用户名: 密码: 验证码:
软弱围岩隧道变形特征与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软弱围岩隧道的稳定性及变形控制一直是界内关注的焦点之一,而软弱围岩隧道工程的设计理念、稳定性判别方法和变形控制技术又是控制隧道施工安全、施工造价以及施工周期的决定因素。经过了多年来隧道界的共同努力,虽然在某些方面取得了长足发展,但还远未形成一个成熟的理论体系。本文在借鉴和传承国内外现有理论研究成果的基础上,根据我国铁路隧道施工分部开挖的特点,针对软弱围岩山岭隧道,采用数值模拟和典型工程现场试验的方法,在施工变形特征、施工过程稳定性判别以及变形控制技术等方面进行了系统研究,并形成以下主要成果:
     (1)软弱围岩隧道空间变形一般均包括三个部分,即掌子面前方的先行变形、掌子面变形和后方收敛变形。先行变形影响范围约为掌子面前方1.5D以内;对于软弱围岩隧道,掌子面前方先行变形中,拱顶下沉较水平收敛更加明显。
     (2)软弱围岩隧道,围岩掌子面挤出变形、上台阶拱脚沉降变形均相对显著。隧道开挖后铁路单线隧道以收敛变形为主,铁路双线隧道拱顶沉降变形亦相对显著。
     (3)软弱围岩隧道产生较大变形的根本原因在于围岩软弱和地应力值相对较大,施工过程中洞周围岩塑性区分布范围和深度大,隧道变形的主方位一般为塑性区主发展方位。
     (4)定义了软弱围岩隧道体系的极限状态。软弱围岩隧道稳定可定义为:施工中围岩不发生坍塌,洞周位移协调发展且收敛,支护结构不产生影响承载能力的开裂和破损。当围岩和支护系统一起,或其一部分达到上述临界状态为隧道的稳定性极限状态。
     (5)将突变理论引用到隧道,形成了基于塑性应变突变理论的围岩稳定性分析方法,并确定了未支护隧道的极限位移。
     (6)根据钢架和混凝土喷层不同的材料特性和支护作用效果,研究中考虑了二者的不同作用时机,并在支护结构极限状态定义的基础上,确定了不同围岩级别、不同埋深下的支护后隧道体系相应的极限位移。
     (7)采用面内非线性屈曲模型,对支护结构的承载极限和失稳模式进行了分析研究。分析结果显示,锚杆抗力在20~100MPa/m之间时,支护结构的承载能力为0.5~1.0MPa,说明在深埋软弱围岩隧道条件下,支护结构发生整体压溃的可能性很大。同时,支护结构在发生整体失稳时,一般变形是不协调的,这一点也符合工程实际情况。
     (8)在数值分析和现场试验的基础上,形成了软弱围岩隧道变形控制技术体系。具体包括:开挖技术、支护技术、掌子面稳定技术、拱脚稳定技术、支护补强技术、超前支护技术以及空间变形监测及反馈技术等。
     (9)根据软弱围岩隧道施工过程中各工况下隧道变形的计算统计结果、典型隧道现场测试统计结果以及计算极限位移和支护结构承载能力等,同时借鉴了相关工程的成功经验,提出了软弱围岩隧道变形控制基准。
     (10)综合前述研究成果,并借鉴国内外相关工程经验,针对不同工况提出了软弱围岩施工变形控制措施方案,并将研究成果应用于依托工程,在实际过程应用中效果良好。
The problem of stability and deformation control for weak rock tunnel is one of the focus in the tunnel field. During the constructing, the design concept, the stability analysis method and deformation control technology are usually becoming control factors, which affect the safety of tunnel construction, construction cost and construction period in finally. In the past years, by the means of collaboration, many hard works had been done, and a considerable progress has been made in some areas, but it is still far away from forming a mature theory system in soft weak surrounding rock tunnel. In this paper, based on the domestic and foreign existing research results, and considering of the actual situation of the partial excavation during the constructing of railway tunnel in China, a systematic research was carried out, including of the deformation characteristics, stability identification and deformation control technology during excavation of soft weak surrounding tunnel. By the means of numerical simulation and field test in typical engineering, the following results were put forword:
     (1)The tunnelling deformation consists of the prior deformation before excavation, the deformation of woring face and the later deformation after excavation. The range of prior deformation before excavation is within1.5D ahead working face. For the prior deformation of weak rock tunnel, the crown settlement more obvious than horizontal convergence.
