用户名: 密码: 验证码:
椅式桩板墙受力机制与设计计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布设支挡结构是陡坡路基边坡工程的常见技术措施。随着工程人员对陡坡路基支挡结构破坏机理的深入研究,国内外针对山区陡坡路基支挡工程病害的研究和防治工作空前活跃,支挡结构型式也在完善已有措施的基础上向结构化、组合化和经济性、环保性方向发展。组合式抗滑支挡结构正是在这种国内外形势下重新出现在科技工作者的视野之中,新提出的椅式桩板墙就是其中最具代表性的结构型式之一。铁路行业早在上世纪70年代开始应用类似的支挡结构,但是由于其理论研究远远落后于工程应用,迄今为止还没有成熟的研究成果,设计、规范和手册上也没有相关条款,严重制约了这类支挡结构的发展与推广
     本文依托中国中铁科股份有限公司科技研究开发计划课题《无砟轨道陡坡路基椅式桩板结构研究》、中铁二院工程集团有限责任公司科研项目《叙大铁路龙山车站高路堤椅式桩板墙应用研究》与道路工程四川省重点实验室开放研究基金课题《陡坡椅式桩板结构路基设计分析理论》等课题开展研究。对支挡路基边坡的椅式桩板墙的定义、分类与研究现状进行了介绍,论述了椅式桩板墙在岩质和土质边坡上的工作机理。分别进行了岩质边坡和土质边坡椅式桩板墙室内大比例模型试验,分析了不同技术工况下椅式桩板墙的变形受力机理及破坏特征,研制了适用于室内模型试验的微型应变式油压土压力计。对岩质边坡和土质边坡上椅式桩板墙的内力变形进行了数值仿真,讨论了重要结构型式、关键设计参数、岩土体参数等对结构内力变形的影响性。在结构设计计算中,将承载板与挡土板简化为简支梁构件进行设计,将椅式桩简化为平面结构,采用弹性地基梁法和结构力学位移法两种方法计算结构内力与变形。最后,利用理论计算方法对关键参数进行分析与讨论,并提出椅式桩板墙的设计方法。针对椅式桩板墙的研究成果,本文主要得出以下结论:
     1.定义路基边坡工程中新型的椅式桩板墙为组合式抗滑支挡结构,其由椅式桩、承载板和挡土板组成,综合了埋入式连续桩板结构、悬臂式桩板墙与双排抗滑桩的技术特点,兼有支挡、阻滑和承重三重功能,可以按照其布设位置、组合形式和受荷类型进行分类。
     2.承载板和横梁支承竖向荷载,使椅式桩板墙的重心后移,提高了其抗变形能力与整体稳定性;椅式桩板墙具有抗变形能力强、耐久性好、收坡快、占地范围较小等优点,适用于斜坡高填方路堤、深大路堑、深厚软弱土斜坡、大型滑坡体、山区陡坡、山区城市道路等复杂条件下的路基边坡支挡工程。
     3.当位于岩质陡坡上时,竖向荷载通过承载板作用于椅式桩上,主副桩通过横梁连接共同抵抗横向荷载,主要表现出承重和支挡双重功能,当岩体中存在节理面或软弱带时,椅式桩又体现出抗剪阻滑的特性。当位于土质边坡上时,部分荷载和滑坡推力还会通过坡体中的土拱效应传递给椅式桩,此时主要表现出阻滑与支挡双重功能。
     4.当岩体完整性较好时,桩侧岩石压力可按理论计算、经验方法或弹性抗力法求解;当岩体存在外倾结构面时,需确定最不利工况下的岩石压力;类土质岩石边坡可按土质边坡考虑。土质边坡上主动力按经典土压力理论、土拱理论或滑坡推力中较大者确定,被动力按经典土压力理论、弹性地基梁法或剩余抗滑力中较小者确定;滑坡推力与剩余抗滑力的计算往往较为繁琐,可采用修正后的土压力进行代替。
     5.内力协调机制使椅式桩上出现多个反弯点,大幅降低了结构内力;椅式桩破坏模式一般为某构件形成塑性铰使结构丧失正常使用功能,在可预见的较大荷载作用下椅式桩板墙不会发生倾倒破坏。
     6.副桩布设于主桩内侧可有效降低椅式桩内力、转换桩基拉压属性,桩梁刚度比控制在1-3范围内,可有效保证椅式桩的荷载效应自我调节作用;椅式桩纵向桩间距一般取3-5倍的桩径或桩宽、数值范围取5~8m,椅式桩横向桩间距一般取2.5~4倍的桩径或桩宽;岩质边坡坡角在40°~70°范围内时,主桩最优悬臂系数取值为0.4~0.6。
     7.在结构设计计算过程中,当不考虑结构扭转变形时,可以将椅式桩简化为竖向和侧向联合受力的平面结构,根据桩顶与桩底的约束条件和各构件之间、各典型受荷区段之间的内力、变形连续条件,采用弹性地基梁法或结构力学位移法求解结构的内力和变形,并提出了不同计算方法的适用条件。
Retaining structure is an indispensable mechanical control measure on steep embankment slope. With intensive studies on the failure mechanism of retaining structures, researches about disasters prevention are unprecedented active at home and abroad. Based on existing structure styles, a develop tendency of integral, combinational, economical and environmental has occurred. Among all the new retaining structures that have come into the sight of researchers, the Chair-Shaped Pile-Sheet Retaining Wall is the most representative one. The application of similar structures on railway industry began in early1970s. However, theoretical study of these structures has always been far behind engineering application, with no mature design codes available, which is seriously restricting the development and promotion of this type of retaining structure.
     Relying on following projects, such as "Research on the Chair-Shaped Pile-Board Structure of the steep embankment on the unballasted track railway" of the research and development of science and technology plan project of China Railway Group Limited,"Research on the Application of the Chair-Shaped Pile-Sheet Retaining Wall on the Long Mountain Station of the Xuyong-Dacun Railway " of China Railway Eryuan Engineering Group CO.LTD, and "The Analysis and Design of the Chair-Shaped Pile-Board Structure on the Theory" supported by the open research fund of Key Laboratory of Highway Engineering of Sichuan Province, Southwest Jiaotong University, the paper conducted the research, introduced the definition, classification and research status and the working mechanism on rock and soil slopes of the Chair-Shaped Pile-Sheet Retaining Wall. We carried on the studies of the large scale model test of the Chair-Shaped Pile-Sheet Retaining Wall on both rock slope and soil slope respectively, analyzed the mechanism of deformation and stress and failure characteristics on rock slope and soil slopes under different technical conditions, developed the micro strain type hydraulic pressure gauge suitable for indoor model test. In structure design and calculation, the loading plate and soil retaining plate are simplified to simply supported beam, the chair-shaped pile is simplified to flat structure, the displacement of elastic foundation beam method and the structural mechanics method are adopted to calculate the structure internal force and deformation. Finally, the design cycle of Chair-Shaped Pile-Sheet Retaining Wall is put forward by using theoretical calculation method to analyze and discuss the key parameters. Some conclusions are drawn below.
