用户名: 密码: 验证码:
AOTV在轨维护GEO卫星的轨道控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
顺应我国太空技术的发展热潮,开展利用往返于空间站和地球静止轨道之间的可重复使用运载器对地球静止轨道卫星进行在轨维护技术的研究将是我国未来航天技术的一种发展趋势。气动力辅助变轨飞行器作为一种新型的跨大气层飞行的轨道转移飞行器,由于有效的利用了地球大气这种自然资源,因此与全推力变轨方式相比,可以有效的节约变轨成本。本文针气动力辅助变轨飞行器在轨维护地球静止轨道卫星的相关技术展开了研究,主要研究成果如下:
     1.建立了气动力辅助变轨飞行器-空间站的在轨分离模型,并对两者分离之后的相关问题进行了研究。1)研究了气动力辅助变轨飞行器与空间站的分离模式,在此基础上,提出了AOTV与空间站在轨分离机构的设计方案和安全距离的概念。2)建立了离散型质能交换空间任务的动力学模型,推导了分离速度的求解公式,并分析了不同分离速度对空间站轨道的扰动情况。3)研究了气动力辅助变轨飞行器与空间站分离之后的相对运动过程,在分离速度大小一定的情况下,采用遗传算法优化得到分离速度的方向。4)研究了分离过程结束之后空间站的轨道保持问题。推导了任意编队构型下“虚拟中心”轨道根数的求解方法,采用LQR方法设计了轨道保持控制器,并仿真验证了控制器的有效性。
     2.研究了大气层外最优变轨问题。1)在脉冲推力假设下,提出了一种求解最优转移轨道的解析方法,该方法仅需通过对单变量的超越方程进行求解,便可得到最优轨道参数;以离轨点位置、入轨点位置和转移时间为优化参数,采用智能优化算法求解了最优转移轨道;基于Lawden主矢量理论证明了解析法和智能优化算法的一阶最优性。2)在有限推力假设下,采用混合法研究了气动力辅助变轨飞行器从地球静止轨道至低轨道的轨道转移问题,结合发动机工作模式,给出了参数优化问题的数学模型,并采用序列二次规划算法进行求解。
     3.研究了编队航天器整体轨道机动的轨迹规划方法。提出了一种新的路径规划方法:首先依据不同的飞行任务规划参考航天器的转移轨道,然后由周期性相对运动约束条件对伴随航天器的运动轨迹进行规划。仿真结果表明,该方法实现简单,能够满足编队航天器协同运动的约束条件。
     4.研究了气动滑行模式下的最优变轨问题。1)深入分析了气动力辅助变轨过程,按飞行顺序将其划分为离轨段、大气飞行段和入轨段三个阶段,确定了优化对象为大气飞行段。2)建立了气动力辅助平面变轨问题的最优控制模型,包括无量纲动力学方程、约束条件和性能指标;采用Broyden打靶法对源自间接法的两点边值问题进行了求解,并对协态变量的初值猜测技术进行了讨论;采用Gauss伪谱法优化了热流、过载限制下的AOTV大气层内飞行轨迹。3)建立了气动力辅助异面变轨问题的最优控制模型,采用“遗传算法+Gauss伪谱法”二层优化方法对这类蕴含参数优化的最优控制问题进行求解,并与间接法和序列梯度恢复法进行了比较。
     5.研究了气动巡航模式下的最优轨道转移问题。1)建立了大气内巡航飞行的动力学方程,为便于进行最优性分析,对方程进行了合理的简化。2)建立了气动巡航模式下异面变轨问题的最优控制模型,提出了相应的优化策略:采用序列二次规划方法对热流约束下的巡航飞行状态进行优化,以优化结果作为下降段优化任务中的性能指标,可以保证巡航模式下的大气内飞行全轨迹的最优性。3)以轨道根数形式的大气内飞行动力学方程为基础,推导了巡航阶段轨道面改变的解析解,避免了数值积分过程,可应用于巡航段的优化计算。
     论文研究了基于气动力辅助变轨飞行器的面向地球静止轨道卫星在轨维护的相关技术,拓展了轨道转移飞行器的应用范畴,完成的工作可为地球静止轨道卫星自主在轨服务任务的总体方案与关键技术的研发提供借鉴与技术支撑。
Conforming to the developing upsurge of space technologies in our country, it is aintending space technology’s development trend of taking a research on the technologyof geostationary earth orbit (GEO) satellite’s on-orbit maintenance by using a reusablelaunch vehicle which travels between space station and geostationary earth orbit.Aeroassisted orbital transfer vehicle, to be a new type of trans-atmospheric orbitaltransfer vehicle, while compared with the all-propulsive mode, the cost for orbitchange can be saved effectively as a result of exploiting the atmosphere. The relatedtechnologies among GEO satellite’s on-orbit maintenance based on AOTV are studiedin this dissertation. The main work and contributions can be summarized as follows:
     1. The on-orbit separation model for AOTV and space station is built, and thecorresponding problems after they are apart are studied.1) The separation mode forAOTV and space station is analyzed. On this basis, the design scheme of on-orbitseparation organ and the concept of safety distance are proposed.2) The dynamicalmodel for the mission of discrete mass-energy transfer is built. The formulation ofseparation velocity is deduced, and the disturbances to the space station’s orbit bydifferent separation velocities are analyzed.3) The process of relative motion after theseparation is studied. Under the circumstance of constant separation velocity, thedirection of separation velocity is optimized by genetic algorithm.4) The problem ofspace station’s orbital maintenance after the separation is studied. The method ofsolving the orbital elements of the virtual center for arbitrary configuration is proposed.The orbit keeping controller is designed based on Linear Quadratic Regulator (LQR)and the effectivity is validated by simulations.
     2. The problem of optimal orbital transfer outside the atmosphere is studied.1)Assuming the thrust is impulsive, the analytic method of solving optimal transfer orbitis presented. The parameters of optimal transfer orbit can be obtained only by solvinga transcendental equation with one variable. Regarding the deorbit position, reorbitposition and transfer time as the optimization parameters, the optimal transfer orbit isobtained by intelligent optimization algorithm. The first-order optimality of the twomethods are demonstrated based on the theory of Lawden’s prime vector.2) Assumingthe thrust is finite, the problem of orbital transfer from GEO to low earth orbit isstudied by the hybrid method. Combined with the work pattern of the engine, themathematical model of parameter optimization problem is presented and it is solved bySequential Quadratic Programming (SQP).
