用户名: 密码: 验证码:
穿越活动断层的隧道减震结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国家自然科学基金重点项目《长大隧道地震响应机理与抗震》为依托,综合运用调查研究、理论推导、数值模拟、模型试验等方法,对隧道震害突出问题进行了归纳总结,并针对隧道穿越活动断层进行了重点研究,建立了以模型试验方法研究隧道穿越断层破坏形态及抗减震措施的可靠手段,给出了不同减震措施的试验效果,并提出了隧道运用新型吸能减震结构的建议和办法。主要研究结论和成果如下:
     (1)在现场调查及资料调研等基础上,将长大隧道震害严重区段分为三大类:洞口段、洞身软弱破碎段及穿越活动断层段。
     (2)对隧道洞身段远场地震波作用下动力响应特征进行了数值模拟分析,结果表明,洞身穿越软弱破碎带远场地震波动力响应明显大于硬岩段,隧道容易发生震害破坏。在考虑波的绕流特性及松动圈理论基础上,推导了硬岩隧道洞身深埋段的衬砌结构内力计算公式。
     (3)提出了一种合理可靠的隧道穿越活动断层模型试验方法,通过与实际震害调查进行比较,认为试验得出的结果是可靠的,试验装置以及试验设计能够满足模拟隧道穿越活动断层力学行为特征的基本要求,隧道破坏特征明显,与实际隧道震害基本吻合。
     (4)模型试验通过对隧道衬砌纵向设置不同间距减震缝,分析了设缝对隧道穿越活动断层的减震效果,试验表明:与不设缝相比,设置减震缝能够有效的控制隧道受断层错动影响的纵向破坏距离以及受断层错动作用产生的内力增量;减小设缝间距能够进一步控制隧道受断层错动影响的纵向破坏距离。但断层处衬砌由于纵向长度很小,单环承受荷载的能力下降,中心处衬砌环发生了非常严重的破坏,抗减震问题更为突出:通过对比试验,认为初期支护应设置减震缝。在初支不设减震缝情况下,初支自身在断层带附近严重破裂剥离失效,同时加重了二次衬砌的破坏。
     (5)采用扩大断面并设置纵向减震缝能有效保证断层错动后隧道有效净空面积,扩大断面的设计应与工程所在地点的预计最终静态滑动量相关,通过与减震缝组合的方式达到保证净空的效果。断层与隧道轴向夹角越大,相同错动位移下隧道净空损失越大,在保证震后净空设计值需要的情况下,扩大断面尺寸越大;断层与隧道轴向夹角越小,相同错动位移下断层对隧道的影响范围越大,所需要的设缝范围也越大。工程抗震设计时应根据断层的走向及错动量合理安排扩大断面的尺寸以及减震缝设缝距离,达到保证减震效果与控制工程造价的双重目标。
     (6)隧道穿越活动断层时采用减震缝设计是一种有效的减震方法,但由于混凝土衬砌本身的材料特性不足,不能抵抗断层错动瞬时产生的剧烈作用和荷载,不具备缓冲和吸能的能力,迫切的需要改进材料特性以解决设缝后断层带衬砌自身稳定能力。
     (7)提出了一种新型柔性吸能减震结构,即橡胶衬砌。与传统衬砌相比,在相同的错动作用下,橡胶衬砌自身能发生较大的变形,但无任何裂缝及破坏情况,结构处于良好的弹性变形状态;橡胶衬砌能够缓冲断层错动时产生的动力响应作用;橡胶衬砌设置减震缝能大大减小断层范围以外衬砌的内力增量;橡胶衬砌设置较小间距减震缝能减小断层错动对衬砌的影响范围:随着减震缝间距的减小,断层处衬砌错动趋于均匀,错台变小;从断层影响范围来看,减震缝间距为20cm、10cm、5cm和2.5cm时衬砌错动的范围分别为60cm、40cm、30cm、25cm,基本在断层附近。
     (8)通过断层错动数值模拟,认为地震的能量级别与破裂面的强度有关,破裂面强度越高,震前积聚的能量越高,地震时越剧烈,隧道只能通过纵向设缝的办法适应断层错动,环向采取柔性吸能的衬砌材料减震。影响隧道结构环向动力附加荷载因素为震级和刚度比,地震的震级越高,活动断层的错动越剧烈,隧道震害越严重。刚度比越大,衬砌的内力响应越剧烈,刚度比小于1时,隧道结构比围岩更柔性,与围岩一起变形,动力响应很小。
     (9)橡胶衬砌的弹性较好,相同荷载下其持续变形的能力远大于普通衬砌,隧道在较大荷载及变形的情况下能够保持不垮塌,当荷载消失后,橡胶衬砌仍能够恢复受力前的状态,不会发生永久破坏。从能量的角度来讲,橡胶衬砌的吸能水平远大于普通衬砌(s2>>s1),是一种吸能的新型减震结构。
     (10)橡胶衬砌的使用应根据断层可能发生的错动量及自身的刚度决定,同时配合扩大断面的设置,按照最终错动量与自身变形量之和设计预留净空,按最大位移量确定橡胶衬砌的材料性能要求。
Based on major project (No.51038009) of National Natural Science Foundation of China, by using methods of field investigation, theoretical analysis, numerical analysis and model test, the prominent problem of tunnel damage by earthquake is summarized. Focused research is aimed at tunnel passing through active fault, reliable methods as model test to simulate tunnel damage when passing through active fault and study aseismic measures are established, test result of different aseismic measures is give. Finally, a new type energy absorption lining structure for tunnel is proposed and studied. The main conclusions and outcomes are as following:
     (1) Based on field investigation and document research, serious seismic damage zone of long and large depth tunnel are three categories:portal section, week and broken zone of tunnel body and tunnel passing through active fault.
     (2) Numerical analysis of tunnel body dynamic response by seismic load is made, indicating dynamic response of tunnel passing through week and broken zone is obviously larger than that in hard rock zone, tunnels are more likely to earthquake damage.
