31:6653-6657.
    [82]Bhuyan M K, Courvoisier F, Lacourt P A, et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams [J]. Appl Phys Lett,2010,97:081102.
    [83]Cabrini S, Liberale C, Cojoc D, et al. Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling [J]. Microelectron Eng,2006,83:804-807.
    [84]Golub I, Chebbi B, Shaw D, et al. Characterization of a refractive logarithmic axicon [J]. Opt Lett,2010,35:2828-2830.
    [85]Sochacki J, Kolodziejczyk A, Jaroszewicz Z, et al. Nonparaxial Design of Generalized Axicons [J]. Appl Optics,1992,31:5326-5330.
    [86]Leach R. Optical measurement of surface topography [M]. Springer,2011.
    [87]Hanser B M, Gustafsson M G L, Agard D A, et al. Phase retrieval for high-numerical-aperture optical systems [J]. Opt Lett,2003,28:801-803.
    [88]Ghiglia D C, Romero L A. Robust 2-Dimensional Weighted and Unweighted Phase Unwrapping That Uses Fast Transforms and Iterative Methods [J]. J Opt Soc Am A,1994,11: 107-117.
    [89]http://zh.wikipedia.org/wiki/3D%E6%89%93%E5%8D%B0.
    [90]Kishk S, Javidi B. Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging [J]. Opt Express,2003,11:3528-3541.
    [91]Horisaki R, Irie S, Ogura Y, et al. Three-dimensional information acquisition using a compound imaging system [J]. Opt Rev,2007,14:347-350.
    [92]Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics (TOMBO): concept and experimental verification [J], Appl Optics,2001,40:1806-1813.
    [93]Mccall B, Tkaczyk T S. Rapid fabrication of miniature lens arrays by four-axis single point diamond machining [J]. Opt Express,2013,21:3557-3572.
    [94]Radtke D, Duparre J, Zeitner U D, et al. Laser lithographic fabrication and characterization of a spherical artificial compound eye [J]. Opt Express,2007,15:3067-3077.
    [95]Jeong K H, Kim J, Lee L P. Biologically inspired artificial compound eyes [J]. Science,2006, 312:557-561.
    [96]郭方.新型复眼定位装置设计及关键技术研究[D].合肥;中国科学技术大学,2011.
    [97]Chi W L, George N. Electronic imaging using a logarithmic asphere [J]. Opt Lett,2001,26: 875-877.
    [98]Thaning A, Jaroszewicz Z, Friberg A T. Diffractive axicons in oblique illumination:analysis and experiments and comparison with elliptical axicons [J]. Appl Optics,2003,42:9-17.
    [99]Kagawa K, Yamada K, Tanaka E, et al. A three-dimensional multifunctional compound-eye endoscopic system with extended depth of field [J]. Electr Commun Jpn,2012,95:14-27.
    [100]http://www.shortcourses.com/tabletop/lightingl-4.html.
    [101]Castro A, Ojeda-Castaneda J. Asymmetric phase masks for extended depth of field [J]. Appl Optics,2004,43:3474-3479.
    [102]Chu K Q, George N, Chi W L. Extending the depth of field through unbalanced optical path difference [J]. Appl Optics,2008,47:6895-6903.
    [103]Zhao H, Li Q, Feng H J. Improved logarithmic phase mask to extend the depth of field of an incoherent imaging system [J]. Opt Lett,2008,33:1171-1173.
    [104]Caron N, Sheng Y L. Polynomial phase masks for extending the depth of field of a microscope [J]. Appl Optics,2008,47:E39-E43.
    [105]Demenikov M, Harvey A R. Image artifacts in hybrid imaging systems with a cubic phase mask[J]. Opt Express,2010,18:8207-8212.
    [106]Dowski E R, Cathey W T. Extended Depth of Field through Wave-Front Coding [J]. Appl Optics,1995,34:1859-1866.
    [107]Zhao H, Li Y C. Optimized sinusoidal phase mask to extend the depth of field of an incoherent imaging system [J]. Opt Lett,2010,35:267-269.
    [108]Takahashi Y, Komatsu S. Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging [J]. Opt Lett,2008,33:1515-1517.
    [109]Zhao T Y, Ye Z, Zhang W Z, et al. Wide viewing angle skewed effect of the point spread function in a wavefront coding system [J]. Opt Lett,2007,32:1220-1222.
    [110]波恩,沃尔夫.光学原理[M].北京:电子工业出版社,2004.
    [111]Bradburn S, Cathey W T, Dowski E R. Realizations of focus invariance in optical-digital systems with wave-front coding [J]. Appl Optics,1997,36:9157-9166.
    [112]Tang H Q, Zhu K C. Generation of dark hollow beam by focusing a sine-Gaussian beam using a cylindrical lens and a focusing lens [J]. Opt Laser Technol,2013,54:68-71.
    [113]Truax B E, Demarest F C, Sommargren G E. Laser Doppler-Velocimeter for Velocity and Length Measurements of Moving Surfaces [J]. Appl Optics,1984,23:67-73.
    [114]Qian H, Sheetz M P, Elson E L. Single-Particle Tracking-Analysis of Diffusion and Flow in 2-Dimensional Systems [J]. Biophys J,1991,60:910-921.