     (2)For the soft weak surrounding rock tunnels, the displacements such as the squeezing deformation of working face and the arch springing settlement afer excavation are obvious. After the excavation, the main directional displacement is horizontal convergence for single track railway tunnel, and crown settlement for double-track tunnel.
     (3)The essential reason of large deformation in weak rock tunnel is the weak of surrounding rock and high of in-situ stress value, the plastic zone distribute range and depth of surrounding rock around the tunnel is relatively large during construction process, and the main directional displacement is along with the main development orientation of plastic zone in generally.
     (4)The limit state of tunnel system was defined. The tunnel stability of soft weak surrounding rock was defined that the surrounding rock during the construction does not collapse, the tunnel displacement harmonious develops and converges, supporting structure does not appear the cracking and breakage of affecting the bearing capacity. When the surrounding rock and supporting system get together, or part of it be to the limit state above, the state is looked as the stability limit state of the tunnel.
     (5)Introduced the catastrophe theory into the tunnel engineering, and an analysis method of surrounding rock stability was put forword, basing on catastrophe theory by plastic strain. At the same time, the corresponding limit displacement is obtained.
     (6)Based on the different material properties and support effects of the spray concrete and steel frame, two different action time were considered. Acorrding to the definition of the limit state of supporting structure, the corresponding limit displacement of supported tunnel for different surrounding rocks, different buried depth is obtained.
     (7)A nonlinear buckling model was applied to analyze limit load and unstable mode of supporting structure. The result shows that the limit load of supporting structure are within1.0MPa, when the reaction coefficient of bolts are between20-100MPa/m. It reveals that in the condition of high ground stress, it is likely that the supporting structure take place the whole crushing damage. At the same time, when the supporting structure is in instability, its deformation is discordant development. This is mached with actual project.
     (8)Combined with numerical analysis and field test results, the deformation control technology system of soft weak surrounding rock tunnel was proposed, which Including excavation control techninology, supporting control techninology, control techninology of working face and arch springing stability, supporting reinforcement technology, advance support technology and space deformation monitoring and feedback technology, and so on.
     (9)According to the statistical results of numerical analysis and field test, the calculating ultimate displacement, the limit load of supporting structure during the construction process, as well as referencing the successful experience of related projects, the deformation-control standard for was proposed.
     (10)Based on the all research results above, and drawing lessons from related engineering experience of domestic and foreign, different deformation controlled measures of soft weak surounding rock tunnel was proposed, for different conditions. And the research results are applied in the related projects and the operation performance were excellent.
引文
[1]铁道第一勘察设计院,石家庄铁道学院,兰州交通大学等.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究[R].兰州:铁道第一勘察设计院,2004.
    [2]Franclss. F. O. Weak Rock Tunneling[M]. A. A. Balkema Press,1997.
    [3]Kidybinski. Strata Control in Deep Mines[M]. A. A. Balkema Press,1997.
    [4]李斌,漆泰岳,高波等.新意法(岩土控制变形工法)概述[J].公路隧道,2009,66(2):1-4.
    [5]翟进营,杨会军,王莉莉.新意法隧道设计施工概述[J].隧道建设,2008,28(1):46-50.
    [6]Pietro Lunardi. The Design and Construction of Tunnels Using the Approach Based on the Analysis of Controlled Deformation in Rocks and Soils[J]. Tunnels & Tunneling International ADECO-RS Approach,2000, (5):3-30.
    [7]Lunardi Pietro. Design and Construction of Tunnels ADECO-RS Approach[J]. Tunnels & Tunnelling International special supplement,2000, (5).
    [8]P. Lunardi, R. Bindi. The Evolution of Reinforcement of the Advance Core Using Fibre Glass Elements for Short and Longterm Stability of Tunnels under Difficult Stress-Strain Conditions:Design, Technologies and Operating Methods [C]. Progress in Tunnelling after 2000:Proceedings of theAITES-ITA 2001 World Tunnel Congress Milan-Italy 10th-13th June 2001. Volume Ⅱ. Bologna:PATRON EDITORE,2001: 309-322.
    [9]P. Lunardi. The ADECO-RS Approach in The Design and Construction of the Rome to Naples High Speed Railway Line:A Comparison between Final Design Specifications, Construction Design and "As-Built" [C]. Progress in Tunnelling after 2000: Proceedings of the AITES-ITA 2001 World Tunnel Congress Milan-Italy 10th-13th June 2001. Vol-umeⅢ. Bologna:PATRON EDITORE,2001:329-340.