     3. The problem of trajectory planning for spacecraft formation flying’s orbitmaneuver is studied. A new programming strategy is presented. Firstly the referencespacecraft’s transfer orbit is planned according to the flight mission, then the accompanied spacecraft’s trajectory is planned by the condition of periodic relativemotion. Simulation results show the approach is simple and can satisfy all therequirements of the coordinated maneuver.
     4. The problem of optimal orbital transfer by aeroglid is studied.1) The process ofaeroassisted orbital transfer is analyzed in depth. It is divided into three phases whichare deorbit phase, atmospheric flight phase and reorbit phase. The atmospheric flightphase is established as the optimization object.2) The optimal control model of planarorbital transfer is built which contains nondimensional dynamical equations,constrained conditions and performance indices. The two point boundary valueproblem derived from the indirect problem is solved by the Broyden shooting method,and the technique of initial value guess for the costate variables is discussed. TheAOTV’s atmospheric flight trajectory is optimized by Gauss pseudospectral mehodwhen the heating rate and over loading are considered.3) The optimal control modelof nonplanar orbital transfer is built. Two-level optimization method of “Geneticalgorithm+Gauss pseudospectral method” is adopted to solve the optimal controlproblem which includes variable optimization, and compassion is carried on with theindirect method and sequential grads restoring method.
     5. The problem of optimal orbital transfer by aerocruise is studied.1) Thedynamical equations by aerocruise are built. For the convenience of optimality analysis,the equations are simplified legitimately.2) The optimal control model of nonplanarorbital transfer by aerocruise is built, and the corresponding optimization strategy isproposed. The heating-rate-constrained aerocruise conditions which consist of cruisealtitude, cruise velocity and angle of attack are optimized by using SQP. Theoptimality of the aerocruise maneuver is guaranteed by considering the optimizedaerocruise conditions as performance index of descent trajectory optimization.3)Based on the dynamical equations which are expressed by orbital elements, theanalytical solution of the orbit transfer during the cruise phase is deduced. Thus theintegral process is avoided and the analytical solution can be applied into theoptimization computation of cruise phase.
     The related technologies of GEO satellite’s on-orbit maintenance based on AOTVare studied in this dissertation. The accomplished work expands the applicationdomain of orbital transfer vehicle. It will provide scheme references and theoreticalsupport for the over design and key technology development of GEO satellite’son-orbit autonomous servicing.
引文
[1]周黎妮.考虑动量管理和能量存储的空间站姿态控制研究[D].长沙:国防科学技术大学研究生院,2009.
    [2]宋健.航天纵横[M].北京:高等教育出版社,2007.
    [3] Smith D A, Martin C, Kassebom M, et al. A Mission to Preserve theGeostationary Region[J]. Advances in Space Research,2004,34:1214-1218.
    [4] ESA’s DISCOS Database: http://mas3.esoc.esa.de:9000/.
    [5]梁斌,徐文福,李成等.地球静止轨道在轨服务技术研究现状与发展趋势[J].宇航学报,2010,31(1):1-13.
    [6]崔乃刚,王平,郭继峰等.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-811.
    [7] NASA. Satellite Servicing. A NASA report to Congress[R]. NASA Office ofSpace Flight, Washington, DC,1988.
    [8] G.Visentin, D.L. Brown. Robotics for Geostationary Satellite Servicing[J].Robotics and Autonomous Systems,1998,23:45-51.
    [9] Yasaka T, Ashford E W. GSV: An Approach Toward Space System Servicing[J].Earth Space Review,1996,5(2):9-17.
    [10]梁斌,杜晓东,李成等.空间机器人非合作航天器在轨服务研究进展[J].机器人,2012,34(2):242-256.
    [11] Bischof B, Astrium G. ROGER-Robotic geostationary orbit restorer[C]. The54thInternational Astronautical Congress of the International Astronautical Federation,Paris, France: IAF,2003: IAC-03-iaa.5.2.08.
    [12] Kassebom M. ROGER-An advanced solution for a geostationary servicesatellite[C]. The54thInternational Astronautical Congress of the InternationalAstronautical Federation, Paris, France: IAF,2003: IAC-03-U.1.02.
    [13] Duncan Smith. Robotic Geostationary Orbit Restorer (ROGER) Executive[R].ESA: Under Summary ESA/ESTEC Contract,2003.
    [14] Hirzinger G, Landzettel K, Brunner B, et al. DLR’s robotics technologies foron-orbit servicing[J]. Advanced Robotics,2004,18(2):139-174.
    [15] Hirzinger G, Brunner B, Landzettel K, et al. Space robotics–DLR’s teleroboticconcepts, lightweight arms and articulated hands[J]. Autonomous Robots,2003,14(2/3):127-145.
    [16]陈小前,袁建平,姚雯等.航天器在轨服务技术[M].北京:中国宇航出版社,2009.
    [17] http://www.cnsa.go.cn/n1081/n7529/n7935/10717.html.
    [18] Tarabini, Gil J, Gandia F, et al. Ground guided CX-OLEV rendezvous withuncooperative geostationary satellite[J]. Acta Astronautica,2007,61(9/10):312-325.
    [19] Wingo D R. Orbital recovery’s responsive commercial space tug for life extensionmissions[C]. The2ndResponsive Space Conference, Reston, VA, USA,2004,AIAA-RS22004-3004.
    [20] Michael Osbom, Craig Clauss, et al. Micro-satellite Technology ExperimentUpper Stage Propulsion System Development[C].43ndAIAA/ASME/SAE/ASEEJoint Propulsion Conference&Exhibit, OH, USA, AIAA2007-5434,8-11, July2007.
    [21]吴勤.“轨道快车”计划及其军事应用[J].太空探索,2007,(5):20-23.
    [22]林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空,2005,(2):23-27.
    [23]胡正东.天基对地打击武器轨道规划与制导技术研究[D].长沙:国防科学技术大学研究生院,2009.
    [24] Slater B, Voorhees P E, Patrick H. Operationally Responsive Space: The VisionLaunch Architecture Is Dependent on the Requirements[C].3rdResponsive SpaceConference,2005, Los Angeles, CA, AIAA-RS32005-6005.