     1. The paper defines the new type of the Chair-Shaped Pile-Sheet Retaining Wall as a composite anti-sliding retaining structure, consisted of chair-shaped pile, the bearing plate and soil retaining plate, which combines the technical characteristics of the Embedded Continuous Pile-Board Structure, Cantilever Sheet Pile Wall and Double-Row Anti-Slide Pile. It has the triple functions of retaining, anti-sliding and bearing, and could be classified according to the layout position, combination form and load types.
     2. When the bearing plate and beam support vertical load, the gravity center of Chair-Shaped Pile-Sheet Retaining Wall would move behind, which enhances its ability to resist deformation and overall stability and has a unloading effect to the main pile. Chair-Shaped Pile-Sheet Retaining Wall has following advantages, such as good anti deformation ability, good durability, fast slope withdrawing and covering small area etc. It is applied to following complex conditions of subgrade slope retaining engineering, such as high fill embankment, deep cutting, deep slope of soft soil, large landslide, and steep slope and city road in mountain area.
     3. When the Chair-Shaped Pile-Sheet Retaining Wall is located on rock slopes, the vertical loads pass through the bearing plate and distribute on the chair-shaped piles. Since the deputy piles are connected through a beam to resist lateral loads, the structure performs both bearing and retaining functions. When joint plane or weakness appears in the rock, the chair-shaped pile reflects the merits of slide resistance. When the Chair-Shaped Pile-Sheet Retaining Wall is located on soil slopes, partial loads and landslide thrust are transmitted to the chair-shaped pile due to the soil arch effect in the slope. Under this condition, the structure shows both resistance and retaining effects.
     4. When the rock integrity is better, rock pressure acting on the pile is calculated according to the theoretical calculation method, experience or elastic resistance method. When the rock structural plane is extraverted, the most unfavorable conditions of rock pressure needs to be determined. Soil similar slope can be considered as soil slopes. Active earth pressure on soil slopes is determined by maximum value of the classical earth pressure theory, the soil arch theory or the landslide thrust. Passive earth pressure is determined by minimum value of the classical earth pressure theory and elastic foundation beam method or residual sliding resistance. Because the calculation of the landslide thrust and residual sliding resistance is relatively cumbersome, rock pressure acting on the pile can be determined by the revised earth pressure.
     5. Internal coordination mechanism induces multiple inflection points on the chair-shaped pile, which greatly reduces the structure internal force. Chair-shaped pile failure mode is generally that one of the components generating plastic hinges which results in losing of structure's normal function. But chair-shaped pile-sheet retaining wall won't occur capsizing failure under excessively large loads.
     6. When deputy pile is arranged on the main pile side, it can effectively reduce the internal force of chair-shaped pile, and converse compressive and tensile property of pile. It can be effectively guaranteed that the self-regulatory role of chair-shaped pile's load by controlling stiffness ratio of pile and beam among1to3. The chair-shaped pile's vertical pile spacing is general3to5times of the pile diameter or width, or5m to8m, the lateral pile spacing is general2.5to4times of the pile diameter or width, and the value of optimal cantilever coefficient of main pile is0.4to0.6.
     7. The chair-shaped pile is simplified as a vertical and lateral jointly stressed planar-structure without considering the structure deformation in the process of structural design calculation. According to the constraint conditions between pile top and pile bottom as well as the internal force and continuous deformation conditions among each members and the typical internal segments, the mechanics and deformation of the structure are calculated by using elastic foundation beam method or displacement method in structural mechanics, and the applicability of different calculation methods is put forward.
引文
[1]TB10025-2006铁路路基支挡结构设计规范[S].北京:中国铁道出版社,2006年.
    [2]郝瀛.铁道工程[M].北京:中国铁道出版社,2005.
    [3]洪海春,徐卫亚.全长粘结式预应力锚索锈胀开裂时服务年限研究[J].岩土力学,2008,29(4):949-953.
    [4]罗卫华.山区高速公路陡坡上路基稳定性分析方法与治理对策[J].中南公路工程,2005,30(2):40-44.
    [5]龚玉华,曾耀.山区陡坡高填方路堤稳定性分析及处治措施研究[J].公路交通科技,2011,(11):135-139.
    [6]杨成忠.陡坡上高填石路堤稳定性和沉降预测理论及应用研究[D].南京:南京林业大学,2008.
    [7]YOU C., ZHAO C., ZHANG H., and LIU H.Construction ProcessResearch on Railway Subgrade over Slope Weak Ground[J]. Chinese Journal of Geotechnical Engineering,2002,24(4),503-508.
    [8]郑治,曾忠.西部地区高填方路堤沉降病害调查与分析[J].公路交通科技,2005,22(9):107-110.
    [9]Yanjun Qiu, Bo Lan, Zhenhui Hua, et. Deformation and Design Consideration ofHighway subgrades in Cut-fill Transitions and Sections[A]. Fourth Asian Young Geotechnical Engineers Conference,2001:143-148.
    [10]CHOI, Eddie Sing CHUEN. Evaluation of Embankment Failure at Canadian Pacific Railway Mile 34.1[D]. Canada: University of Calgary.
    [11]高力侠.山区高速公路差异沉降控制技术研究[D].西安:长安大学,2007.
    [1 2]张波,高曙光.桩板墙在软基陡坡高路堤支挡中的应用[J].公路,2008,(3):32-37.
    [13]牟顺,王亮,马保成.山区公路路基沉陷风险识别方法研究[J].路基工程,2011,(1):54-56.
    [14]Yanjun QIU, Yongxing Wei, Qiang LUO. Highway Embankments Over Slope Ground and Influence on Pavement Responses[A].2007 International Conference on Transportation Engineering, ASCE,2007:1615-1620.
