用户名: 密码: 验证码:
考虑应急返回能力的载人登月轨道优化设计及特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载人登月是一项技术含量高、复杂度大的系统工程,具有极高的风险性,保障航天员安全是载人登月工程的重中之重。因此,在总体设计中必须要对安全性因素做出考虑,如果飞船在飞行任务中出现紧急情况,首先要确保航天员能随时中止任务并返回地球。本文以考虑应急返回能力的载人登月轨道为研究对象,从应急约束条件分析、轨道建模与优化设计、轨道特性分析等方面进行了专题研究,主要成果如下:
     分析了载人登月轨道设计的应急条件,建立了满足应急条件约束的轨道优化设计模型。将载人登月轨道分为了若干阶段,研究了在各阶段发生故障后的任务中止方式,提出了考虑应急返回能力的轨道方案。针对受应急返回条件影响较大的地月转移段和月面着陆段,详细分析了应急返回对轨道设计所带来的约束,并通过选取合理的设计变量和优化目标,建立了满足应急返回条件约束的载人登月轨道优化模型,从而将轨道设计问题转化为一类优化问题。
     将解析法和数值法相结合,提出了一种从初步设计到高精度设计的串行轨道优化策略,设计了满足应急条件约束的地月转移轨道。研究了自由返回轨道、基于自由返回轨道的中途变轨、基于自由返回轨道的终端变轨三类轨道方案,并针对以上地月转移轨道,建立了基于圆锥曲线拼接法的解析模型和考虑摄动因素的数值模型。根据两种数学模型特点,引入优化算法,提出了一种从初步设计到高精度设计的串行优化策略,从而求解得到了满足应急条件约束的地月转移轨道参数。
     提出了基于Gauss伪谱法的月面着陆轨道快速优化设计方法。推导了月面软着陆的三维动力学方程,构造了考虑应急条件约束的月面着陆轨道优化设计模型。针对传统轨迹优化方法在初值选取、计算效率上的不足,提出了一种基于Gauss伪谱法的含初值生成器的快速轨迹优化策略,并对此方法的正确性、最优性和鲁棒性做出了验证。最后利用该优化策略,计算了满足约束的月面着陆轨道参数与控制参数。
     提出了Gauss伪谱法与直接打靶法相结合的混合优化策略,对月面应急上升交会轨道进行了联合优化设计。将应急上升交会轨道分为了应急上升段和应急交会段,建立了各段的轨道设计模型,分别采用Gauss伪谱法和差分进化算法对两段轨道进行了优化设计。进一步将两段轨道联合起来,构造了整个应急上升交会过程的优化设计模型,针对此多约束、多阶段的非线性联合优化问题,设计了将Gauss伪谱法和直接打靶法相结合的混合优化策略,求解得到了满足应急条件的上升交会轨道参数。
     论文研究充分结合载人登月安全性需求的应用背景,将优化设计方法应用于载人登月轨道设计中去,取得了较好的效果。并基于理论研究成果,详细分析了月面着陆区可达范围、能量消耗等关键轨道参数特性,可为我国未来载人登月任务规划和论证提供有价值的参考。
Manned lunar landing mission is a complicated system project charactered withadvanced technologies. During the manned lunar landing mission, the safety ofastronaut must be taken into account for missiondesign, due to the mission’s high risks.It should be ensured that the astronauts are able to abort the mission and return back tothe Earth at any time, when an emergency occurs. Taking the manned lunar missiontrajectory with emergency return capabilities as the research object, this dissertationmainly studies the emergency constraints analysis, orbit modeling and optimizationdesign, orbital characteristics analysis and so on. The main researches and results aresummarized as follows.
     The emergency conditions for manned lunar trajectory design are analyzed,and the trajectory optimization models with abort constraints are formulated. Thetrajectory for manned lunar mission is divided into several stages, then the abort modesafter the failed mission in different stage are researched and the trajectory plansconsidering emergency return capabilities are proposed. For the translunar and lunarlanding trajectories, which are effected greatly by emergency return conditions, theconstraints for trajectories design caused by mission abort are analyzed thoroughly. Byselecting the reasonable design variables and optimization objects, the manned lunarmission trajectory optimization models satisfying the emergency return constraints areestablished. So the trajectory design problem is transformed into one kind ofoptimization problem.