    [25] Brian L K, Patrick A S. ORS HEO Constellations for Continuous Availability[C].5thResponsive Space Conferenc,2007,5thResponsive Space Conference, LosAngeles, CA:2-10.
    [26]宇文静波,唐立文.美国“快速全球打击”计划探讨与启示[J].装备指挥技术学院学报,2011,22(3):58-61.
    [27]李向阳,方勇,何强.美国“快速全球打击”计划进展与动向分析[J].现代军事,2009,(5):24-28.
    [28] London H.S. Change of Satellite Orbit Plane by Aerodynamic Maneuvering[J].Journal of the Aerospace Sciences,1962(29):323-332.
    [29]杨勇,王小军,唐一华等.重复使用运载器发展趋势及特点[J].导弹与航天运载技术,2002,(5):15-19.
    [30] Michael S P. Optimality of Aeroassisted Orbital Plane Changes[D]. Monterey,California: Naval Ptgraduate Shool,1995.
    [31]林一平.盘点美国航天飞机运营卅载得失[J].交通与运输,2011,(6):43-44.
    [32]李成智,郑晓齐.中国载人航天工程决策过程中航天飞机与载人飞船之争[J].科技导报,2009,27(18):19-26.
    [33]胡建学.可重复使用跨大气层飞行器再入制导技术研究[D].长沙:国防科学技术大学研究生院,2007.
    [34]徐德康.“超翱翔”跨大气层飞行轰炸机[J].国际航空,1998,(12):36-37.
    [35] Walkers S. Force Application and Launch from CONUS Program Contributionsto Access to Space[C].2003Core Technologies for Space Systems Conference,Colorado:1-17.
    [36]刘美霞.跳跃的死神—美国“猎鹰”空天轰炸机计划情报[J].国际瞭望,2007,(4):46-51.
    [37] George R. The Common Aero Vehicle: Space Delivery System of the Future[C].AIAA Space Technology Conference and Exposition,1999, Albuquerque:1-11.
    [38]雍恩米.高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D].长沙:国防科学技术大学研究生院,2008.
    [39] Campion E D, Castillo R, et al. NASA’s Space Shuttle[R]. NASA Office ofPublic Affairs,1996.
    [40]何烈堂.跨大气层飞行器的力热环境分析与飞行规划研究[D].长沙:国防科学技术大学研究生院,2008.
    [41] Terry H P. A Common Aero Vehicle Model, Description, and EmploymentGuide[R]. Schafer Corporation for AFRL and AFSPC.
    [42]童雄辉.美国未来全球快速精确打击体系预测分析[J].导弹与航天运载技术,2008,(5):57-61.
    [43] Vinh N X. Optimal Trajectories in Atmospheric Flight[M]. Elsevier ScientificPublishing Co, Amsterdam,1981.
    [44] Mease K D, Lee J Y, Vinh N X. Orbital Changes during Hypersonic Aerocruise[J].Journal of Astronautical Sciences,1988,36(1/2):103-137.
    [45] Mease K D. Optimization of Aeroassisted Orbital Transfer: Current Status[J].Journal of Astronautical Sciences,1988,36(1/2):7-37.
    [46] Mease K D, Vinh N X, Kuo S H. Optimal Plane Change during Constant AltitudeHypersonic Flight[J]. Journal of Guidance, Control and Dynamics,1991,14(4):111-123.
    [47] Venkataraman P, Miele A. Optimal Trajectories for Aeroassisted OrbitalTransfer[J]. Acta Astronautica,1984,11(7-8):423-433.
    [48] Miele A, Basapur V K, Lee W Y. Optimal Trajectories for Aeroassisted CoplanarOrbital Transfer[J]. Journal of Optimization Theory and Application,1987,52(1):312-324.
    [49] Miele A, Wang T, Deaton A W. Properties of the Optimal Trajectories forCoplanar Aeroassisted Orbital Transfer[J]. Journal of Optimization Theory andApplication,1991,69(1):212-223.
    [50] Miele A, Basapur V K, Lee W Y. Optimal Trajectories for AeroassistedNoncoplanar Orbit Transfer [J]. Acta Astronautica,1989,15(6/7):399-411.
    [51] Miele A, Lee W Y, Mease K D. Nearly Grazing Optimal Trajectories forNoncoplanar Aeroassisted Orbital Transfer[J]. Journal of Astronautical Sciences,1988,36(1/2):139-157.
    [52] Miele A, Basapur V K. Approximate Solutions to Minimax Optimal ControlProblems for Aeroassisted Orbital Transfer[J]. Acta Astronautica,1985,12(10):809-818.
    [53] Miele A, Wang T, Lee W Y. Optimization and Guidance of Trajectories forCoplanar Aeroassisted Orbital Transfer[J]. Journal of Astronautical Sciences,1990,38(3):311-333.
    [54] Miele A, Wang T, Deaton A W. Decomposition Technique and OptimalTrajectories for the Aeroassisted Flight Experiment[J]. Journal of Optimizationand Application,1991,69(2):132-143.
    [55] Miele A. Recent Advance in the Optimization and Guidance of AeroassistedOrbital Transfer[J]. Acta Astronautica,1996,138(10):121-132.
    [56] Naidu D S. Orbital Plane Change Maneuver with Aerocruise[C].29thAerospaceSciences Meeting, January7-10,1991/Reno, Nevada, AIAA-91-0054.
    [57] Naidu D S. Fuel-Optimal Trajectories of Aeroassisted Orbital Transfer with PlaneChange [J]. IEEE Transactions on Aerospace and Electronic Systems,1991,27(2):361-368.
    [58] Naidu D S, Hibey J L, Charalambous C. Fuel-Optimal Trajectories forAeroassisted Coplanar Orbital Transfer Problem[J]. IEEE Transactions onAerospace and Electronic Systems,1990,26(3):374-381.
    [59] Madepalli S, Vinh N X. Optimal Plane Change of an Elliptical Orbit duringAerocruise [J]. Journal of Astronautical Sciences,1992,40(4):503-525.
    [60] Chern J S, Yang C Y, Vinh N X, Hanson J M. Deceleration and HeatingConstrained Footprint of Shuttle Vehicles [J]. Acta Astronautica,1985,12(10):819-829.