     (3) A reliable method as model test to simulate tunnel damage when passing through active fault and study aseismic measures is established, test result is reliable, testing apparatus and design fulfil basic requirements of simulating mechanical behavior when tunnel passing through active faults, tunnel damage characteristics are obviously coincided with actual damage.
     (4) By measures of setting aseismic joint, damping effect by aseismic joint for tunnel passing through active fault is analyzed. The test shows setting aseismic joint may control longitudinal damage distance influenced by fault movement and control internal force increment. By reducing aseismic joint separation distance, different damping effect of different joint separation distance are studied, the test shows that reducing aseismic joint separation distance may further control longitudinal damage distance influenced by fault movement, but monocyclic ring in the centre may more likely to damage, due to short longitudinal length, the seismic problem may be more prominent. By contrast test, primary support is expected to set aseismic joint, rather than serious fracture and peeling phenomenon, as well as aggravating secondary lining damage.
     (5) Adopting expanded section and setting aseismic joint are able to guarantee tunnel effective clearance after fault movement, the design of expanded section should be related to estimated final static slippage and combined use with setting aseismic joint to guarantee tunnel effective clearance. The bigger intersection angle between fault and tunnel axial, the bigger loss of tunnel clearance. To guarantee designed tunnel clearance after earthquake, the expanded section should be bigger. The smaller intersection angle between fault and tunnel axial, the bigger range of influence by fault in the same fault displacement, the range of aseismic joint should be greater. The expanded section dimensions and aseismic joint distance should be reasonable arrangement due to the fault direction and fault displacement to guarantee damping effect and control engineering cost of projects.
     (6) Setting aseismic joint design is a effective damping method for tunnel passing through active fault, but due to material characteristics defect of concrete lining, the lining cannot bear severe impact and load during fault movement, and possess not the ability of buffer and absorbing energy. Material characteristics is in urgent need to be improved to solve lining homeostasis.
     (7) Compared with tradition lining, rubber lining can bear larger deformation in the same fault movement, growing no crack or damage, the lining structure is in favourable elastic deformation state. The rubber lining has the buffer of dynamic response during fault movement. Cooperated with setting aseismic joint, internal force increment of lining near fault zone may greatly reduced. Cooperated with short distance aseismic joint, influence region is more reduced, faulting of slab ends is less. When aseismic joint distance are20cm,10cm,5cm and2.5cm, lining slide60cm,40cm,30cm,25cm, the zone is more tend to fault zone.