     By combining analytical method with numerical method, a serial trajectorydesign strategy from initial value design to precision solution is proposed, and thetranslunar trajectory satisfying the emergency constraints is designed. Firstly, threetranslunar trajectory modes consisting of free return trajectory strategy, midcoursemaneuver strategy and terminal maneuver strategy both based on free return trajectoryare given. Furthermore, the analytical model using patched-conic method and numericalmodel considering with various perturbations are established for the translunartrajectories. In terms of two mathematic models’ characteristics, a serial optimizationstrategy from initial value design to high accuracy solution is put forward, and thetranslunar trajectory parameters satisfying emergency return conditions are obtained.
     A rapid trajectory optimization approach for manned lunar landing usingGauss Pseudospectral Method (GPM) is developed. A three dimensional descentdynamics equation is derived. And an optimization design model for powered descenttrajectory with abort conditions is formulated. Considering the limitations of traditionaltrajectory optimization methods in initial guess determination and computationefficiency, a rapid trajectory optimization approach based on GPM, containing an initial guess generator, is proposed. Moreover, the validity, optimality and robustness of thismethod are validated. Finally, the trajectory parameters and control variables of lunarlanding mission are calculated by employing the proposed optimization method.
     A hybrid optimization method combining GPM and shooting method isproposed, and the optimal lunar e mergency ascent and rendezvous trajectory isdesigned. Firstly, the lunar emergency ascent and rendezvous trajectory is divided intotwo stages: emergency ascent stage and emergency rendezvous stage. Trajectory designmodels of both stages are established, and are optimized by the GPM and differentialevolution algorithm respectively. Furthermore the two stages of the trajectory arecombined, thus constructing a multistage nonlinear programming model with strictconstraints. And a hybrid optimization strategy combining GPM and shooting method isdesigned to obtain the optimal solution of the ascent and rendezvous trajectoryparameters satisfying the emergency constraints.
     With the background of strict requirements of manned lunar safety, thisdissertation successfully applies optimization methods to the trajectory design formanned lunar landing mission. In terms of the theoretical studies, many characteristicparameters, including the accessible range of lunar landing sites and fuel consumption,etc., are analyzed, which have some theoretical significance and application value forChina’s future manned lunar landing mission.
引文
[1]晓雨.美国航宇局公布登月方案[J].中国航天,2005,(12):20-22.
    [2]褚桂柏,张熇.月球探测器技术[M].北京:中国科学技术出版社,2007.
    [3]斐照宇,邹永廖,孟华,等.嫦娥工程月球手册[M].北京:国防科工委月球探测工程中心,2005.
    [4]李成智,李建华.阿波罗登月计划研究[M].北京:北京航空航天大学出版社出版社,2010.
    [5]王奉安.人类登月40年[J].环境保护与循环经济,2009,29(11):26-27.
    [6]水天.永远的辉煌——“阿波罗”登月回顾[J].中国国家天文,2008,(12):92-97.
    [7] Llewellyn C. P., Brender K. D. Technology Development, Demonstration andOrbital Support Requirements for Manned Lunar and Mars Missions[R]. NASATechnical Memorandum101666,1990.
    [8] Mindell D. A. The Futrue of Human Spaceflight[R]. Space, Policy, and SocietyResearch Group, MIT, December,2008.
    [9] Augustine N. R. Seeking a Human Spaceflight Program Worthy of GreatNation[R]. U.S. Human Spaceflight Plans Committee,2009.
    [10]孙龙,刘映国.2011年世界载人航天发展综合分析[J].载人航天,2012,18(1):92-96.
    [11]哈维著,邓宁丰译.苏联/俄罗斯探月历程[M].北京:中国宇航出版社,2009.
    [12]胡波,徐丹丹.国外载人航天运载火箭发展规划及研制现状[J].中国航天,2011,(5):15-18.
    [13] Messina P., Vennemann D., Gardini B. The European Space Agency ExplorationProgramme Aurora[C]. AIAA1st Space Exploration Conference, Florida,2005.
    [14]管春磊,周鹏,强静.国外载人登月发展趋势研究[J].国际太空,2009,(4):22-28.
    [15]韩鸿硕,蒋宇平.各国登月计划及载人登月的目的与可行性简析(上)[J].中国航天,2008,(9):30-33.
    [16] Hyle C. T., Poggatt C. E., Weber B. D. Abort planning for Apollo missions[C].AIAA8th Aerospace Sciences Meeting, New York,1970.
    [17]郗晓宁,曾国强,任萱,等.月球探测器轨道设计[M].北京:国防工业出版社,2001.