    [61] Hsu F K, Kuo T S. Optimal Aeroassisted Orbital Plane Change With Heating RateConstrait[J]. Journal of Guidance, Control and Dynamics,1990,13(1):186-189.
    [62] Horie K, B A Conway. Optimal Aeroassisted Orbital Interception[J]. Journal ofGuidance, Control and Navigation,1999,22(5):625-631.
    [63] Andrews D G, F Bloetscher. Aerobraked Orbital Transfer Vehicle Definition[C].AIAA81-0279.
    [64] Lee J Y, Hull D G. Maximum Orbit Plane Change with Heat Transfer RateConsiderations [J]. Journal of Guidance, Control and Dynamics,1990,13(3):492-497.
    [65] Seywald H. Variational Solutions for the Heat-Rate-Limited Aeroassisted OrbitalTransfer Problems [J]. Journal of Guidance, Control and Dynamics,1996,19(3):686-692.
    [66] Spriesterbach T P, Ross I M. Effect of Heating Rate on the Fuel Efficiency ofAerocruise and Aerobang Maneuvers [C]. AIAA-92-4642.
    [67] Venkataraman P, Miele A. Optimal Trajectories for Aeroassisted Orbital Transfer[J]. Acta Astronautica,1984,11(7-8):423-433.
    [68] Ross I M. Thrust Programming in Aeroassisted Maneuvers [C]. AAS99-404:1607-1625.
    [69] Ross I M. Extremal Angle of Attack over a Singular Thrust Arc in Rocket Flight[J]. Journal of Guidance, Control and Dynamics,1997,20(2):391-393.
    [70] Park Sang-Yang. Analysis of Junction Condition in Optimal Aeroassisted OrbitalPlane Change [J]. Journal of Guidance, Control and Dynamics,2000,23(1):124-129.
    [71] Casalino L. Singular Arcs During Aerocruise [J]. Journal of Guidance, Controland Dynamics,2000,23(1):118-122.
    [72] Eugene P Bonfiglio, James M Longuski, Vinh N X. Automated Design ofAerogravity-Assist Trajectories [J]. Journal of Spacecraft and Rocket,2000,37(6):768-775.
    [73] Jon A Sims, James M Longuski, Moonish R Patel. Aeroassisted-AssistTrajectories to the Outer Planets and the Effect of Drag [J]. Journal of Spacecraftand Rocket,2000,37(1):49-55.
    [74] Fayyaz A Lohar, Arun K Misra, Dan Mateescu. Optimal Atmospheric Trajectoryfor Aerogravity Assist with Heat Constraint [J]. Journal of Guidance, Control andDynamics,1995,18(4):723-730.
    [75] Daniel T Lyons. Aerobraking Trajectory Options for the First MarsMicro-Mission Telecom Orbiter [C]. AAS00-199:1511-1538.
    [76] Kevin D Jones, F Carroll Dougherty. Numerical Simulation of High-Speed Flowsabout Waveriders with Sharp Leading Edges [J]. Journal of Spacecraft and Rocket,1992,29(5):661-667.
    [77] Mark J Lewis, Angus D McRonald. Design of Hypersonic Waveriders forAeroassisted Interplanetary Trajectories [J]. Journal of Spacecraft and Rocket,1992,29(5):623-660.
    [78] Ohta T, Miyagawa T and Matsuzaki R. Experimental Study of Cone-DerivedWaveriders at Mach5.5[J]. Journal of Spacecraft and Rocket,1997,34(4):445-448.
    [79] Istratie Vasile. Optimal skip entry with terminal maximum velocity and heatconstraint[A]. In.AIAA Atmospheric Flight Mechanics Conference andExhibit[C]. Albuquerque, NM,1998.
    [80] Gamble J D, Cerimele C J, Moore T E. Atmospheric Guidance Concept for anAeroassisted Flight Experiment [J]. Journal of Astronautical Sciences,1988,36(1/2):45-71.
    [81] Vinh N X, Johannesen J R, Mease K D. Explicit Guidance of Drag-ModulatedAeroassisted Transfer between Elliptical Orbit [J]. Journal of Guidance, Controland Dynamics,1986,19(3):274-280.
    [82] Kuo Zeal-Sain, Liu Kuo-Chung. Explicit Guidance of Aeroassisted OrbitalTransfer Using Matched Asymptotic Expansions [J]. Journal of Guidance, Controland Dynamics,2002,25(1):80-87.
    [83] Calise A J, Melamed N. Optimal Guidance of Aeroassisted Transfer Vehiclesbased on Matched Asymptotic Expansions [J]. Journal of Guidance, Control andDynamics,1995,18(4):709-717.
    [84] Michael B McFarland, Anthony J Calise. Hybrid Near-Optimal AtmosphericGuidance for Aeroassisted Orbit Transfer [J]. Journal of Guidance, Control andDynamics,1995,18(1):128-134.
    [85] Stephane Rousseau. An Energy Controller Aerocapture Guidance Algorithm forthe Mars Sample Return Orbiter [R]. AAS01-104:67-83.
    [86] Walberg G D. A Survey of Aeroassisted Orbit Transfer[J]. Journal of Spacecraftand Rocket,1985,22(1):3-18.
    [87] C. Park. A Survey of Aerobraking Orbital Transfer Vehicle Design Concepts[J].AIAA25thAerospace Sciences Meeting,1987, Reno, Nevada, AIAA-87-0514:1-19.
    [88] Frank Zimmermann, Anthony J. Calise. Numerical Optimization Study ofAeroassisted Orbital Transfer[J]. Journal of Guidance, Control and Dynamics,1998,21(1):127-133.
    [89] Frank Zimmermann, Anthony J. Calise. Aeroassisted Orbital Transfer TrajectoryOptimization[C]. Proceedings of the AIAA Atmospheric Flight MechanicsConference, AIAA, Washington,1995, AIAA-95-3478:458-468.
    [90] Frank Zimmermann. Aeroassisted Orbital Transfer Optimizaiton[D]. Stuttgart,Germany: Univ. of Stuttgart,1994.