    [10]P. Lunardi, C. Silva, A. Focracci. The Bologna to Florence High Speed Railway Line: 92km through the Appennines[C]. Progress in Tunnelling after 2000:Proceedings of the AITES-ITA 2001 World Tunnel Congress Milan-Italy 10th-13th June 2001, VolumeⅢ. Bologna:PATRON EDITORE,2001:341-351.
    [11]P. Gattinon, I. M. Papin, I. L. Sces. Geologic Risk in Underground Works[C]. Progress in Tunnelling after 2000:Proceedings of the AITES-ITA 2001 World Tunnel Congress Milan-Italy 10th-13th June 2001. Volume I. Bologna:Patron Editore,2001:309-318.
    [12]张良辉,熊厚金,张清.隧道围岩位移的弹塑粘性解析解[J].岩土工程学报,1997,19(4):66-72.
    [13]朱珍德,王玉树.巷道围岩流变对巷道稳定性的影响[J].力学与实践,1998,20(1):26-29.
    [14]李晓红,李登新,靳晓光等.初期支护对软岩隧道围岩稳定性和位移影响分析[J].岩体力学,2005,26(8):1207-1210.
    [15]Yang Xizo-li, Huang Fu. Influences of Strain Softening and Seepage on Elastic and Plastic Solutions of Circular Openings in Nonlinear Rock Masses[J]. J. Cent. South Univ. Technoi.2010, (17):621-627.
    [16]黄阜,杨小礼.考虑渗透力和原始Hoek-Brown屈服准则时圆形洞室解析解[J].岩土力学,2010,31(5):1627-1632.
    [17]YANG Xiao-li, ZOU Jin-feng. Stability Factors for Rock Slopes Subjected to Pore Water Pressure Based on Thehoek-Brown Failure Criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2008,43(7):11461152.
    [18]黄阜,杨小礼.渗流效应对基于广义非线性屈服准则洞室弹塑性解的影响[J].中南大学学报(自然科学版),2009,40(6):1737-1743.
    [19]罗清明,李亮,杨小礼.软岩隧道的围岩变形计算[J].长沙铁道学院学报,2003,21(2):14-18.
    [20]杨小礼,刘宝琛.根据非线性破坏准则计算隧道的粘弹塑性位移[J].有色金属,2001,53(3):52-55.
    [21]段庆伟,何满潮,张世国.复杂条件下围岩变形特征数值模拟研究[J].煤炭科学技术,2002,30(6):55-58.
    [22]何满潮,郭宏云.基于和分解有限变形力学理论的深部软岩巷道开挖大变形数值模拟分析[J].岩石力学与工程学报,2010,29(A02):4050-4055.
    [23]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [24]郭宏云,陈新,刘天宇.两种有限变形力学理论的分析[J].黑龙江科技学院学报,2009,19(3):198-201.
    [25]HE M. C., GONG W. L., LI D. J., et al. Physical modeling offailure process of the excavation in horizontal strata based on IR thermography[J]. Mining Science and Technology,2009,19(6):689-698.
    [26]何满潮,陈新,梁国平等.深部软岩工程大变形力学分析设计系统[J].岩石力学与工程学报,2007,26(5):934-943.
    [27]陈新,郭宏云,何满潮等.深部高应力巷道的非对称大变形[J].黑龙江科技学院学报,2007,17(6):415-419.
    [28]李晓红,夏彬伟,李丹等.深埋隧道层状围岩变形特征分析[J].岩土力学,2010, 31(4):1163-1167.
    [29]赵瑜,李晓红,卢玉义等.深埋隧道围岩应变软化模型参数的正交设计[J].重庆大学学报,2008,31(7):716-729.
    [30]赵瑜,李晓红,卢玉义等.深埋隧道围岩系统卸荷演化过程的Lyapunov指数分析[J].岩土力学,2008,29(10):2871-2876.
    [31]赵旭峰,孙钧.挤压性软岩流变参数反演与本构模型辨识[J].铁道工程学报,2008,116(5):5-8.
    [32]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409.
    [33]康红普,牛多龙,张镇.深部沿空留巷围岩变形特征与支护技术[J].岩石力学与工程学报,2010,29(10):1977-1987.