    [18]曾国强,任萱,郗晓宁.快速设计月球卫星转移轨道的一种代数方法[J].国防科技大学学报,2000,22(2):1-6.
    [19]刘林,王歆.月球探测器轨道力学[M].北京:国防工业出版社,2006.
    [20]何巍,徐世杰.地月低能转移轨道设计方法研究[J].宇航学报,2006,27(5):965-969.
    [21]龚胜平,李俊峰,宝音贺西,等.基于不变流形的登月轨道设计[J].应用数学和力学,2007,28(2):183-190.
    [22]王劼,崔乃刚,刘暾.定常幅值小推力登月飞行器轨道研究[J].航空学报,2001,22(1):6-9.
    [23] Merriam R. LSAM Anytime Lift Off Into Low Lunar Orbit[R]. EG-CEV-06-70,NASA-Johnson Space Center, July,2006.
    [24]刘林,王海红.关于月球低轨卫星运动的两个问题[J].天文学报,2006,47(3):275-283.
    [25] Dashkov, Ivashkin V. V. On a History of the Lunar-9Spacecraft Project for SoftLanding on the Moon[J]. USSR Academy of Sciences, Moscow,1988:1-28.
    [26] Gelzer D. C. The Lunar Landing Research Vehicle; Prelude to the Arrival atTranquility Base[C]. AIAA Space2006, California,2006.
    [27]盛英华,张晓东,梁建国,等.载人登月飞行模式研究[J].宇航学报,2009,30(1):1-7.
    [28] Floyd V. B. Lunar Descent and Ascnet Trajectory[C]. AIAA8th AerospaceScience Meeting, New York,1970.
    [29] Gwinn J. M. Lunar Ascent with Plane Change[C].1st AIAA Annual Meeting,Washington, D.C.,1964.
    [30] Brown A. E. Minimum Fuel Ascent From the Lunar Surface[R]. NASA TND-4159, NASA Langley Research Center, Hampton, Va., September,1967.
    [31] Bruns R. E., Singleton L. G. Ascent from the Lunar Surface[R]. NASA TND-1644, George C. Marsball Space Flight Center, Huntsville, Ala.,1965.
    [32] Young K. A., Alexander J. D. Apollo Lunar Rendezvous[C]. AIAA8thAerospace Sciences Meeting, New York,1970.
    [33]唐国金,罗亚中,张进.空间交会对接任务规划[M].北京:科学出版社,2008.
    [34] Andersen B. M., Whitmore S. A. Aerodynamic Control on a Lunar ReturnCapsule using Trim-Flaps[C].45th AIAA Aerospace Sciences Meeting andExhibit, Reno, Nevada,2007.
    [35]南英,陆宇平,龚平.登月返回地球再入轨迹的优化设计[J].宇航学报,2009,30(5):1842-1847.
    [36]郗晓宁,黄文德,王威.载人登月任务中止轨道问题综述[J].中国科学:技术科学,2011,41(5):537-544.
    [37] Greensite A. L. Analysis and design of space vehicle flight control systemsVolume XVI-Abrot[R]. NASA CR-835,1969.
    [38] Beksinski E. D. Abort Trajectory for Manned Lunar Missions[D]. Unversity ofMaryland,2007.
    [39] Anselmo D. R., Baker M. K. Translunar and Lunar Orbit Abort Trajectories forApollo14[R]. NASA-CR-116280, Bellcomm, Inc., Dec7,1970.
    [40] Babb G. R. Translunar LM DSP Abort Techniques for Advanced LunarMission[R]. NASA TM X-69670, Manned Spacecraft Center, Houston,1968.
    [41]戚发轫,朱仁璋,李颐黎.载人航天器技术[M].北京:国防工业出版社,1999.
    [42]黄文德.载人登月中止轨道的特性分析与优化设计[D].长沙:国防科技大学,2011.
    [43] Condon G. L. Lunar Orbit Insertion Targeting and Associated Outbound MissionDesign for Lunar Sortie Missions[R]. FltDyn-CEV-06-72, NASA Johnson SpaceCenter, March,2007.
    [44]高玉东,郗晓宁,王威.地月空间飞行轨道分层搜索设计[J].宇航学报,2006,27(6):1157-1161.
    [45] Orloff R. W. Apollo by the Numbers: A Statistical Reference[R]. NASASP-2000-4029,2000.