    [15]苏谦,刘昌清,李安洪,罗照新.郑西客专深厚湿陷黄土地基DDC桩法分析及沉降计算研究[J].铁道标准设计,2006,(5):23-25.
    [16]JIANG X., Wei Y., and QIU Y. Numerical simulation of subgrade embankment on slope weak ground[J]. Journal of Traffic and TransportationEngineering,2002,2(3),41-46.
    [17]Hans Bachmann, Winfried mohr, Fhmartin Kowalski. The Rheda2000 Ballastless Track System[J]. European Railway Review,2003, (1):44-50.
    [18]苏谦,钟彪,王迅,黄俊杰,白皓.青藏铁路多年冻土斜坡路基失稳变形特性研究[J].中南大学学报,2010,41(5):1938-1944.
    [19]姚裕春,苏谦等.陡坡路基无砟轨道构造[P].中国专利:201120074418.9,2011-10-5.
    [20]黄俊杰,苏谦,钟彪,白皓等.多年冻土斜坡路基失稳变形影响因素及特征研究[J].岩土力学,2009,28(7):19-24.
    [21]朱莹等.埋入式连续桩板路基结构试验研究总报告[R].西安:中铁第一勘察设计院集团有限公司,2009.
    [22]R. F. Woldringh, B. M. New. Embankment design for high speed trains on soft soils conception de remblais sur sols meubles pour les chem ins de fer a grande vitesse[J]. Geotechnical Engineering for Transportation Infrastructure, 1999.
    [23]王忠文,徐鹤寿.德国纽伦堡一英格尔施塔特新建线的无碴轨道[J].中国铁路,2006,(6):21-24.
    [24]Wolfgang Fruhauf, Mathias Scholz, Hermann Stoiberer.困难地基路段的无碴轨道工程[J].铁路技术评论(中文版), 2005,11(1):61-66.
    [25]TB10001-2005.铁路路基设计规范[S].北京:中国铁道出版社,2005年.
    [26]JTG D30-2004.公路路基设计规范[S].北京:人民交通出版社,2004年.
    [27]TB10035-2006.铁路特殊路基设计规范[S].北京:中国铁道出版社,2006年.
    [28]李海光.新型支挡结构设计与工程实例(第二版)[M].北京:人民交通出版社,2011.
    [29]詹永祥,蒋关鲁,牛国辉,郭建湖.武广高边坡陡坡地段桩板结构路基的设计理论探讨[J].铁道工程学报,2007,(增刊):94-96.
    [30]krebs und kiefer. New Nuremberg-Ingolstadt High-Speed Railway Line Northern section:Slope stabilization at Auer Berg[OL].[2006]. http://www.kuk.de.
    [31]巨能攀,黄润秋,涂国祥.桩板墙桩土作用机理有限元分析[J].成都理工大学学报(自然科学版).2006,33(4):365-370.
    [32]白皓,苏谦,郑键斌等.岩质陡坡椅型桩板结构路基设计计算力法与分析[J].铁道建筑,2013,(1):56-58.
    [33]马青力.h型桩板墙桩土相互作用数值分析[D].成都:成都理工大学.2006.
    [34]姚裕春.李安洪,魏永幸.高速铁路陡坡路基组合结构构造[P].中国专利:201110252094.8,2012-03-21.
    [35]闵顺南,徐凤鹤.椅式桩墙的研究[J].铁道学报,1981,3(4):64-74.
    [36]田义斌,厚行霞.某滑坡治理中桩板墙失效原因的分析与探讨[J].路基工程,2007,(2):161-162.
    [37]张燕.斜插式桩板墙在边坡支护中的运用[D].重庆:重庆交通大学.2008.
    [38]邵启豪.h型桩板式挡土墙设计回顾[J].路基工程,995.(5):28-30.
    [39]赵海玲.h形抗滑桩变形性状的研究[D].成都:四川大学,2005.
    [40]肖世国.边(滑)坡治理中h型组合抗滑桩的[J].岩土力学.2010.31(7):2146-2052.
    [41]闵顺南,徐凤鹤,袁建国.施溶溪滑坡整治[A].主编.中国典型滑坡[C].北京:科学出版社,1986:342-247.
    [42]蒋楚生.椅式抗滑桩的内力计算[J].路基工程,2004,(1):57-59.
    [43]罗强.公路抗滑桩的类型及应用[J].公路,2001,(8):113-114.
    [44]王崇艳.组合式抗滑挡土墙设计探讨[J].有色金属设计,2003,30(3):33-35.
    [45]杨贵灏.组合式抗滑挡土墙设计探讨[J].山西建筑,2006,32(20):123-125.
    [46]李志勇,邓宗伟.预应力锚索桩板墙动态响应规律研究[J].岩土力学,2010,31(2):645-648.
    [47]郭景堂.预应力锚索桩板墙在软基陡坡高填路堤支挡中的应用[J].林业建设,2010,(4):10-13.
    [48]Jakob Likar, Vladimir Vukadin. Time-Dependent Back Analysis of a Multianchored Pile Retaining Wall[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003, (129):91-95.
    [49]王浩芬,罗梅.确定单.锚板桩墙入土深度的概率极限状态设计法[J].水运工程,1999,(1):52-56.
    [50]卢继明.锚锭式双排桩治理滑坡的设计与应用[J].铁道建筑技术,2004,(3):42-44.
    [51]Jakob Likar. Vladimir Vukadin. Time-Dependent Back Analysis of a Multianchored Pile Retaining Wall[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003, (129):91-95.
    [52]何昌荣,李彤,富海鹰.新型预应力锚拉式桩板墙的弹性约束地基系数法[J].岩石力学与工程学报,2003,22(7):1196-1202.
    [53]富海鹰,何昌荣.新型预应力锚拉式桩板墙的原位观测分析[J].岩上工程学报,2005,27(9):1050-1054.
    [54]Xanthakos P P. Ground anchors and anchored structures[M]. New York,1991:686.
    [55]Dan Thome T R J W.'O'Street Anchored Precast Lagging and Soldier Pile Retaining Wall[C]. Dayton, Ohio:2001.
    [56]李中国,赵有明.徐玉胜.一种新型桩板式挡土墙[P].中国专利:200920133801.X,2010-12-22.
    [57]张玉芳,杨延,房锐.高轻型支挡技术及应用[M].北京:科学出版社,2010:178-212,255-270.
    [58]陈华,赵有明,张发春.预应力锚索桩板墙工程病害分析及整治措施[J].重庆交通大学学报(自然科学版).2010,29(1):11·15.