    [34]陈登玉.炭质页岩隧道变形特征研究与稳定性分析[J].山东大学学报(自然科学版),2011,30(2):58-64.
    [35]徐林生,王晓雯.东门关隧道围岩变形特征及其影响因素分析[J].公路交通技术,2004,(4):88-96.
    [36]高正夏,侯曙光,卢刚.围岩变形的非线性统计分析[J].河海大学学报,2003,31(3):321-323.
    [37]冷希乔,陈礼伟.大断面黄土隧道变形特征及力学模型分析[J].四川建筑,2010,30(1):74-75.
    [38]廖秋林,侯哲生,何小东等.断层影响下隧道围岩变形监测与特征分析[J].水文地质工程地质,2005,(6):102-107.
    [39]任建喜,孙扬,陈新年.高应力区穿层大巷围岩变形特征及其控制[J].煤炭工程,2010,(3):60-63.
    [40]李晓红,靳晓光,卢义玉.西山坪隧道穿煤及采空区围岩变形特性与数值模拟研究[J].岩石力学与工程学报,2002,21(5):667-670.
    [41]黎代仁.侧部水压充填型岩溶隧道围岩变形特征分析[J].路基工程,2009,(4):144-145.
    [42]崔文艳,于志华,宋建.大伙房水库不良地段围岩变形特征与加固研究[J].华北水利水电,2011,(7):6-8.
    [43]张爽,刘庆新,胡力耀.广巴高速某隧道不同岩性围岩变形特征分析[J].现代隧道技术,2011,48(1):17-21.
    [44]刘小伟,谌文武,韩文峰.浅埋红层软岩隧洞围岩变形特征试验研究[J].冰川冻土,2007,29(6):992-996.
    [45]王其胜,李夕兵,李地元.深井软岩巷道围岩变形特征及支护参数的确定[J].煤炭 学报,2008,33(4):364-367.
    [46]杨会军.复杂条件下隧道围岩变形特征[J].铁道工程学报,2006,(1):57-60.
    [47]李业学,刘建锋.基于R/S分析法与分形理论的围岩变形特征研究[J].四川大学学报(工程科学版),2011,42(3):43-48.
    [48]彭琦,王悌剀,邓建辉,等.地下厂房围岩变形特征分析[J].岩石力学与工程学报,2007,26(12):2583-2587.
    [49]莫阳春,周晓军.岩溶隧道施工围岩变形动态监测与仿真分析[J].岩石力学与工程学报,2008,27(增刊2):3807-3815.
    [50]夏彬伟,陈果,康勇,等.层状岩体围岩变形破坏特征及稳定性评价[J].水文地质工程地质,2010,37(4):48-52.
    [51]安蕊梅,刘维华, 刘志春.挤压性围岩隧道变形特征分析[J].石家庄铁道学院学报(自然科学版),2007,20(1):14-18.
    [52]李宁.郑西客运专线大断面黄土隧道围岩变形特征[J].铁道标准设计,2007,(增1):19-21.
    [53]刘志春,李文江,朱永全等.挤压性围岩隧道大变形机理及分级标准研究[J].岩土工程学报,2008,5(5):690-697.
    [54]刘志春,李文江,朱永全,等.软岩大变形隧道二次衬砌施作时机探讨[J].岩石力学与工程学报,2008,27(3):580-588.
    [55]刘志春,李文江,孙明磊,等.乌鞘岭隧道F4断层区段监控量测综合分析[J].岩石力学与工程学报,2006,25(7):1502-1511.
    [56]张文强,王庆林,李建伟.木寨岭隧道大变形控制技术[J].隧道建设,2010,30(2):157-161.
    [57]于维刚,李苍松.对拉塞梅尔隧道PK26某段围岩大变形的认识[J].地下空间与工程学报,2007,3(7):1228-1231.
    [58]刘招伟,王明胜,方俊波.高地应力大变形隧道支护系统的试验研究[J].土木工程学报,2010,43(5):111-116.
    [59]喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1998,2(1):46-50.
    [60]张祉道.关于挤压性围岩隧道大变形的探讨和研究[J].现代隧道技术,2003,40(2):4-12.
    [61]卞国忠.浅谈隧道围岩大变形的判据及处理措施[J].科学技术通讯,1998(2):15-17.
    [62]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62.
    [63]Kidybinski. Strata Control in Deep Mines[M]. A. A. Balkema Press,1997.