    [46] Adamo D. R. Apollo13Trajectory Reconstruction via State TransitionMatrices[J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,2008,31(6).
    [47] Berry R. L. Launch Window and Translunar Orbit, Lunar Orbit, and TransearthTrajectory Planning and Control for the Apollo11Lunar Landing Mission[C].AIAA8th Aerospace Sciences Meeting,1970.
    [48] Caldwell S. F., Mummert V. S. Apollo Free Return Reentry Point Analysis[R].NASA-CR-78347, Bellcomm,1966.
    [49] Dupont A. L., Bell J. A., Alexander J. D. Preliminary Abort and RescueProcedures for Apollo Mission F[R]. NASA-TM-X-69838, Houston,1969.
    [50] Carlson K. M. Lunar Trajectory Geometry[R]. Bellcomm, Inc, Washington, D.C.,December,23,1969.
    [51]白玉铸,陈小前,王功波.探月自由返回轨道设计与误差传递分析[C].空间操作自主控制专题研讨会,长沙,2009,567-572.
    [52]张磊,于登云,张熇.绕月自由返回轨道的设计与分析[J].航天器工程,2010,19(2):128-135.
    [53] Battin R. H. An Introduction to the Methematics and Methods ofAstrodynamics[M]. American Institute of Aeronautics and Astronautics,1999.
    [54]陈海萍.载人登月自由返回轨道特性分析[C].湖南省第二届研究生创新论坛航空宇航与控制科学分论坛,长沙,2009,342-347.
    [55]陈海萍.载人登月任务中止轨道特性分析[D].长沙:国防科技大学,2009.
    [56]黄文德,郗晓宁,王威,等.基于双二体假设的载人登月自由返回轨道特性分析及设计[J].宇航学报,2010,31(5):1297-1303.
    [57] Liu X. L., Duan G. R. Designs of Optimal Free-Return Orbit for MoonLanding[C].2007IEEE International Conference on Robotics and Biomimetics,Sanya,2007.
    [58]陈海萍.载人登月混合轨道特性分析[C].2009年湖南省力学学会、宇航学会推进技术专业委员会、应用力学专业委员会学术年会,长沙,2009.
    [59]黄文德,郗晓宁,王威.基于双二体假设的载人登月混合轨道特性分析及设计[J].国防科技大学学报,2010,32(4):61-67.
    [60] Santovincenzo A. Architecture Study for Sustainable Lunar Exploration[R]. CDFStudy Report, CDF-33(A), December,2004.
    [61] Biegler L. T. An Overview of Simultaneous Strategies for DynamicOptimization[J]. Chemical Engineering and Processing: Process Intensification,2007,46(11):1043-1053.
    [62]王大轶,李铁寿,马兴瑞.月球最优软着陆两点边值问题的数值解法[J].航天控制,2000,(3):44-49.
    [63]王劼,李俊峰,崔乃刚,等.登月飞行器软着陆轨道的遗传算法优化[J].清华大学学报(自然科学版),2003,43(8):1056-1059.
    [64]孙军伟,乔栋,崔平远.基于SQP方法的常推力月球软着陆轨道优化方法[J].宇航学报,2006,27(1):99-102.
    [65]朱建丰,徐世杰.基于自适应模拟退火遗传算法的月球软着陆轨道优化[J].航空学报,2007,28(4):806-812.
    [66]罗建军,王明光,袁建平.基于伪光谱方法的月球软着陆轨道快速优化[J].宇航学报,2007,28(5):1119-1122.
    [67]王劼,崔乃刚,刘暾,等.定常推力登月飞行器最优软着陆轨道研究[J].高技术通讯,2003,13(4):39-42.
    [68]周净扬,周荻.月球探测器软着陆精确建模及最优轨道设计[J].宇航学报,2007,28(6):1462-1466.
    [69] Sostaric R. R., Merriam R. S. Lunar Ascent and Rendezvous TrajectoryDesign[C].31th Annual AAS Guidance and Control Conference, Breckenridge,Colorado,2008.
    [70] White J. A. A Study of Abort from a Manned Lunar Landing and Return toRendezvous in a50-Mile Orbit[R]. NASA TN D-1514, Langley Research Center,Washington, December,1962.
    [71] Williams J. L., Barker L. K. Analytical Study of Lunar Landing Trajectories withReference to the Lunar-Orbit-Rendezvous Mode and Possible AbortSituations[R]. NASA TN D-2016, Langley Research Center, Washington,December,1963.