    [59]和昆.元磨高速公路锚索桩板墙的破坏原因及加固[J].路基工程.2009,(4):214-216.
    [60]李中国.基于结构-土相互作用的高填力锚索桩板墙设计理论的研究[D].北京:中国铁道科学研究院,2010.
    [61]廖知勇.预应力锚索桩锚索拉力研究[D].成都:西南交通大学,2008.
    [62]Stillborg B. Experimental investigation of steel cables for rock reinforcement in hard rock [D]. Sweden:Lulea University of Technology,1984.
    [63]Yoshinaka R. Evaluation of bolt reinforcement in discontinuous rocks[A]. In:Proc. Of IRSM 8th Congress on Rock Mech.[C]. [s.l.]:[s.n.].1995.249-252.
    [64]Jarred D J J. Haberfield C M. Tenden/grout Interface in grouted anchors [A]. In:Grouted Anchorages and Anchored Structures[C]. London:Thomas Telford,1997.
    [65]Aydan O. Shear reinforcement effect of rock bolts in discontinuous rock masser[A]. In:Rock Support in Mining and Underground Construction[C]. Rotterdam:A. A. Balkeman,1992,480-490.
    [66]Grady P. Cable Bolting in Australian Coal Mines-Current Practice and Design Consideration[M]. Sydney:The Min. Engineer,1994,63-71.
    [67]Ferrero A M. The shear strength of reinforced rock joints[J]. Int. J. Rock Mech. Min.& Geo. Abstr..1995,32(6): 590-600.
    [68]葛修润.刘建武.加锚节理而抗剪性能研究[J].岩土工程学报,1988,,10(1):8-19.
    [69]温进涛.裂隙岩体能量分析损伤本构模型及其强变研究[D].武汉:中国科学院武汉岩土力学研究所,2002.
    [70]朱维中,陈卫忠,李术才.双轴压缩作用下雁型裂纹扩展机理及岩体加锚增韧的模型实验研究[R].中国科学院武汉岩土力学研究所科研报告,1995.
    [71]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339-341.
    [72]顾金才,明治清.沈俊等.预预应力锚索内锚固段受力特点现场试验研究[J].岩石力学与工程学报,1998.17(增):778-792.
    [73]杨松林,徐卫业,黄启平.节理剪切过程中锚杆的变形分析[J].岩石力学与工程学报,2004,23(19):3268-3273.
    [74]LI C,Stillborg B. Analytical models for rock bolts [J]. Int. J. Rock Mech. Sci. and Geomech. Abstr.,1999,36(8): 1013-1029.
    [75]连传杰,韦立德,王阁.高预应力让压锚杆数值模拟方法研究[J].岩土工程学报,2008,30(10):1437-1443.
    [76]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,,19(3):342-345.
    [77]Brows B.B.著,西南交通大学隧道及地下铁道专业情报组译.侧向受力桩的技术现状.抗滑桩译文选[M].成都:铁道部第二堪察设计院科研所,1977.
    [78]Baguelin F, Frank R, Said Y H著,汪锡民译.关于桩侧向反力机理的理论研究.抗滑桩译文选第八辑[M].成都:铁道部第二堪察设计院研究所,1979.
    [79]顾晓鲁,浅鸿绪,刘惠珊等.地基与基础(第三版)[M].北京:中国建筑工业出版社,2003.
    [80]Duncan.J.M. Analysis of soil movement around a deep excavation[J]..Journal, of soil Mech And Found. ASCE,1970,96(5)
    [81]闵顺南,徐凤鹤.椅式桩墙的研究[J].铁道学报,1981,3(4):64-74.
    [82]闵顺南.徐凤鹤.施溶溪椅式抗滑桩墙的研究[C].滑坡文集(第三集).北京:中国铁道出版社,1982.:143-151.
    [83]高同阶,吴道忠等.排架抗滑桩设计总结[C].滑坡文集(第三集).中国铁道出版社,1982.
    [84]王金生.罗依溪滑坡抗滑刚架桩的设计与施工[J].[J].路基工程,1985,(4):67-71.
    [85]徐凤鹤.王金生.罗依溪抗滑刚架桩的设计与施工[C].滑坡文集(第六集).北京:中国铁道出版社,1988:1-10.
    [86]徐良德,项瑛,尹道成,等.排架桩与双排单校对比模型试验,滑坡文集(第六集),北京:中国铁道出版社,1984:78-83.
    [87]何颐华,杨斌,金宝森,等.双排护坡桩试验与计算的研究[J].建筑结构学报,1996,17(2):58-66.
    [88]李永盛.上海博物馆基坑围护结构的受力与变形[J].岩土工程学报,1996,18(3):55-61.
    [89]蔡袁强,王立忠,陈云敏等.软土地基深基坑开挖中双排桩式围护结构应用实录[J].建筑结构学报,1997,18(4):70-76.
    [90]王伟,于志军,朱敬锋.双排桩支护技术在深基坑工程中的应用[J].青岛理工大学学报,2008,29(6):26-29.
    [91]林鹏,王艳峰,范志雄,黄涤宇.双排桩支护结构在软土基坑工程中的应用分析[J].岩上工程学报,2010,,32(增2):331-334.
    [92]郑陈旻,王曾辉,章昕,罗贞海.双排桩支护在福建沿海软上深基坑工程中的经济性分析[J].岩土工程学报,2010,.32(增1):317-320.
    [93]王跃.双排桩筑坝围堰在高速铁路阳澄湖水域施工中的应用[J].工程建设,2010,42(2):40-44.
    [94]张玉成,杨光华,姜燕,等.软土地区双排钢板桩围堰支护结构的应用及探讨[J].岩土工程学报.2012,34(增):659-6665.
    [95]左恒忠.庄海华,玉小冰.采用双排桩治理滑坡体的方法和效果[J].建筑技术,,2011,42(3):259-261.
    [96]亢会明,马骥,刘涛.框架式抗滑桩在井场滑坡治理中的应用[J].石油工程建设,2004,30(6):36-39.
    [97]柴贺军,王羽,唐胜传等.h型桩墙组合抗滑支挡装置[P].中国专利:201220034739.0.2012-9-5.
    [98]张泽坤.h型抗滑桩的优先元分析[D].成都:西南交通大学,2008.
    [99]喻邦江,舒海明,鄢霞.h型组合抗滑桩在王家寨滑坡治理中的应用[A].全国工程地质学术年会论文集[C]2011.