    [64]姜云.公路隧道围岩大变形预测预报及对策研究[D].成都理工大学博士学位论文, 2004.
    [65]姜云,李永林,李天斌等.隧道工程围岩大变形类型与机制研究[J].地质灾害与环境保护,2004,15(4):46-51.
    [66]O Aydan, T Akagi, T Kawamoto. The Squeezing Potential Of Rocks around Tunnels, Theory and Prediction[J]. Rock Mechanics Rock Engineering,1993,26(2):137-163.
    [67]许林生,李永林,程崇国.公路隧道围岩变形破坏类型与等级的判定[J].重庆交通学院学报,2002,21(2):16-20.
    [68]Schnabl Robert, Mayr. New Approach of ASFINAG for Tunnel Construction Monitoring of the Tauern Tunnel Project in Austria[C]. Proceedings-Rapid Excavation and Tunneling Conference,2009:308-319.
    [69]Burger Daniela, Kohlbock Bernhard, Schoitsch Christian. Geotechnics and Mass Balance of the Earthworks for the Second Tube of the Tauern Tunnel[J]. Geomechanik und Tunnelbau,2010,3(4):391-401.
    [70]Hackl Erich. Experiences from the Construction of the Tauern Tunnel[J]. Rock Mech Felsmech Mec Roches,1974,6(2):81-90.
    [71]Kohlbock Bernhard, Mayer Andreas, Schnabl Robert et.al. Geotechnics, Tunnelling and Support of the Second Tube of the Tauern Tunnel and Comparison with the First Tube[J]. Geomechanik und Tunnelbau,2010,3(4):343-353.
    [72]Ayaydin Nejad. First and Second Tube of the Tauern Tunnel [J]. Geomechanik und Tunnelbau,2010, (4):334-343.
    [73]韩玉华,邝国能(译).山区巨大挤压地层用新奥法修建隧道的理论与实践[J].隧道译丛,1979,(6):1-25.
    [74]John M. Construction of the Arlberg Expressway Tunnel Tube-3[J]. Tunnels and Tunnelling International,1980,12(5):42-50.
    [75]John M. Construction of the Arlberg Expressway Tunnel Tube-4[J]. Tunnels and Tunnelling International,1980,12(6):66-68.
    [76]Mayrhauser W. Application of Shotcrete in the NATM (Operating Equipment, Payment Provisions and Practical Example)[J]. ASCE,1977, (54):297-322.
    [77]Kimura Fuminori, Okabayashi Nobuyuki, Kawamoto Toshikazu. Tunnelling Through Squeezing Rock in Two Large Fault Zones of the Enasan Tunnel II[J]. Rock Mechanics and Rock Engineering,1987,20(3):151-166.
    [78]Nagatomo Shigeki, Kobayashi Kazuo, Yano Toshiaki at.el. Completion of Enasan Tunnel[J]. Doboku Gakkai-shi/Journal of the Japan Society of Civil Engineers,1975, 60(3):9-17.
    [79]Kimura Fuminori, Okabayashi Nobuyuki, Ono Kiyoshi. Rock-Mechanical Discussion for the Mechanism of Supporting Systems in Severe Swelling Rock Tunnel[J]. A. A. Balkema,1985, (2):1265-1271.
    [80]白继承,管健.超长锚杆在控制家竹箐隧道大变形中的应用[J].世界隧道,1998,(1):57-59.
    [81]王科.家竹箐隧道地质条件及地应力特征[J].世界隧道,1998,(1):11-16.
    [82]张祉道,白继承.家竹箐隧道高瓦斯、大变形、大涌水的整治与对策[J].世界隧道,1998,(1):1-10.
    [83]张祉道.家竹箐隧道施工中支护大变形的整治[J].世界隧道,1997,(1):7-16.
    [84]符华兴.强挤压围岩隧道施工支护技术的商榷[J].隧道建设,2003,23(1):19-23.
    [85]张德华,王梦恕,符华兴等.强挤压型隧道锚杆支护参数的确定[J].岩石力学与工程学报,2004,23(13):2201-2204.
    [86]信本焕.乌鞘岭隧道F4-F7断层设计与施工[J].中国铁路,2006,(9):39-42.