    [72]程国采.航天飞行器最优控制理论与方法[M].长沙:国防工业出版社,1999.
    [73]陈功,傅瑜,郭继峰.飞行器轨迹优化方法综述[J].飞行力学,2011,29(4):1-5.
    [74]阮春荣.大气中飞行的最优轨迹[M].北京:宇航出版社,1987.
    [75] Vinh N. X., Ma D. M. Optimal Multiple-Pass Aeroassisted Plane Change[J].Acta Astronautica,1990,21(11):749-758.
    [76] Vinh N. X., Lu P. Necessary Conditions for Maximax Problems withApplication to Aeroglide of Hypervelocity Vehicles[J]. Acta Astronautica,1987,13(6/7):413-420.
    [77]吴德隆,王小军.航天器气动力辅助变轨动力学与最优控制[M].北京:中国宇航出版社,2006.
    [78]袁方.最优过程理论在飞行轨迹优化计算中的应用[J].飞行力学,2000,18(1):50-53.
    [79]周浩,周韬,陈万春.高超声速滑翔飞行器引入段弹道优化[J].宇航学报,2006,27(5):970-973.
    [80]罗亚中.系列化运载火箭总体优化技术研究[D].长沙:国防科技大学,2003.
    [81]赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社,1997.
    [82]雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406.
    [83]雍恩米.高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D].长沙:国防科技大学,2008.
    [84]杨希祥,李晓斌,肖飞.智能优化算法及其在飞行器优化设计领域的应用综述[J].宇航学报,2009,30(6):2051-2061.
    [85] Shi Y. Y., Nelson R. L., Young D. H. The Application of NonlinearProgramming and Collocation to Optimal Aeroassisted Orbital Transfers[C].Aerospace Sciences Meeting and Exhibit, Neno, NV,1992.
    [86] Liu X. L., Duan G. R. Design of Optimal Orbit and Constant Force forSoft-Landing of Lunar Lander[C]. The25th Chinese Control Conference, Harbin,Heilongjiang,2006.
    [87]李小龙,陈士橹.航天飞机的最优再入轨迹与制导[J].宇航学报,1993,(1):7-13.
    [88] Zimmermann F., Alise A. J. Aeroassisted Orbital Transfer TrajectoryOptimization Using Direct Methods[C]. Atmospheric Flight Mechanics
    [89] Elnagar J., Kazemi M. A., Razzaghi M. The Pseudospectral Legendre Methodfor Discretizintg Optimal Control Problems[J]. IEEE Transactions on AutomaticControl,1995,40(10):1793-1796.
    [90] Fahroo F., Ross I. M. Costate Estimation by a Legendre PseudospectralMethod[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Boston, MA,1998.
    [91] Fahroo F., Ross I. M. On Discrete-Time Optimality Conditions forPseudospectral Methods[C]. AIAA/AAS Astrodynamics Specialist Conferenceand Exhibit, Keystone, CO,2006.
    [92] Bollino K. P., Oppenheimer M. W., Doman D. D. Optimal Guidance CommandGeneration and Tracking for Reusable Launch Vehicle Reentry[C]. AIAAGuidance, Navigation, and Control Conference Proceedings, Keystone, Colorado,2006.
    [93] Huntington G. T. Optimal Reconfiguration of Spacecraft Formations Using theGauss Pseudospectral Method[J]. JOURNAL OF GUIDANCE, CONTROL,AND DYNAMICS,2008,31(3):689-698.
    [94]雍恩米,唐国金,陈磊.基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J].宇航学报,2008,29(6):1766-1772.
    [95] Banks H. T., Fahroo F. Legendre-Tau Approximations for LQR FeedbackControl of Acoustic Pressure Fields[J]. Journal of MathematicalSystems,Estimation, and Control,1995,5(2):271-274.
    [96]杨希祥,张为华.基于Gauss伪谱法的固体运载火箭上升段轨迹快速优化研究[J].宇航学报,2011,32(1):15-21.
    [97] Rao A. V., Clarke K. A. Performance Optimization of a Maneuvering ReentryVehicle Using a Legendre Pseudospectral Method[C]. AIAA Atmospheric FlightMechanics Conference and Exhibit, Monterey, California,2002.
    [98] Benson D. A Gauss Pseudospectral Transcription for Optimal Control[D].Cambridge, Massachusetts: Massachusetts Institute of Technology,2005.