    [100]周应华.门架式双排桩受力位移特性分析[J].铁道工程学报,.2009,,(6):30-33.
    [101]田学运.门架式双排桩在阿尔及利业东西高速公路边坡整治工程中的应用[J].铁道建筑,2009,(6):66-69.
    [102]陈刚.拱形组合抗滑桩结构分析研究[J].四川建筑科学研究,,2010,36(1):124-147.
    [103]白朝乾,王智猛.薛元等.高悬臂组合式抗滑桩[P].中国专利:201220362925.7.2013-1-23.
    [104]尉学勇,蔡庆娥.刘卫民,夏旺民.抗滑刚架桩挡墙的设计与应用[J].水文地质工程地质.2010.37(4):68-73.
    [105]左恒忠,庄海华,玉小冰.采用双排桩治理滑坡体的方法和效果[J].建筑技术,2011,42(3).259-261.
    [106]欧立新.双排桩加预应力锚杆支护结构在基坑加固中的应用[J].中外建筑.2005,(3),119-120.
    [107]王守山.朱良剑.双排桩+锚村的复合型支护模式在深基坑支护工程中的应用实践[J].岩土工程界.2003,,7(6):64-66.
    [108]胡海军.双排桩-锚杆支护的有限元模拟[J].中国煤炭地质,2011,23(11):49-51.
    [109]吴才德,龚迪快,王洁栋.门架加锚杆符合结构在超大基坑中的应用[J].岩土工程学报,2006,28(12):1781-1785.
    [110]冯进.双排桩复合土钉墙在软土基坑围护中的稳定性分析[J].江苏建筑,2007.(6):26-29.
    [111]王君鹏,杜烨,严平.软土基坑双排桩复合土钉支护有限元分析[J].建筑科学.2007.23(11):17-19.
    [112]张强,梁凤美.双排桩在软土深基坑支护中的应用初探[J].山西建筑,2010,36(13):75-76.
    [113]应宏伟,初振环,李冰河,刘兴旺.双排桩支护结构的工程应用及优化设计[J].建筑技术,2006.37(12):916-919.
    [114]卫建军孙利业.双排桩支护结构的应用研究[J].中国安全生产科学技术.2011.7(7):155-158.
    [115]曾定帮,彭文祥.双排桩与止水帷幕复合支护在基坑围护中的应用[J].岩土工程界,2008,8(6):47-48.
    [116]曾建华.王瑞钢.门架式围护结构在开挖基坑中的应用与研究[J].路基工程,2006.(1):73-75.
    [117]金造时,魏东.双排桩在武汉地区深基坑支护中的应用探讨[J].资源环境与工程,2010,24(2):141-143.
    [118]郭院成,郭桂时,张景伟.双排桩复合重力拱支护体系的工作机理分析[J].郑州大学学报.2011,32(4):1-3.
    [119]大倔晃一等.二重矢板式构造物力学の特性に関すゐ研究[J].日本港湾技术研究所报告,1984..23(1).
    [120]Takemura J. Kondoh, M. Esaki, T. Kouda, M. and Kusakabe, O. Centrifuge Model Tests on Double Propped Wall Excavation in Soft Clay[J]. Soils and Foundations.1999,39(3):75-87.
    [121]菊池喜昭等.固化处理土中诘二重失板护岸构造特性.日本港湾技术研究所报告,第997号.2001
    [122]Ilyas T. Gentrifuge Model Study of Laterally Loaded Pile Groups in Clay[J]. Journal of Geotechnical & Geoenvironment Engineering,2004,30(3),274-283.
    [123]铁道部第二勘测设计院科研所杭滑桩研究组.排架抗滑桩与双排单桩对比模型试验报告[J].路基工程,1986,(1):70-81.
    [124]闵顺南,袁建国.悬臂式刚架抗滑桩研究[J].路基工程,1991.(4):1-5.
    [125]谭永坚,何颐华.粘性土中悬臂双排护坡桩的受力性能研究[J].建筑科学,1993,9(4):28-34.
    [126]张富军.双排桩支护结构研究[D].成都:西南交通大学,2001.
    [127]孙勇.深基坑双排支护桩的受力性能与应用研究[J].建筑科学,2008,24(11):60-65.
    [128]徐源,郑刚,路平.前排桩倾斜的双排桩在水平荷载下的性状研究[J].岩土工程学报,2010,32(增1):93-98.
    [129]肖世国.边(滑)坡治理中h型组合抗滑桩的分析方法及工程应用[J].岩土力学,2010,31(7):2146-2152.
    [130]王羽.h式抗滑桩相似结构模型试验研究[C].第十一次全国岩石力学与工程学术大会论文文摘,2010,34.
    [131]王羽.h型抗滑桩设计计算方法研究[D].成都:成都理工大学,2011:101-141.
    [132]Chung-Jung Lee, Yu-Chen Wei, Huei-Tsyr Chen. Stability analysis of cantilever double soldier-piled walls in sandy soil[J]. Journal of the Chinese Institute of Engineers,2011,34(4):449-465.
    [133]马清文.宋书志.孔纪.双排抗滑桩中单桩侧向承载实验[J].地质灾害与环境保护,2011,22(3):78-83.
    [134]钱同辉,唐辉明,夏文才,张石磊.框架式抗滑桩的模型试验研究[J].华中科技大学学报(自然科学版),2011, 39(12):119-122.
    [135]欧孝夺.唐迎春,崔伟,等.h型抗滑桩模型试验及数值模拟[J].岩石力学与工程学报,2012,31(9):1936-1944.
    [136]周杨.h型抗滑桩在边坡治理中的力学效应研究[D].重庆:重庆大学,2012.11-20.
    [137]Heyman L. Measurement of the influene of lateral earth pressure on pile foundation. Proc.6th ICSMFE.Montreal. 1965.257-260
    [138]Nicu N D, Antes D R, Kessler R S. Field measurements on instrumented piles under an overpass abutment[J]. Highway Research Record.1971,88-92.
    [139]Oteo C S. Discussion to Poulos, JSMFD[J]. ASCE.1974,365-372.
    [140]Stewart D P, Jewell R J, Randolph M F. Design of piled bridge abutments on soft clay for loading fromlateral soil movements[J]. Geotechnique.1994,44(2):176-179.
    [141]Oteo C S. Horizontally loaded piles-deformation influnce[C]. Proc,9th ICSMFE. Tokyo.1997:121-129.