     (8) Dynamic additional load on tunnel structure in section are influenced by earthquake magnitude and stiffness ratio, based on simulation of fault movement, the higher the earthquake magnitude and the severer the fault movement, the more serious the tunnel earthquake damage. The bigger the stiffness ratio, the severer the internal force response of lining. When the stiffness ratio is less than1, the tunnel is more flexible than surrounding rock, dynamic response is less.
     (9) elasticity of rubber lining is good and has larger deformation in same load, compared with common lining, continuous deformation capability is far larger than common lining. Tunnel can keep no collapse in large load and deformation, when the load is gone, the rubber lining is even able to recover and will have no permanent damage. From the energy point of view, energy absorption capability of rubber lining is far larger than common lining, being a new type endergonic and flexible aseismic structure.
     (10) The use of rubber lining should in accordance with possible fault movement and lining stiffness, and cooperate with setting expanded section. Obligate clearance design is sum of final fault movement and self-deformation, material performance requirement of rubber lining is according to maximum displacement during fault movement.
引文
[1]H.H.福季耶娃,徐显毅译.地震区地下结构物支护的计算[M].北京:煤炭工业出版社,1986.
    [2]Thomas R K. Earthquake design criteria for subway [J].Journal of the structural Division. Proceedings of ASCE.1969, Vol. (6):1213-1231.
    [3]周德培.地铁抗震设计准则[J].世界隧道.1995,Vo1.(2):36-45.
    [4]高田至郎.地下生命线的耐震设计[J].隧道译从.1991,vo1.(7):44-51.
    [5]川岛一彦.地下构筑物耐震设计[M].日本:鹿岛出版社,1994.
    [6]Dasgupta G A. A finite element formulation for unbounded homogeneous continua [J]. J. of Appl. Mech. ASIA.1982, Vol.49:136-140.
    [7]wolf J P, Song C M. Dynamic-stiffness matrix of unbounded soil by finite element mufti-cell cloning [J]. Earthquake Eng. Struct. Dyn.1994, Vol.23 (3):232-250.
    [8]Song C M, Wolf J P. Dynamic stiffness of unbounded medium based on damping-solvent extraction [J].EESD.1994, Yol.23 (2):169-181.
    [9]Song C M, Wolf J P. The scaled boundary finite element method -a primer solution procedures [J].Computers and Structures.2000, Vol.78 (3):211-225.
    [10]Youssef M.A. Hashasha, Jeffrey J. Hooka, Birger Schmidtb,John I-Chiang Yao. Seismic design and analysis of underground structures, Tunnelling and Underground Space Technology 16(2001).247-293.
    [11]南昆铁路8,9度地震隧道洞口及浅埋大跨段新机构设计试验研究[R].铁道部第二勘测设计院.1996
    [12]王志杰,高波,关宝树.围岩—隧道衬砌结构体系的减震研究,西南交通大学学报,1996,31(6):590~594.
    [13]王明年,关宝树.地下结构是免震结构,工程力学增刊,1999.
    [14]李成辉,仇文革.深圳地铁道床动载荷分析[J].西南交通大学学报.2001(2):169~171.
    [15]高峰,关宝树,仇文革.列车荷载作用下地铁重叠隧道的响应分析[J].西南交通大学学报.1999(5):38~42.
    [16]WANG Zhengzheng, GAO Bo, JIANG Yuanjun, et al. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Science in China Series E:Technological Sciences.2009,52(2): 546-558.
    [17]周德培.强震区隧道洞口段的动力特性研究,地震工程与工程震动,1998,18(1):124~130.
    [18]中华人民共和国国家标准.铁路工程抗震设计规范(GBJ1I1-87)[S].北京:铁道出版社,1988.
    [19]中华人民共和国国家标准.铁路工程抗震设计规范(G850I11-2006)[S].北京:铁道出版社,2006.
    [20]中华人民共和国国家标准.地下铁道设计规范(GB50157-92)[S].北京:中国计划出版社,1999.
    [21]中华人民共和国行业标准.公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,2003.