    [99] Lavalle S. M. Rapidly-Exploring Random Trees: A new Tool for PathPlanning[R]. Technique Report No.98-11, Dept. of Computer Science, IowaState University,1998.
    [100] Frazzoli E., Dahleh M. A., Feron E. Real-Time Motion Planning for AgileAutonomous Vehicles[J]. JOURNAL OF GUIDANCE, CONTROL, ANDDYNAMICS,2002,25(1):116-129.
    [101] Cheng P., Shen Z., Lavalle S. M. RRT-Based Trajectory Design for AutonomousAutomobiles and Spacecraft[J]. Archives of Control Sciences,2001,11(3-4):51-78.
    [102]席裕庚.预测探测[M].北京:国防工业出版社,1993.
    [103] Mayne D., Rawling J., Rao C. Constrained Model Predictive Control: Stabilityand Optimality[J]. Automatica,1987,36(6):789-814.
    [104] Kuwata Y., Schouwenaars T., Richards A. Robust Constrained RecedingHorizon Control for Trajectory Planning[C]. AIAA Guidance, Navigation, andControl Conference and Exhibit, San Francisco, CA,2005.
    [105] Mettler B., Bachelder E. Combining On-and Offline Optimization Techniquesfor Efficient Autonomous Vehicle's Trajectory Planning[C]. AIAA Guidance,Navigation, and Control Conference and Exhibit, San Francisco, CA,2005.
    [106]唐强,张新国,刘锡成.一种用于低空飞行的在线航迹重规划方法[J].西北工业大学学报,2005,23(4):271-275.
    [107]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [108]高玉东.月球探测器地月空间转移轨道研究[D].长沙:国防科技大学,2008.
    [109]白玉铸.载人登月轨道设计相关问题研究[D].长沙:国防科技大学,2010.
    [110]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社,1993.
    [111] Gill M. Satellite Orbits Model, Methods, and Applications[M]. Verlag BerlinHeidelberg: Springer,2000.
    [112] Ocamp C., Hernandez S. A Method for Computing Optimal Multiple Finite BurnMoon to Earth Trajectories[C]. AIAA/AAS Astrodynamics SpecialistConference, Toronto, Ontario Canada,2010.
    [113]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [114] Konopliv A. S., Sjogren W. L., Wimberly R. N. A High Resolution LunarGravity Field and Predicted Orbit Behavior[C]. AAS/AIAA AstrodynamicsSpecialist Conference, Victoria, B. C. Canda,1993.
    [115]刘林.人造地球卫星轨道力学[M].北京:高等教育出版社,1992.
    [116]李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995.
    [117]杨维廉.轨道力学与使命设计[J].航天器工程,1998,7(3):17-25.
    [118] Yan H., Gong Q., Park C. D. High-Accuracy Moon to Earth Escape TrajectoryOptimization[C]. AIAA Guidance, Navigation, and Control Conference, Toronto,Ontario Canada,2010.
    [119] Kennedy J., Eberhart R. Particle swarm optimization[C]. Proceedings of the4thIEEE International Conference on Neural Networks, Piscataway,1995,1942-1948.
    [120]侯志荣,吕振肃.基于MATLAB的粒子群优化算法及其应用[J].计算机仿真,2003,20(10):68-70.
    [121]谢富强,吴浩,唐灵灵.基于粒子群算法的飞行器再入轨迹优化[J].计算技术与自动化,2008,27(4):72-75.
    [122] Storn R., Price K. Differential Evolution-A Simple and Efficient Heuristic forGlobal Optimization over Continuous Spaces[J]. Journal of Global Optimization,1997,11(4):341-359.
    [123] Storn R., Price K. Differential Evolution-A Simple and Eficient AdaptiveScheme for Global Optimization over Continuous Spaces[R]. TR-95-012,International Computer Science Institute, Berkeley,1995.
    [124]杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能,2008,21(4):506-513.
    [125]万东.差分进化算法研究及其应用[J].科学技术与工程,2009,9(22):6673-6676.
    [126] Boggs P. T., Tolle J. W. Sequential Quadratic Programming[J]. Acta Numerica,1995,4:1-51.
    [127]彭祺擘.基于空间站支持的载人登月方案研究[D].长沙:国防科技大学,2007.
    [128] Jesick M., Ocampo C. Automated Generation of Symmetric Lunar Free-ReturnTrajectories[J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,2011,34(1):98-106.