    [142]闵顺南,徐凤鹤,袁建国.施溶溪2号滑坡整治中的椅式桩墙[J].路基工程,987.(3):34-42.
    [143]何颐华.杨斌,金宝深,等.深基坑护坡桩土压力的.工程测试及研究[J].土木工程学报,1997,23(1):16-24.
    [144]刘钊.双排支护桩结构的分析及试验研究[J].岩土程学报,1992,14(5):76-80.
    [145]赵晖,蔡袁强,宣伟丽,徐长节.双排桩丁坝在涌潮作用下的内力测试和分析[J].人民长江,2005,36(2):37-39.
    [146]司马军,傅旭东,刘祖德.典型二元结构地层中双排桩支护结构的现场测试研究[C].第二届全国岩土与工程学术大会论文集(下册),2006.
    [147]聂庆科,胡建敏,吴刚.深基坑双排桩支护结构上的变形和土压力研究[J].岩土力学,2008,29(11):3089-3094.
    [148]郑刚.李欣.刘畅.考虑桩上相互作用的双排桩分析[J].建筑结构学报,2004,25(1):99-106.
    [149]杨靖.考虑尺寸效应的双排桩的有限元分析[D].天津:天津大学,2005.
    [150]应宏伟,初振环.带撑双排桩支护结构性状分析[J].岩土工程学报,2006, 28(增刊):1451-1456.
    [151]潘旭亮,张钦喜,霍达等.双排桩围护结构工作特性数值分析[J].工业建筑,2004,34(9):8-11.
    [152]李立军,梁仁旺.排距对双排桩结构体系性状影响的数值分析[J].太原理工大学学报,2012,43(2):216-218.
    [153]聂庆科,胡建敏,王英辉.深基坑双排桩结构合理支护参数的研究[J].工业建筑,2008,38(增):656-663.
    [154]陆培毅,杨靖.韩丽君.双排桩尺寸效应的有限元分析.天津大学学报.2006.39(8):963-967.
    [155]王旭.晏鄂川.吕美君.埋入式双排桩-土体系桩间内力分配的模拟[J].煤田地质与勘探,2006,34(4):57-60.
    [156]王军,王磊,肖昭然.双排桩支护排距的有限元分析与研究.地下空间与工程学报,2005,1(6):1096-1099.
    [157]刘凌云.门架式水力插板桩抗倾覆抗滑移稳定性研究[D].青岛:中国海洋大学,2005.
    [158]万瑜.排距对双排桩位移及弯矩的影响[J].科学技术与工程,2011,11(30):7544-7546.
    [159]蔡袁强,赵永倩,吴世明等.软土地基深基坑中双排桩式围护结构有限元分析[J].浙江大学学报,1997,31(4):442-448.
    [160]王湛,刘冰花.双排桩计算方法探讨.东北地震研究,2001,17(2):64-68.
    [161]Mana A Ⅰ. Finite element analysis of deep excavation behavior[D].USA, Stanford University,1997.
    [162]邓小鹏,陈征宙,韦杰.深基坑开挖中双排桩支护结构的数值分析与工程应用[J].西安工程学院学报,2002,24(4):42-47.
    [163]罗勇.门架式水力插板桩的有限元分析和优化设计[D].青岛:中国海洋大学,,2003.
    [164]应宏伟,初振环.带撑双排桩支护结构性状分析[J].岩土工程学报,2006,28(增):1450-1454.
    [165]肖昭然,王磊,王军.双排桩等代刚度法的有限元分析[J].河南工业大学学报,2007,28(2):82-84.
    [166]杨德健,王铁成,李新华.双排桩支护结构变形特点与土压力有限元分析[J].华中科技大学学报,2008,25(3):10-12.
    [167]XIAO Shi-guo. Comparison of the Mechanical Characteristics of Double-Row Piles and Door-Type Piles with Medium and Small Row Spacing in a Large-Scale Landslide[C]. ICLEM 2010:Logistics for Sustained Economic Development, ASCE,2010:1855-1861.
    [168]On C Y, Chiou D C, Wu T S. Three-dimesional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering.1996,8(4):337-345.
    [169]Bose S K, Som N N. Parametric study of a braced cut by finite element method [J]. Computer and Geotechnics,1998, 22(2):91-107.
    [170]崔宏环,张立群,赵国景.深基坑开挖中双排桩支护的的三维有限元模拟[J].岩上力学,2006,27(4):662-666.
    [171]梁秋敏.桩土效应下双排桩三维数值模拟及性状研究[D].广州:暨南大学,2007.
    [172]梁秋敏,王志伟.付建军.考虑桩上效应的双排桩三维数值分析[J].嘉应学院学报,2008,26(6):75-79.
    [173]季三荣,郭院成,张建成.双排桩复合连拱支护结构的三维有限元分析[J].河南科技,2009,27(7):846-849.
    [174]杨保全,丘滨.陈先威.双排桩结构特性及桩体位移有限元计算分析[J].长江科学院院报,2009,26(7):52-55.
    [175]张秀成,王义重,傅旭东.深基坑双排桩支护结构三维数值计算与应用[J].武汉大学学报,2010,43(2):227-231.
    [176]朱华,邓成发.门架式双排桩围护结构的三维有限元分析[J].工程勘察,2011.(1):20-24.
    [177]WANGZi-han.ZHOU Jian. Three-dimensional numerical simulation and earth pressure analysis on double-row piles with consideration of spatial effects[J]. Journal of Zhejiang University-SCIENCE A,2011,12(10):758-770.
    [178]钱同辉,陈芳,程周炳.丁红星.框架式双排抗滑桩结构性能研究[J].长江科学院院报,2011,28(11):91-95.
    [179]邵广彪,孙剑平.崔冠科.某永久边坡双排桩支护设计及应用[J].岩土工程学报,2010,32(增1):215-218.
    [180]Duncan,J.MAnalysis of soil movement around a deep excavation[J]. Journal, of soil Mech And Found. ASCE,1970, 96(5).
    [181]Heyman L. Measurement of the influene of lateral earth pressure on pile foundation. Proc.6th ICSMFE.Montreal. 1965,257-260.
    [182]Nicu N D, Antes D R, Kessler R S. Field measurements on instrumented piles under an overpass abutment[J]. Highway Research Record.1971,88-92.
    [183]Stewart D P. Jewell R J, Randolph M F. Design of piled bridge abutments on soft clay for loading fromlateral soil movements [J]. Geotechnique.1994,44(2):176-179.