    [91] K.D. Mease, N.X. Vinh. Minimum-Fuel Aeroassisted Coplanar Orbit TransferUsing Lift-Modulation[J]. Journal of Guidance, Control, and Dynamics,1985,8(1):134-141.
    [92] Baumann H, Oberle H.J. Numerical Computation of Optimal Trajectories forCoplanar, Aeroassisted Orbital Transfer[J]. Journal of Optimization Theory andApplications,2000,107(3):457-479.
    [93]李庆扬.常微分方程数值解法[M].北京:高等教育出版社,1992.
    [94]陈小前.飞行器总体优化设计理论与应用研究[D].长沙:国防科学技术大学,2001.
    [95] Mease K.D, Vinh N.X. Minimum Fuel Aeroassisted Coplanar Orbit TransferUsing Lift Modulation [J]. Journal of Guidance, Control, and Dynamics,1985,8(1):134-141.
    [96]毛红敏,臧涛成,潘涛等.不变嵌入法在电磁波传播中的应用[J].苏州科技学院学报(自然科学版),2010,27(4):31-35.
    [97] Po Yang, Jay Liu, and D.W. Zingg. Comparison of Optimization AlgorithmsApplied to Aerodynamic Design [C].42th AIAA Aerospace Sciences Meetingand Exhibit, January5-8,2004/Reno, Nevada.
    [98] David G. Conversion of Optimal Control Problems into Parameter OptimizationProblems[J]. Journal of Guidance, Control and Dynamics,1997,20(1):57-60.
    [99] Kubicek M, Hiavacek V. Numerical Solution of Nonlinear Boundary ValueProblem with Applications[M]. Prentice-Hall In Englewoed Cliffs,1983.
    [100]张洪波,郑伟,汤国建.采用打靶法设计考虑地球扁率的机动轨道[J].宇航学报,2008,29(4):1177-1181.
    [101] Yun Y Shi, R L Nelson, D H Young. Optimal Aeroassisted Orbital Transfer withPlane Change Using Collocation and Nonlinear Programming[C]. Proceedings of1990Flight Mechanics/Estimation Theory Symposium, NASA Goddard SpaceFlight Center, Greenbelt, Maryland:471-490.
    [102] Yun Y Shi, D H Young. Optimal Aeroassisted Orbital Transfer without PlaneChange Using Collocation and Nonlinear Programming[C]. Proceedings of1991Flight Mechanics/Estimation Theory Symposium, NASA Goddard Space FlightCenter, Greenbelt, Mayland:354-367.
    [103] Yun Y Shi, R L Nelson, D H Young. The Application of Nonlinear Programmingand Collocation to Optimal Aeroassisted Orbital Transfers[C]. Proceedings of1992Flight Mechanics/Estimation Theory Symposium, NASA Goddard SpaceFlight Center, Greenbelt, Mayland:364-377.
    [104] Miele A, Wang T. Nominal Trajectories for the Aeroassisted Flight Experiment[J].Journal of the Astronautical Sciences,1993,41(2):139-163.
    [105] Miele A, Wang T. Gama Guidance of Trajectories for Coplanar AeroassistedOrbital Transfer[J]. Journal of Guidance, Control and Dynamics,1992,15(1):213-223.
    [106] Anil V Rao, Skylar Cox, Todd Mosher. A Concept for Operationally ResponsiveSpace Mission Planning Using Aeroassisted Orbital Transfer[C].AIAA-RS6-2008-1001:1-9.
    [107] Anil V Rao, Tang S, Hallman W P. Numerical Optimization Study ofMultiple-Pass Aeroassisted Orbital Transfer[J]. Optimal Control Applications andMethods,2002,23(4):215-238.
    [108] Christian Gogu, Taiki Matsumura, Raphael T Haftka and Anil V Rao.Aeroassisted Orbital Transfer Trajectory Optimization Considering ThermalProjection System Mass[C]. The46thAIAA Aerospace Sciences Meeting andExhibit,2008, Reno, Nevada:1-19.
    [109] Ross I M. Thrust Programming in Aeroassisted Maneuvers [C]. AAS99-404:1607-1625.
    [110] Menees G P, Brown K G, Wilson J F, et al. Aerothermodynamic Heating andPerformance Analysis of a High-Lift Aeromaneuvering AOTV Concept[J].Journal of Spacecraft and Rockets,1987,24(3):198-204.
    [111] Clauss J S, Yeatman R D. Effect of Heating Restraints on Aeroglide andAerocruise Synergetic Maneuver Performance[J]. Journal of Spacecraft andRockets,1967,4(8):1107-1109.
    [112] Bruce R W. Combined Aerodynamic Propulsive Orbital Plane ChangeManeuver[J]. AIAA Journal,1965,3(7):10-14.
    [113] Cuadra E, Arthur P D. Orbit Plane Change by External Burning Aerocruise[J].Journal of Spacecraft and Rockets,1966,3:347-352.
    [114] McDanell J P, Powers N F. Necessary Conditions for Joining Optimal Singularand Nonsingular Subarcs[J]. SIAM Journal of Control,1971,9:161-173.
    [115] Nyland F S. The Synergetic Plane Change for Orbiting Spacecraft[R]. Rand Corp,Santa Monica, California,1962.
    [116] Nyland F S. The Synergetic Plane Change for Orbiting Spacecraft[C].Proceedings of5thInternational Symposium on Space Technology and Science,Tokyo,1963.
    [117] Bruce R W. The Combined Aerodynamic-Propulsive Orbital Plane ChangeManeuver[J]. AIAA Journal,1965,3:1286-1289.
    [118] Hunter J W. Synergetic Orbital Plane Change–A Key to InspaceManeuverability[J]. Air University Review,1965,16:109-115.
    [119] Bonner M M. Minimum Fuel Trajectories for the Synergetic Plane ChangeManeuver[D]. Ann Arbor, University of Michigan,1967.
    [120] Dickmanns E D. The Effect of Finite Thrust and Heating Constraints on theSynergetic Plane Maneuver for a Space Shuttle Orbiter-Class Vehicle[R]. NASATN-D-7211,1973.
    [121] Ross I M. Extremal Angle of Attack over a Singular Thrust Arc in RocketFlight[J]. Journal of Guidance, Control and Dynamics,20(2):391-393.