    [87]谌明朗,朱家温.乌鞘岭隧道8号斜井区域围岩变形与控制[J].铁道标准设计,2006,(8):
    [88]陈唯一.乌鞘岭隧道千枚岩地层初期支护参数研究[J].铁道工程学报,2006,(3):
    [89]刘志春,孙明磊,贾晓云等.乌鞘岭隧道F4-F7断层区段压力、应力实测与分析[J].石家庄铁道学院学报,2006,19(2):13-17.
    [90]孙明磊,刘志春,张德莹.乌鞘岭隧道F7断层区段左线迂回导坑监控量测[J].石家庄铁道学院学报,2006,19(2):18-22.
    [91]马华天.乌鞘岭隧道深埋软弱千枚岩变形控制施工技术[J].西部探矿工程,2006,18(B06):320-322.
    [92]王江,苑郁林.乌鞘岭特长隧道穿越F7断层隧道变形机理分析及其支护措施的研究[J].科技交流,2006,36(2):11-16.
    [93]柴瑞峰,王才高.乌鞘岭特长隧道大变形围岩段施工技术[J].铁道建筑,2005,(12):38-39.
    [94]李响,钱伟平.乌鞘岭隧道地质条件综述[J].铁道勘察,2005,31(4):57-61.
    [95]卿三惠,黄润秋.乌鞘岭特长隧道软弱围岩大变形特性研究[J].现代隧道技术,2005,42(2):7-14.
    [96]王志坚.乌鞘岭隧道深埋志留系地层大变形控制技术[J].铁道标准设计,2005,(1):10-14.
    [97]张文忠.乌鞘岭特长隧道主要地质问题与防治措施[J].西部探矿工程,2005,17(3):112-112.
    [98]朱永全,刘志春,李文江等.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术 研究(现场测试阶段成果报告)[R].石家庄:石家庄铁道学院,2004.
    [99]刘刚.围岩稳定性评价综述[J].第九届岩石力学与工程学术大会论文集.2006:210-216.
    [100]Frgic Lidija. The Stability Conditions around a Tunnel Excavation[J]. WSEAS Transactions on Information Science and Applications,2005,2(12):2303-2309.
    [101]朱永全.隧道稳定性位移判别准则[J].中国铁道科学,2001,22(6):80-83.
    [102]中华人民共和国行业标准.铁路隧道设计标准(TB10003-2005)[S].北京:中国铁道出版社,2005.
    [103]中华人民共和国行业标准.铁路隧道喷锚构筑法技术规范(TB10108-2002)[S].北京:中国铁道出版社,2002.
    [104]中华人民共和国行业标准.铁路隧道施工规范(TB 10204-2002)[S].北京:中国铁道出版社,2002.
    [105]Zhang Sumin, Zhu Yongquan, Zhao Yucheng, Liu Yong. Comparative Analysis of Limit Displacement for Tunnels at the Unlined and Primary Support Stages [J]. International Journal of Rock Mechanics and Mining Sciences,2004(3):512-513.
    [106]李晓红,王宏图,贾剑青等.隧道及地下工程围岩稳定性及可靠性分析的极限位移判别[J].岩土力学,2005,26(6):850-854.
    [107]孙明磊,李文江,贾晓云.高地应力条件下软岩大变形隧道极限位移计算模拟[J].石家庄铁道职业技术学院学报,2006,5(1):6-11.
    [108]朱德仁.岩石工程破坏准则[J].煤炭学报,1994,19(1):15-20.
    [109]凌复华.突变理论及其应用[M].上海:上海交通火学出版社,1997.
    [110]潘岳,王志强,张勇.突变理论在岩体系统动力学失稳中的应用[M].北京:科学出版社,2008.
    [111]Thom R. Stabilite Structurelle et Morphogenese[M]. Benjamin W A, Reading. Mass: Benjamin,1972.
    [112]Thom R. Structural Stability and Morphogenesis(Translated By Fowle G H)[M], New York, Benjamin-Addison Wesley,1975.
    [113]Thompson J. M. T, Hunt G.W. Instabilities and Catastrophes In Science and Engineering[M]. Chichester, Wiler,1982.
    [114]Thompson J. M. T, Zeeman E.C. Classification of Elementary Catastophes of Codimension≤5, Structural Stability, The Theory of Catastrophes and Application in the Sciences. Lecture Notes in Mathematics 525. Berlin:Springer-Verlag,1976.
    [115]Zeeman E. C. Catastrophes Theory:Selected Paper(1972-1975)[M], Addison-Wesley Pub. Co., Advanced Book Program,1977.