    [184]Oteo C S. Horizontally loaded piles-deformation influnce[C]. Proc,9th ICSMFE. Tokyo.1997:121-129.
    [185]张弥.深基坑开挖中双排桩支护结构的应用与探讨[J].地基处理,1993,4(3):42-47.
    [186]黄强.深基坑支护上程设计技术[M].北京:中国建筑工业出版社.1995.
    [187]程知言,裘慰,张可能.双排桩支护结构设计计算方法探计[J].地质与勘探,2001,(2):88-90.
    [188]熊巨华.一类双排桩支护结构的简化计算方法[J].勘察科学技术,999.(2):32-34.
    [189]余志成,施文华,深基坑支护设计与施工[M],北京:中国建筑工业出版社,1997.
    [190]胡敏云,夏永承等,桩排式支护护壁桩侧土压力计算原理[J],岩石力学与工程学报.2000(3),376-379
    [191]胡敏云,夏永承等,无锚撑桩排式支护护壁桩侧土压力计算方法[J],岩石力学与上程学报.2000(4):517-521
    [192]万智,王贻荪,李刚.双排桩支护结构的分析与计算[J].湖南大学学报,2001,28(3):116-120.
    [193]戴智敏,阳凯凯.深基坑双排桩支护结构体系受力分析与计算[J].信阳师范学院学报,2002,(3):348-351.
    [194]徐凤鹤.弹性地基中的刚架分析[J].土木工程学报.1987,20(1):76-84.
    [195]刘钊.双排支护桩结构的分析及试验研究[J].岩土工程学报,1992,14(5):76-80.
    [196]曹俊坚,平扬,朱长歧等.考虑圈梁空间作用的深基坑双排桩支护计算力法研究[J].岩石力学与工程学报,1999,18(6):709-712.
    [197]平扬,白世伟,曹俊坚.深基双排桩空间协同计算理论及位移反分析[J].土木工程学报,2001,34(2):79-84.
    [198]郑刚,李欣,刘畅.考虑桩土相互作用的双排桩分析[J].建筑结构学报,2004,25(1):99-106.
    [199]周翠英,刘祚秋,尚伟等.门架式双排抗滑桩设计计算新模式[J].岩土力学,2005,26(3):441-444.
    [200]顾问天,赵有明,刘国楠.反力弹簧法解双排桩结构内力[J].中国铁道科学,2007,28(6):12-18.
    [201]应宏伟,初振环,李冰河.双排桩支护结构的计算方法研究及工程应用[J].岩土力学,2007,28(6):1145-1150.
    [202]吴刚,白冰,聂庆科.深基坑双排桩支护结构设计计算方法研究[J].岩土力学,2008,29(10):2753-2758.
    [203]白冰,聂庆科,吴刚等.考虑空间效应的深基坑双排桩支护结构计算模型[J].建筑结构学报,2010,31(8):118-124.
    [204]刘泉声,付建军.考虑桩上效应的双排桩模型及参数研究[J].岩土力学,2011.32(2):481-487.
    [205]姜龙.京沪高速铁路凤阳段桩板复合地基沉降时效特性研究[D].北京:北京交通大学,2009.
    [206]王唤龙.微型桩组合抗滑结构受力机理与防腐性研究[D].成都:西南交通大学,2011.
    [207]陈仲颐,周景旱,王洪瑾.土力学[M].清华大学出版社,2009.
    [208]Pieter A. Vermeer, Ankana Punlor, Nico Ruse, etal. Arching effects behind a soldier pile wall[J]. Computers and Geotechnics.2001,28:379-396.
    [209]蒋楚生.路堤(肩)式预应力锚索桩板墙结构设计理论及工程应用研究[D].成都:西南交通大学,2006.
    [210]叶晓明.柱板结构挡土墙上的土压力计算方法[J].地下空间,1999,19(2):142-146.
    [211]张孟喜.熊正洪.陈炽昭.挡墙土压力理论新探[J].工程力学,1992,9(4):131-139.
    [212]Hewlett W J, Randolph M F, Aust M I E. Analysis of piled embankments [J]. Ground Engineering,1988. Vol.21.
    [213]Kempfert H-G, Stadel M, Zaeske D. Berechnung von geokunststoffbewehrten Tragschichten uber Pfahlelementen[J]. Bautechnik 74, Heft 12,1997.
    [214]郑颖人,方玉树.《建筑边坡上程技术规范》中有关侧向岩石压力计算的思路[J].岩土工程界,2002,5(12):13-15.
    [215]中华人民共和国国家标准.建筑边坡工程技术规范(GB50330-2002).北京:中国建筑工业出版社,2002.
    [216]胡启军.长大顺层边坡渐进失稳机理及首段滑移长度确定的研究[D].成都:西南交通大学,2008.
    [217]苏军,杨小聪.基于斯宾塞法假设的临界滑动场法的实现及应用[J].矿冶,2004,13(1):21-25.
    [218]肖拯民.用摩根斯坦-普赖斯法分析滑坡体的稳定性[J].工程勘察,1989,,(1):16-20.
    [219]郑颖人,时卫民,杨明成.不平衡推力法与Sarma法的讨论[J].岩石力学与工程学报,2004,23(17):3030-3036.
    [220]中华人民共和国国家标准.建筑地基基础设计规范(GB50007-2002).北京:中国建筑工业出版社,2002.
    [221]林峰,黄润秋.关于滑坡推力计算方法的合理性及改进方法的探讨[J].山地学报,2000,18(增):69-72.
    [222]郑颖人,赵尚毅.用有限元强度折减法求边(滑)坡支挡结构的内力[J].岩石力学与工程学报,2004.23(20):3552-3558.
    [223]孙勇.滑坡而下双排抗滑结构的计算方法研究[J].岩土力学,2009,30(10):2971-2978.
    [224]欧明喜.h型抗滑桩力学机理及其工程应用研究[D].重庆:重庆大学.2012.
    [225]李群,董志勇,余祥宏,曾超.陡坡路基桩板墙有效锚固深度计算[A].中国交通建设股份有限公司.2010年现场技术交流会论文集[C].出版地:出版者,2010:450-453.
    [226]陈立新,王士川.抗滑桩的弹塑性理论分析[J].工业建筑,1997,27(7):28-33.
    [227]王士川,陈立新,张进.抗滑桩的弹塑性理论分析(Ⅱ)[J].西安建筑科技大学学报,1997,12(4):426-429.