    [122] Ross I M. Extremal Angle of Attack over a Singular Thrust Arc in Rocket Flight[J]. Journal of Guidance, Control and Dynamics,1997,20(2):391-393.
    [123] Ross I M. Aerobang: A New Synergetic Plane-Change Maneuver[C]. AAS/AIAAAstrodynamics Specialist Conference, Durango, AAS91-418,1991.
    [124] Ross I M, Park S Y. Some Necessary Conditions for the Optimality of SynergeticManeuvers[C]. AAS/AIAA Spaceflight Mechanics Meeting, Huntsville, AAS97-146,1997.
    [125] Ross I M, John C. Nicholson. Optimality of the Heating-Rate-ConstrainedAerocruise Maneuver [J]. Journal of Spacecraft and Rockets,1998,35(3):361-364.
    [126] Hideo Ikawa, Thomas F.Rudiger. Synergetic Maneuvering of Winged Spacecraftfor Orbital Plane Change [J]. J.SPACECRAFT,1982,19(6):513-520.
    [127]李小龙,陈士橹.航天器异面气动辅助变轨飞行段的最优轨迹[J].宇航学报,1995,16(2):1-5.
    [128]李小龙,陈士橹.航天飞机的最优再入轨迹与制导[J].宇航学报,1993,(1):7-15.
    [129]张海联,周建平,吴德隆.热流限制下的最优气动力辅助变轨[J].上海航天,1999,16(4):6-11.
    [130]张海联,周建平,吴德隆.过载限制下的最优气动力辅助异面变轨[J].弹道学报,1999,11(3):1-6.
    [131]吴德隆,彭伟斌,张海联.过载限制下的气动力辅助变轨的最优解与平衡滑行解[J].导弹与航天运载技术,2003,(4):1-6.
    [132]吴德隆,彭伟斌.基于气动辅助变轨的变气动外形飞行器概念研究,最优控制律问题[J].宇航学报,2004,(2):123-126.
    [133]吴德隆,王小军.航天器气动力辅助变轨动力学与最优控制[M].北京:宇航出版社,2006.
    [134] Hohmann E. Die Erreichbarkeit der Himmelsk Orper[M]. Oldenborug: Munich,Germany,1925.
    [135] Frank W G, Michael W, Tbeodore N E. Minimum-Impulse Time-Free Transferbetween Elliptic Orbits[R]. NASA Contractor Report,1966.
    [136] Lawden D F. Impulsive Transfer between Elliptical Orbits[M]. Chapter11-Optimization Techniques, G.Leitmann, Ed. Academic Press, New York,1962.
    [137] Jezewski D J, Rozendal H L. An Efficient Method for Calculating OptimalFree-Space N-Impulse Trajectories[J]. AIAA Journal,1968,6(11):2160-2165.
    [138] Roth H L. Minimization of the Velocity Increment for a Bi-Elliptic Transfer withPlane Change[J]. Acta Astronautica,1967,13(2):119-130.
    [139] Lawden D F. Optimal Trajectories for Space Navigation[M]. London:Butterworths,1963.
    [140] Lion P M, Handelsman M. Primer Vector on Fixed-Time ImpulsiveTrajectories[J]. AIAA Journal,1968,6(1):127-132.
    [141] Clohessy W H, Wiltshire R S. Terminal Guidance System for SatelliteRendezvous[J]. Journal of Aerospace Sciences,1960,27:653-658.
    [142] Bate R R (吴鹤鸣,李肇杰译).航天动力学基础[M].北京:北京航空航天大学出版社,1990.
    [143] Cervisi R T. Analytic Solution for a Cruising Plane Change Maneuver[C]. AIAAAtmospheric Flight Mechanics Conference, Gatlinburg, Tennessee,1983:1-11.
    [144]赵瑞安.空间武器轨道设计[M].北京:中国宇航出版社,2008.
    [145] Walker, M.J.H, Ireland, B, and Owens, J. A Set of Modified Equinoctial OrbitElements[J]. Celestial Mechanics,1985,36:409-419.
    [146] Richard H Battin. An Introduction to the Mathematics and Methods ofAstrodynamics[M]. AIAA Education Series, AIAA, Reston, VA,1999.
    [147] Troy Goodson. Fuel-Optimal Control and Guidance for Low and Medium-ThrustOrbit Transfer[D]. Georgia Institute of Technology,1995.
    [148]谭丽芬,闫野,周英等.航天器交会中的多圈Lambert问题研究[J].国防科技大学学报,2010,32(5):12-16.
    [149] Haijun Shen, Panagiotis T. Optimal Two-Impulse Rendezvous UsingMultiple-Revolution Lambert Solutions[J]. Journal of Guidance, Control andDynamics,2003,26(1):50-61.
    [150] Prussing J E. A Class of Optimal Two-Impulse Rendezvous UsingMultiple-Revolution Lambert Solutions[J]. The Journal of the AstronauticalSciences,2000,48(2):131-148.
    [151]李小将,赵辉,赵伟.基于自适应模拟退火算法的最优Lambert双冲量转移[J].装备指挥技术学院学报,2011,22(4):50-54.
    [152]高小波,董云峰,苏建敏.基于蚁群算法和Powell法的Lambert转移[J].北京航空航天大学学报,2009,35(5):123-128.
    [153]王华,唐国金.用遗传算法求解双脉冲最优交会问题[J].中国空间科学技术,2003,(1):26-30.
    [154]陈统,徐世杰.基于遗传算法的最优Lambert双脉冲转移[J].北京航空航天大学学报,2007,33(3):273-277.
    [155]熊伟,陈治科.基于NSGA-II算法的轨道转移优化方法研究[J].装备指挥技术学院学报,2010,21(5):50-54.
    [156] Kalyanmoy D, Amrit P, Sameer A, et al. A Fast and Elitist Multiobjective GeneticAlgorithm: NAGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [157]胡少春,孙承启,刘一武.基于序优化理论的晕轨道转移轨道设计[J].宇航学报,2010,31(3):662-668.
    [158]马艳红,胡军.基于序优化理论的三脉冲交会燃料寻优[J].宇航学报,2009,30(2):261-266.
    [159]贾庆山.增强序优化理论及应用[D].北京:清华大学,2006.
    [160] Huntington G T. Advancement and Analysis of a Gauss PseudospectralTranscription for Optimal Control Problems[D]. Cambridge, MassachusettsInstitute of Technology,2007.