    [129] Peng Q. B., Shen H. X., Li H. Y. Free Return Orbit Design and CharacteristicsAnalysis for Manned Lunar Mission[J]. Sci China Tech Sci,2011,54(12):3243-3250.
    [130] Sellers J. J. Understanding Space: An Introduction to Astronautics[M]. NewYork: The McGraw-Hill Companies, Inc.,2005.
    [131] Head J. W. Scientific Rationale Summaries for Apollo Candidate LunarExploration Landing Sites[R]. NASA-CR-109867,1970.
    [132] Clark P. E., Hawke B. R., Basu A. The Relationship Between Orbital,Earth-Based, and Sample Data for Lunar Landing Sites[R]. NSG-7323, NASAJet Propulsion Laboratory, January1,1990.
    [133] Weyers V. J. Site Accessiblity and Characteristic Velocity Requirements forDirect-Descent Lunar Landings[R]. NASA TN D-5923, NASA Lewis ResearchCenter, Cleveland, Obio,1970.
    [134] Bennett F. V., Price T. G. Study of Powered-Descent Trajectories for MannedLunar Missions[R]. NASA TN D-2426, NASA Manned Spacecraft Center,Houston,1964.
    [135] Kelly T. J. A Review of the Apollo Lunar Module Program and Its Lessons forFuture Space Missions[R]. AIAA-90-3617, September25-27,1990.
    [136] Vinh N. X., Busemann A., Culp R. D. Hypersonic and Planetary Entry FlightMechanics[M]. Ann Arbor, MI: Univ. of Michigan Press,1980.
    [137] Chuang C. H., Goodson T. D., Hanson G. Fuel-Optimal, Low andMedium-Thrust Orbit Transfers in Large Numbers of Burns[C]. AIAA Guidance,Navigation and Control Conference,1994,158-166.
    [138] Ross I. M., Fahroo F. A Pseudospectral Transformation of the Covectors ofOptimal Control System[C].1st IFAC/IEEE Symposium on Structure andControl, Prague, Czech Republic,2001.
    [139] Elnagar J., Kazemi M. A. Pseudospectral Chebyshev optimal control ofconstrained nonlinear dynamica systems[J]. Computational Optimization andApplications,1998,(11):195-217.
    [140] Huntington G. T. Advancement and Analysis of a Gauss PseudospectralTranscription for Optimal Control Problems[D]. Cambridge, MA:Massachusettes Institute of Technology,2007.
    [141]彭祺擘,李海阳,沈红新.基于高斯——伪谱法的月球定点着陆轨道快速优化设计[J].宇航学报,2010,31(4):1012-1016.
    [142] Doman D. B., Bollino K. P., Ross I. M. Nonlinear Feedback Control for Rapid,On-Line Trajectory Optimization of Reentry Vehicles[R].AFRL-VA-WP-TP-2006-307, Air Force Research Laboratory,2005.
    [143] Hull D. G., Harris M. W. Optimal Solutions for Quasiplanar Ascent over aSpherical Moon[J]. JOURNAL OF GUIDANCE, CONTROL, ANDDYNAMICS,2012,35(4):1218-1223.
    [144] Bennett F. V. Apollo experience report-mission planning for lunar moduledescent and ascent[R]. NASA TN D-6846,1972.
    [145] Vallado D. A., Mcclain W. D. Fundamentals of Astrodynamics andApplications[M]. EI Segundo, California: Microcosm Press,2004.
    [146]彭祺擘,李海阳,沈红新,等.基于Gauss伪谱法和直接打靶法结合的月球定点着陆轨道优化[J].国防科技大学学报,2012,34(2):119-124.
    [147]龙乐豪.我国载人登月技术途径探讨[J].前沿科学,2008,2(3):29-38.
    [148]龙乐豪,容易.现代“嫦娥”的技术途径设想[J].导弹与航天运载技术,2008,(1):1-7.
    [149] Peng Q. B., Li H. Y., Tang G. J. Manned Lunar Mission Modes Analysis[C].1stGlobal Luanr Conference, Beijing,2010.
    [150] Garn M., Qu M., Chrone J. NASA's Planned Return to the Moon: Global Accessand Anytime Return Requirement Implications on the Lunar Orbit InsertionBurns[R]. NASA Langley Research Center, Hampton,2008.
    [151]马高峰,鲁强,郑勇. JPL行星/月球星历[C].中国宇航学会深空探测技术专业委员会第一届学术会议,哈尔滨,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700