    [228]陈立新,王士川.抗滑桩的弹塑性理论分析[J].工业建筑,1997,27(7):28-33.
    [229]周春梅.殷坤龙.简文星.滑动而倾斜时抗滑桩弹塑性区临界高度的计算[J].岩土力学,2008,,29(7):1949-1954.
    [230]Tomio Ito, Tamotsu Matsui, Won Pyo Hong. Design Method for Stabilizing Piles Against Landslide-One Row of Piles[J]. Soils and Foundations.1981,21(1):21-37.
    [231]Hassiotis S, Chameau J L, Gunaratne M. Design Method for Stabilization of Slopes with Piles[J]. Journal of Geotechnical and Geoenvironmental Engneering.1997,123(4):314-322.
    [232]王恭先.抗滑支挡建筑物的发展动向[C]//滑坡文集编委会编.滑坡文集(第十三集).北京:中国铁道出版社,1998.
    [233]铁道部第二勘测设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983.
    [234]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报.2002,21(4):517-521.
    [235]刘建华,赵明华,杨明辉.高陡岩质边坡上桥梁基桩模型试验研究[J].岩土工程学报,2009,31(3):372-377.
    [236]陈祖煜,迟鸣,孙平,王玉杰.计算柔性支挡结构主动土压力的简化方法[J].岩土工程学报,2010,32(增1):22-27.
    [237]刘永春.衡重式桩板挡墙的模型试验研究[D].北京:中国铁道科学研究院,2010.
    [238]刘洪佳,门玉明,李寻昌,张涛.悬臂式抗滑桩模型试验研究[J].岩上力学,2012,33(10):2960-2966.
    [239]SuQian, LiXing, BaiHao. Dynamic response of pile-board subgrade based on large scale model test [J]. Applied Mechanics and Materials,2011,(71-78):383-387.
    [240]苏谦,罗照新,王迅.高速铁路路基非埋式桩板结构理论与实践[M].北京:中国铁道出版社.2011.
    [241]赵明华.桥梁桩基计算与检测[M].北京:人民交通出版社,2000.
    [242]韩理安.水平承载桩的计算[M].长沙:中南大学出版社,74-75.
    [243]王士川,陈立新.抗滑桩间距的下限解[J].工业建筑,1997,27(10):32-36.
    [244]王成华,陈永波,林立相.抗滑桩间土拱特性及最大桩间距分析[J].山地学报,2001,19(6):556-559.
    [245]常保平.抗滑桩的桩间土拱和临界间距问题探讨[A].滑坡文集(第十三集)[C].北京:中国铁道出版社,1998:73-78.
    [246]胡敏云.深基坑护壁桩间距确定方法探讨[J].中国公路学报,2001,14(2):27-29.
    [247]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [248]Ausilio E., Conte E., Dente G.. Stability Analysis of Slopes Reinforced with Piles[J], Computers and Geotechnics,2001,28:591-611.
    [249]Chen C. Y., Martin G. R.. Soil-structure Interaction for Landslide Stabilizing Piles[J]. Computers and Geotechnics, 2002,29:363-386.
    [250]王乾坤.抗滑桩的桩间土拱和临界间距的探讨[J].武汉理工大学学报,2005,27(8):64-67.
    [251]周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [252]刘小丽.新型桩锚结构设计计算理论研究[D].成都:西南交通大学博士论文,2002.
    [253]沈珠江.桩的抗滑阻力和抗滑桩的极限设计[J].岩土工程学报,1992,14(1):51-56.
    [254]徐挺.相似理论与模型试验.北京:中国农业机械出版社,1982.’
    [255]江守一郎等.模型实验理论和应用.北京:科学出版社,1984.
    [256]Glenn Murphy. Similitude in Engineering. New York:The Ronald Press Company,1950,1-3.
    [257]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [258]IAI S. Similitude for Shaking Table Test on Soil-Structure-Fluid Model in 1-g Gravitational Field[J]. Soils and Foundations,1989,29(1):105-118.
    [259]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学,1997.
    [260]刘建航,侯学渊.基坑工程手册.北京:中国建筑出版社,1994.
    [261]夏明耀,曾进伦.地下工程设计施工手册.北京:中国建筑出版社,1999.
    [262]朱琴芬.水平力作用下由实测钢筋应力推算桩截面弯矩[J].工业建筑,1985,(10):46-50.
    [263]刘国彬,王印昌.实测钢筋计应力推算地下连续墙弯矩方法探讨[J].地下工程与隧道,2003,(1):6-12.
    [264]车宏亚,江见鲸等.混凝土结构.北京:中国建筑出版社,1998.
    [265]刘宝有.国内外土压力传感器的研制概况[J].传感器技术,1988,(6):11-13.
    [266]刘宝有.土压力传感器国外理论和实验研究概况[J].传感器技术,1988,(2):48-56.
    [267]张胜利.土压力传感器与土介质相互作用特性分析[D].成都:西南交通大学,2010.
    [268]刘宝有.电阻应变式土压力传感器土中标定的试验研究[J].传感器技术,1984(4):6-1.
    [269]董世田.振弦式土压力传感器试制报告[J].传感器技术,1982,(4):26-31.
    [270]冯勇建,卓勇,许金海.新型电容式微型压力传感器[J].仪表技术与传感器,2000,(6):11-13.
    [271]曾辉,李欢秋.压电式结构表而压力传感器匹配问题理论与试验研究[J].防护工程,1996,(3):22-41.
    [272]李文阳,潘春娟,刘洪佳.土压力盒在混凝土结构模型试验中的应用[J].山西建筑,2007,33(32):83-84.
    [273]Otsuka Natsuhiko, Kohama Eiji, et al. The size effects of earth pressure cells on measurement in granular mate-rials[J]. Soils and Foundations,2003,5(43):133-147.
    [274]白皓,杨波.应变式油压土压力盒[P].中国专利:201220194947.7,2012-12-12.
    [275]曾辉.岩土应力传感器设计和使用原则[J].岩土工程学报,1994,16(1):48-56.
    [276]曾辉,余尚江.岩土压力传感器匹配误差的计算[J].岩土力学,2001,22(1):99-105.
    [277]曾辉,余尚江,陈佳妍.岩土压力传感器静匹配问题的研究进展[J].岩土力学,2005,26(7):1173-1176.
    [278]第二冶金建设公司建筑研究所技术情报室.国外静土压力盒理论与实验研究综述.1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700