    [161]粟塔山,彭维杰,周作益等.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社,2001.
    [162]任远,崔平远,栾恩杰.基于标称轨道的小推力轨道设计方法[J].吉林大学学报(工学版),36(6):998-1002.
    [163] Rayman M D. Design of The First Interplanetary Solar Electric PropulsionMission[J]. Journal of Spacecraft and Rockets,2002,39(4):589-595.
    [164] John T B. Survey of Numerical Methods for Trajectory Optimization[J]. Journalof Guidance, Control and Dynamics,1998,21(2):193-207.
    [165]桑艳.空间机动飞行器快速机动变轨策略研究[D].长沙:国防科学技术大学研究生院,2009.
    [166]潘伟,路长厚,冯维明等.基于混合法和多打靶法的有限推力航天器协同交会优化[J].固体火箭技术,2010,33(6):603-610.
    [167] Gao Y. Advances in Low-Thrust Trajectory Optimization and FlightMechanics[D]. Columbia: University of Missouri-Columbia,2003.
    [168] Carter T E. New Form for the optimal Rendezvous Equations Near a KeplerianOrbit[J]. Journal of Guidance, Control, and Dynamics,1990,13(1):183-186.
    [169] Gokhan Inalhan,Michael Tillerson,Jonathan P.How.Relative Dynamics andControl of Spacecraft Formations in Eccentric Orbits[J]. Journal of GuidanceControl, and Dynamics,2002,25(1):48–59.
    [170]崔海英,李俊峰,高云峰.基于Lawden方程的理想编队队形设计[J].清华大学学报(自然科学版),2006,46(2):271-275.
    [171] Zondervan K P, Wood L J. Optimal Low-Thrust, Three-Burn Orbit Transfer withLarge Plane Changes[J]. Journal of the Astronautical Sciences,1984,32(3):407-427.
    [172] Ilgen M R. Hybrid Method for Computing Optimal Low Thrust OTVTrajectories[J]. Advances in the Astronautical Sciences,1987,87(2):941-958.
    [173]梁新刚,杨涤.有限推力下时间最优轨道转移[J].航天控制,2007,28(1):162-166.
    [174]王明光.先进航天器轨道快速优化[D].西安:西北工业大学,2005.
    [175] Carpenter B, Jackson B. Stochastic Optimization of Spacecraft RendezvousTrajectories[J]. Advances in the Astronautical Sciences,2003,113:219-232.
    [176] Hughes S P, Mailhe L M, Guzman J J. A Comparison of Trajectory OptimizationMethods for the Impulsive Minimum Fuel Rendezvous Problem[J]. Advances inthe Astronautical Sciences,2003,113:85-104.
    [177] Kim Y H, Spencer D B. Optimal Spacecraft Rendezvous Using GeneticAlgorithms[J]. Journal of Spacecraft and Rocket,2002,39(6):859-865.
    [178] Moltoda T, Stengel R F. Robust Control System Design Using SimulatedAnnealing[J]. Journal of Guidance, Control and Dynamics,2002,25(2):267-274.
    [179] Adam W., Tim C., Ellen B. Genetic algorithm and calculus of variations-basedtrajectory optimization technique[J]. Journal of Spacecraft and Rockets,2003,40(6):882-888.
    [180]罗亚中,唐国金,田蕾.基于模拟退火算法的最优控制问题全局优化[J].南京理工大学学报,2005,29(2):144-148.
    [181]谭丽芬.赤道椭圆交会轨道规划与制导方法[D].长沙:国防科学技术大学研究生院,2011.
    [182]梁新刚,杨涤.应用非线性规划求解异面最优轨道转移问题[J].宇航学报,2006,27(3):363-368.
    [183] Enright P J, Conway B A. Optimal Finite-Thrust Spacecraft Trajectories UsingCollocation and Nonlinear Programming[J]. Journal of Guidance, Control, andDynamics,1991,14(5):981-985.
    [184] Betts J T, Erb S O. Optimal Low Thrust Trajectories to the Moon[J]. Journal ofApplied Dynamical System,2003,2(2):144-170.
    [185] Kluever C A. Optimal Low-Thrust Interplanetary Trajectories by Direct MethodTechniques[J]. Journal of the Astronautical Sciences,1997,45(3):247-262.
    [186]汤一华,陈士橹,徐敏等.基于遗传算法的有限推力轨道拦截优化研究[J].西北工业大学学报,2005,23(5):671-675.
    [187] Fahroo F, Ross I M. Costate Estimation by a Legendre Pseudospectral Method[J].Journal of Guidance, Control, and Dynamics,2002,24(2):270-277.
    [188] Fahroo F, Ross I M. Direct Trajectory Optimization by a ChebyshevPseudospectral Method[J]. Journal of Guidance, Control and Dynamics,2002,25(1):160-166.
    [189]宣颖,张为华,张育林.基于Legendre伪谱法的固体运载火箭轨迹优化研究[J].固体火箭技术,2008,31(5):425-429.
    [190] Benson A, Thorvaldsen T, Rao V. Direct Trajectory Optimization and CostateEstimation via an Orthogonal Collocation Method[J]. Journal ofGuidance,Control, and Dynamics,2006,29(6):1435-1440.
    [191]张巍,方群,袁建平.最小燃料消耗的有限推力轨道转移优化设计[J].西北工业大学学报,2008,26(5):616-620.
    [192]张亚峰,和兴锁.基于Gauss伪谱法的有限推力轨道转移优化[J].航天控制,2010,28(3):38-46.
    [193]胡正东,丁洪波,曹渊等.伪谱法在SGKW轨道快速优化中的应用[J].航天控制,2009,27(4):3-7.
    [194]雍恩米,唐国金,陈磊.基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J].宇航学报,2008,29(6):1766-1772.
    [195]周文雅,杨涤,李顺利.利用高斯伪谱法求解具有最大横程的再入轨迹[J].系统工程与电子技术,2010,32(5):1038-1042.
    [196]杨希祥.星箭一体化飞行器总体设计优化研究[D].长沙:国防科学技术大学研究生院,2010.
    [197]杨希祥,张为华.基于Gauss伪谱法的固体运载火箭上升段轨迹快速优化研究[J].宇航学报,2011,32(1):15-21.