    [116]Michel Demazure, Ecole polytechnique. Bifurcation and Catastrophes:Geometry of Solutions to Nonlinear Problems[M]. Springer,2000.
    [117]许传华,任青文.围岩稳定分析的非线性理论研究[J].岩土工程技术,2003,(3):142-146.
    [118]许传华.岩体破坏的非线性理论研究及应用[博士学位论文][D].南京:河海大学,2004.
    [119]郑颖人,刘兴华.近代非线性科学与岩石力学问题[J].岩土工程学报,1996,18(1):691-696.
    [120]凌复华.突变理论及其应用[M].上海:上海交通火学出版社,1987.
    [121]郑颖人.岩土材料屈服与破坏及边(滑)坡稳定分析方法研讨“三峡库区地质灾害专题研讨会”交流讨论综述[J].岩石力学与工程学报,2007,26(4):649-661.
    [122]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座——Ⅱ有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.
    [123]邵国建,卓家寿,章青.岩体稳定性分析与评判准则研究[J].岩石力学与工程学报,2003,22(5):691-696.
    [124]黄润秋,许强.开挖过程的非线性理论分析[J].工程地质学报,1999,7(1):9-14.
    [125]黄润秋,许强.突变理论在工程地质中的应用[J].工程地质学报,1993,(9):65-73.
    [126]李造鼎,宋纳新,贾立宏,岩土动态开挖的灰色突变建模[J].岩石力学与工程学报,1997,16(3):252-257.
    [127]许传华,任青文,围岩稳定分析的熵突变准则研究[J].岩土力学,2004,25(3):437-440.
    [128]蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用[J].北京科技大学学报,1997,19(4):325-328.
    [129]秦四清.初论岩体失稳过程中耗散结构的形成机制[J].岩石力学与工程学报,2000,19(3):265-269.
    [130]付成华,陈胜宏.基于突变理论的地下工程洞室围岩失稳判据研究[J].岩土力学,2008,29(1):167-172.
    [131]鄢建华,汤雷.水工地下工程围岩稳定性分析方法现状与发展[J].岩土力学,2003,24(增刊):681-686.
    [132]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [133]朱永全,李文江.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究(大变形机理及位移管理基准成果报告)[R].石家庄:石家庄铁道学院,2004.
    [134]朱永全,李文江.隧道围岩稳定性及其控制技术研究(软弱围岩隧道施工变形控制技术成果报告)[R].石家庄:石家庄铁道大学,2011.
    [135]朱永全,刘志春.两水、化马隧道炭质千枚岩支护结构和施工技术研究(成果报告)[R].石家庄:石家庄铁道大学,2011.
    [136]朱永全,韩现民.关角隧道地应力场特征与富水软岩支护技术研究(高地应力富水软弱围岩支护技术研究成果报告)[R].石家庄:石家庄铁道大学,2011.
    [137]李泽龙.家竹箐隧道长锚杆施工[J].世界隧道,1998(1):60-64.
    [138]刘清松.挤压性软弱围岩隧道大变形控制技术的研究[硕士学位论文][D].成都:西南交通大学,2004.
    [139]余伟健,高谦,朱川曲.深部软弱围岩叠加拱承载体强度理论及应用研究[J].岩石力学与工程学报,2010,29(10):2134-2142.
    [140]余伟健.高地应力构造带工程围岩支护设计及稳定性研究[博士学位论文][D].北京:北京科技大学,2009:106-107.
    [141]侯公羽.围岩-支护作用机制评述及其流变变形机制概念模型的建立与分析[J].岩石力学与工程学报,2008,27(增2):3618-3629.
    [142]靳晓光,李晓红,杨春和,等.深埋隧道围岩-支护结构稳定性研究[J].岩土力学,2005,26(9):1473-1476.
    [143]薛顺勋,聂光国,姜光杰,等.软岩巷道支护技术指南[M].北京:煤炭工业出版社,2002:88-91.
    [144]孙晓明,何满潮,杨晓杰.深部软岩巷道锚网索耦合支护非线性设计方法研究[J].岩土力学,2006,27(7):1061-1065.
    [145]孙晓明,杨军,曹伍富.深部回采巷道锚网索耦合支护时空作用规律研究[J].岩石力学与工程学报,2007,26(5):895-900.