    [115]Mason T G, Ganesan K, Vanzanten J H, et al. Particle tracking microrheology of complex fluids [J]. Phys Rev Lett,1997,79:3282-3285.
    [116]Genovesio A, Liedl T, Emiliani V, et al. Multiple particle tracking in 3-D+t microscopy: Method and application to the tracking of endocytosed quantum dots [J]. Ieee T Image Process,2006,15:1062-1070.
    [117]Sbalzarini I F, Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology [J]. J Struct Biol,2005,151:182-195.
    [118]Meng H, Pan G, Pu Y, et al. Holographic particle image velocimetry:from film to digital recording [J]. Meas Sci Technol,2004,15:673-685.
    [119]Hinsch K D. Holographic particle image velocimetry [J]. Meas Sci Technol,2002,13: R61-R72.
    [120]Westerweel J, Elsinga G E, Adrian R J. Particle Image Velocimetry for Complex and Turbulent Flows [J]. Annu Rev Fluid Mech,2013,45:409-+.
    [121]Kajitani L, Dabiri D. A full three-dimensional characterization of defocusing digital particle image velocimetry [J]. Meas Sci Technol,2005,16:790-804.
    [122]Lin D J, Angarita-Jaimes N C, Chen S Y, et al. Three-dimensional particle imaging by defocusing method with an annular aperture [J]. Opt Lett,2008,33:905-907.
    [123]Dalgarno P A, Dalgarno H I C, Putoud A, et al. Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy [J]. Opt Express,2010,18:877-884.
    [124]Angarita-Jaimes N, Mcghee E, Chennaoui M, et al. Wavefront sensing for single view three-component three-dimensional flow velocimetry [J]. Exp Fluids,2006,41:881-891.
    [125]Cierpka C, Rossi M, Segura R, et al. On the calibration of astigmatism particle tracking velocimetry for microflows [J]. Meas Sci Technol,2011,22:
    [126]Rossi M, Segura R, Cierpka C, et al. On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV [J]. Exp Fluids,2012,52:1063-1075.
    [127]Pavani S R P, Piestun R. High-efficiency rotating point spread functions [J]. Opt Express, 2008,16:3484-3489.
    [128]Schechner Y Y, Piestun R, Shamir S. Wave propagation with rotating intensity distributions [J]. Phys Rev E,1996,54:R50-R53.
    [129] zh.wikipedia.org/zh/%E6%8B%89%E7%9B%96%E5%B0%94%E5%A4%9A%E9%Al%B 9%E5%BC%8F.
    [130]Piestun R, Schechner Y Y, Shamir J. Propagation-invariant wave fields with finite energy [J]. J Opt Soc Am A,2000,17:294-303.
    [131]Pavani S R P, Piestun R. Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system [J]. Opt Express,2008,16:22048-22057.
    [132]Pavani S R P, Greengard A, Piestun R. Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system [J]. Appl Phys Lett,2009,95:021103.
    [133]Pavani S R P, Piestun R.3D microscopy with a double-helix point spread function [J]. P Soc Photo-Opt Ins,2009,7184.
    [134]Pavani S R P, Piestun R.3D fluorescent particle tracking with nanometer scale accuracies using a double-helix point spread function [J].2009 Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (Cleo/Qels 2009), Vols 1-5,2009,1263-1264.
    [135]Pavani S R P, Thompson M A, Biteen J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function [J]. P Natl Acad Sci USA,2009,106:2995-2999.
    [136]Backlund M P, Lew M D, Backer A S, et al. The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation [C]. Proc Spie,2013,8590:85900L.
    [137]Badieirostami M, Lew M D, Thompson M A, et al. Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane [J]. Appl Phys Lett, 2010,97:161103.
    [138]Thompson M A, Casolari J M, Badieirostami M, et al. Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function [J]. P Natl Acad Sci USA,2010,107:17864-17871.
    [139]Thompson M A, Biteen J S, Moerner W E, et al. Three-Dimensional Super-resolution Single-Molecule Fluorescence Imaging Using a Double-Helix Point Spread Function [J]. 2009 Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (Cleo/Qels 2009), Vols 1-5,2009:1921-1922.
    [140]Thompson M A, Lew M D, Badieirostami M, et al. Localizing and Tracking Single Nanoscale Emitters in Three Dimensions with High Spatiotemporal Resolution Using a Double-Helix Point Spread Function [J]. Nano Lett,2010,10:211-218.
    [141]Roider C, Jesacher A, Bernet S, et al. Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation [J]. Opt Express,2014,22: 4029-4037.
    [142]Ghosh S, Preza C. Characterization of a three-dimensional double-helix point-spread function for fluorescence microscopy in the presence of spherical aberration [J]. J Biomed Opt,2013,18:036010.
    [143]Chen H, Yu B, Chen D N, et al. Super-diffraction imaging in three-dimensional localization precision of the double-helix point spread function [J]. Acta Phys Sin-Ch Ed,2013,62: 144201.
    [144]Li H, Yu B, Chen D N, et al. Design and experimental demonstration of high-efficiency double-helix point spread function phase plate [J]. Acta Phys Sin-Ch Ed,2013,62:124201.
    [145]Hu Y T, Li S, Kuang C F, et al. An axial displacement measurement relying on the double-helix light beam [J]. Opt Laser Technol,2014,59:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700