    [198]宗群,田柏苓,窦立谦.基于Gauss伪谱法的临近空间飞行器上升段轨迹优化[J].宇航学报,2010,31(7):1775-1781.
    [199]王平.空间自主在轨服务航天器近距离操作运动规划研究[D].哈尔滨:哈尔滨工业大学,2010.
    [200] Beard R W, Lawton J R, Hadaegh F Y. A Coordination Architecture forSpacecraft Formation Control[J]. IEEE Trans. Control Syst. Technol,2001,9(6):777-790.
    [201] Ren W, Beard R W. Formation Feedback Control for Multiple Spacecraft viaVirtual Structures[J]. Proc. Of IEE Control Theory and Applications,2004,151(3):357-368.
    [202]张博,罗建军,袁建平.多航天器编队在轨自主协同控制研究[J].宇航学报,2010,31(1):130-136.
    [203] Ren W, Beard R W. Decentralized Scheme for Spacecraft Formation Flying viathe Virtual Structure Approach[J]. Journal of Guidance, Control, and Dynamics,2004,27(1):73-82.
    [204] Michael Tillerson, Gokhan Inalhan, Jonathan P. Coordination and Control ofDistributed Spacecraft Systems Using Convex Optimization Techniques[J].International Journal of Robust and Nonlinear Control,2002,12:207-242.
    [205] Thomas S, Mark C, Derek S. Multiple Agent-based Autonomy for SatelliteConstellations[J]. Artificial Intelligence,2003,145:147-180.
    [206]陈琪锋,吴文昭,戴金海.基于多Agent协商的分布式卫星自主构型保持规划研究[J].宇航学报,2008,29(2):517-521.
    [207]张博,罗建军.一种新的卫星编队构型重构路径规划方法[J].西北工业大学学报,2010,28(2):153-159.
    [208] Lawton J, Beard W R, Hadaegh F Y. Elementary Altitude Formation Maneuversvia Leader-Following and Behavior-Based Control[C]. AIAA in Guidance,Navigation, and Control Conference and Exhibit, Colorado, USA, August14-17,2000.
    [209] Lawton J, Beard W R. Synchronized Multiple Spacecraft Rotations[J].Automatica,2002,38(8):1359-1364.
    [210]周稼康,胡庆雷,马广富等.基于一致性算法的卫星编队姿轨耦合的协同控制[J].系统工程与电子技术,2011,33(4):825-832.
    [211]刘辉,李俊峰.卫星编队飞行的协同控制[J].清华大学学报(自然科学版),2006,46(11):1922-1925.
    [212] Scott R, Starin R K. Design of a LQR Controller of Reduced Inputs for MultipleSpacecraft Formation Flying[C]. Proceedings of the American ControlConference, Arlington, VA,2001,25-27.
    [213]王兆魁,张育林.推力方向受限条件下的编队构型变结构控制[J].宇航学报,2009,30(2):572-578.
    [214]赵健康.空间质能交换及在轨对地攻击技术研究[D].长沙:国防科学技术大学研究生院,2006.
    [215]覃慧.航天器在轨对地释放技术概念研究[D].长沙:国防科学技术大学研究生院,2006.
    [216]高滨.火工驱动分离装置的应用[J].航天返回与遥感,2004,25(1):55-59.
    [217] Arthur R, Jonathan H. Plume Avoidance Maneuver Planning Using Mixed IntegerLinear Programming[C]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit, Montreal, Canada,2001:6-9.
    [218]张磊. OTV在轨发射动力学建模与仿真[D].长沙:国防科学技术大学研究生院,2007.
    [219] Arthur R, Tom S, Jonathan H. Spacecraft Trajectory Planning with AvoidanceConstrains[J]. Journal of Guidance, Control and Dynamics,2002,25(4):
    [220]王辉,顾学迈.编队卫星防碰撞规避路径规划方法与控制研究[J].中国空间科学技术,2009,5:67-74.
    [221] Singh G, Hadaegh F Y. Collision Avoidance Guidance for Formation-FlyingApplications[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Montreal, Canada,2001:1-11.
    [222]孟云鹤,贺勇军,戴金海.卫星编队的多冲量轨道机动路径规划方法[J].宇航学报,2005,26(4):491-494.
    [223] Zanon D J, Camphell M E. Optimal Planning for Tetrahedral Formations NearElliptical Orbits[J]. AIAA Guidance, Navigation, and Control Conference andExhibit,2004,8:1-15.
    [224]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D].国防科技大学研究生院.2006.4:117-119.
    [225] G. S. Aoudé. Two-Stage Path Planning Approach for Designing MultipleSpacecraft Reconfiguration Maneuvers and Application to SPHERES onboardISS[D]. Cambridge, Massachusetts Institute of Technology,2007:3-66.
    [226]丁洪波,田萨萨,蔡洪.一种卫星编队整体机动的规划方法研究[J].宇航学报,2009,30(5):1848-1853.
    [227]张建华,贺碧蛟,蔡国彪.轴对称羽流流场数值模拟和实验验证[J].北京航空航天大学学报,2011,37(5):524-527.
    [228] Lazaron M P, Alred J W. Results of the Spase RCS Plume Impingement Test[R].AIAA,1985-0407.
    [229] Cerimele M P, Alred J W. Flow Field Description of the Space Shuttle VernierReaction Control System Exhaust Plumes[R]. AIAA,1987-1606.
    [230]廖少英.飞行环境污染对航天器的影响[J].上海航天,2002,(6):29-32.
    [231]杨乐平.空间作战飞行器系统分析与作战仿真研究[D].长沙:国防科学技术大学研究生院,2007.
    [232]郗晓宁,王威等.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [233] David R G. Lagrange Multipliers and the State Transition Matrix for CoastingArcs[J]. AIAA Journal,1969,7(2):363-367.
    [234]任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社,1988.
    [235]解学书.最优控制-理论与应用[M].北京:清华大学出版社,1986.
    [236] Bae G H. Optimal Control of Aeroassisted Orbit Transfer Vehicles[D]. GeorgiaInstitute of Technology,1989.
    [237]张育林,曾国强,王兆魁等.分布式卫星系统理论及应用[M].北京:科学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700