    [146]刘招伟,王明胜,方俊波.高地应力大变形隧道支护系统的试验研究[J].岩石力学与工程学报,2010,43(5):111-116.
    [147]张军.深部巷道围岩破坏机理及支护对策研究[博士学位论文][D].北京:中国矿业大学,2009.
    [148]李国良,朱永全.乌鞘岭隧道高地应力软弱围岩大变形控制技术[J].铁道工程学报,2008,25(3):54-59.
    [149]张祉道.关于挤压性围岩隧道大变形的探讨和研究[J].现代隧道技术,2003,40(2):5-12
    [150]中铁隧道集团有限公司.乌鞘岭隧道岭脊地段复杂应力条件下施工综合技术研究[R].北京:中铁隧道集团有限公司,2007.
    [151]马时强.几种控制软弱围岩大变形应急方法的效果评价[J].现代隧道技术,2010,30(4):416-419.
    [152]张士林,冯夏庭.控制极软巷道围岩大变形合理支护强度理论研究[J].金属矿山, 2001(5):4-6.
    [153]罗学东,陈建平,范建海,等.火车岭隧道围岩大变形问题及处理[J].煤田地质与勘探,2006,34(4):49-52.
    [154]李文江,于跃勋,朱永全.软岩隧道施工方法数值分析[J].隧道建设,2010,30(2):137-141.
    [155]刘季富.穿越断层破碎带浅埋段隧道沉降控制施工技术[J].山东建筑大学学报,2010,25(2):210-215.
    [156]王树军.软弱围岩隧道双层支护施工控制技术[J].交通世界,2010(3):226-227.
    [157]张凤华.控制观音堂隧道沉降和地表沉降施工技术[J].中国铁路,2011(6):62-64.
    [158]中铁工程设计咨询集团有限公司.经规标准2008-226:客货共线铁路和客运专线铁路隧道复合式衬砌通用参考图[S].北京:中华人民共和国铁道部经济规划研究院,2008.
    [159]张向东,张树光,贾宝新.隧道力学[M].北京:中国矿业大学出版社,2010.
    [160]朱永全,宋玉香.隧道工程[M].北京:中国铁道出版社,2007.
    [161]铁道第二勘察设计院.铁路隧道设计规范(TB10003-2005)[S].北京:中国铁道出版社,2005.
    [162]郭子红.地下立交近接隧道稳定性的理论分析与模拟研究[博士学位论文][D].重庆大学,2010.
    [163]龚伦,仇文革,高新强.铁路隧道近距离下穿楼房控制爆破试验研究[J].岩土力学,2006,27(s):1089-1092.
    [164]廖文.城市立交隧道小净距分岔部位施工技术[J].现代隧道技术,2006,43(4):44-49.
    [165]王圣涛,涂碧海.深圳地铁大~科区间大跨度渡线施工技术[J].现代隧道技术,2003,40(6):43-49.
    [166]龚伦.上下交叉隧道近接施工力学原理及对策研究[博士学位论文][D].西南交通大学,2007.
    [167]赵旭峰,王春苗,孙景林,等.盾构近接隧道施工力学行为分析[J].岩土力学,2007,28(2):409-414.
    [168]齐静静.盾构隧道的环境效应及结构性能研究[博士学位论文][D].浙江大学,2007.
    [169]李文江,朱永全,刘志春.岩石隧道近接施工力学模拟及施工方案研究[J].岩土力学,2006,27(s):377-380.
    [170]范永波,伍法权,胡社荣,等.交叉隧道塑性区分布规律、成因及支护探讨[J].工程地质学报,2008,16(2):268-272.
    [171]赵东平,王明年.小净距交叉隧道爆破振动响应研究[J].岩土工程学报,2007,29(1):116-119.
    [172]姜德义,陈玉,任松,等.超小净距交叉隧道的爆破振动监测与控制技术[J].西部探矿工程,2008(10):188-191.
    [173]钟冬望,高秀岩,吴亮,等.上下交叉隧道掘进爆破对既有隧道的动力响应研究[J].武汉科技大学学报,2009,32(1):106-109.
    [174]罗朝廷.喷射混凝土性能试验研究[R].中铁西南科学研究院,2011.
    [175]赵勇.隧道围岩动态变化规律及控制技术研究[J].北京交通大学学报,2010,34(4):1-5.
    [176]关宝树.软弱围岩隧道施工技术[M].北京:人民交通出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700