    [22]Kuesel T R. Earthquake design criteria for subways.J. Struet. Div. ASCEST6.1969, pp:1213-1231.
    [23]Lee V M, Tfrifunac M D. Response of tunnels to incident SH wave[J]. Journal of Engineering Mechanics,ASCE.1979,105(4):643-659.
    [24]Power M, Rasidi D, Kanesbiro J. Seismic vulnerability of tunnels-revisited[C]. L. Oxedimir, Ed., Proceedings of the North American Tunneling Conference. Long Beach, CA, USA. Elsevier,1998.
    [25]Youssef M.A. Hashasha, Jeffrey J. Hooka, Birger Schmidtb,John I-Chiang Yao. Seismic design and analysis of underground structures, Tunnelling and Underground Space Technology 16(2001).247-293.
    [26]高峰,李德武.隧道三维地震反应分析若干问题的研究[J].岩土工程学报,1998,V20(4):51-56.
    [27]龙驭球.弹性地基梁的计算[M].北京:人民教育出版社,1981.
    [28]潘昌实.隧道及地下结构物抗震问题的研究概况[J].现代隧道技术,1996(5):7216.
    [29]许增会,刘刚.地震区隧道稳定性分析方法[J].
    [30]关宝树.免震构造设计指针及解释[R].成都:西南交通大学,1992.
    [31]J.P.瓦尔夫.土-结构动力相互作用[M].北京:地震出版社,1989.
    [32]李育枢.山岭隧道地震动力响应及减震措施研究[D].上海:同济大学博士学位论文,2006.
    [33]杨小礼,李亮,刘宝琛.强震作用下交通隧道的拟静态反应[J].中国公路学报,2001,14(4):55-58.
    [34]郑永来,杨林德.地下结构震害与抗震对策[J].工程抗震,1999, (4):23-28.
    [35]JSCE. The 1995 Hyogoken-Nanbu earthquake [J]. Japan Society of Civil Engineers,1996,81(3):38-45.
    [36]PWRI. Guideline for seismic design methods of large underground structures(a draft)[R]. Tsukubashi:Technical Memorandum of PWRI, Public Works Research Institute,1992:37-43.
    [37]罗定伦,高波,申玉生.关于隧道抗减震模型试验围岩相似材料的研究[J].石家庄铁道学院学报(自然科学版),2008,21(3):70-73.
    [38]孙铁成,高波,叶朝良.地下结构抗震减震措施与研究方法探讨[J].现代隧道技术,2007,44(3):1-5,10.
    [39]季倩倩,杨林德.地下铁道震害与震后修复措施[J].灾害学,2001,16(2):31-37.
    [40]黄先峰.地下结构的抗震计算——响应位移法[J].铁道建筑,1999,(6)3-6.
    [41]邵根大,骆文海.强地震作用下铁路隧道衬砌耐震性的研究[J].中国铁道科学,1992,12(2):92-108.
    [42]经杰.双重结构基于位移抗震设计方法的研究[D].北京:清华大学,2002.
    [43]经杰,叶列平,钱稼茹.基于能量概念的剪切型多自由度结构弹塑性地震位移反应分析[J].工程力学,2003,20(3).
    [44]赵永峰,童根树.修正Clough滞回模型下的地震力调整系数[J].土木工程学报,2006,39(10):34-41.
    [45]Nakamura N A. Practical method to transform frequency dependent impedance to time Domain [J]. Earthquake Engineering and Structural Dynamics, 2006,35(2):217-231.
    [46]Newmark NM. Problem wavepropagation in soil and rock[J].Proceedings of the Internation SymPosium on Wave-propagation and Dynamie Properties of Earth Materials.1968.
    [47]Pao Y H, Mow C C. Diffraction of elastic waves and dynamic stress concentrations [M]. New York:Crane Russak and Company,1973.
    [48]Lueo J E, Debarris F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half space [J]. Earthquake End.Struct. Dyn.1994,23:321-340.
    [49]Wang W L, Wang T T, Su J J, et al. Assessment of damage in mountain tunnels due to the TaiwanChi-Chi Earthquake[J]. Tunnelling Underground Space Technology,2001,16(3):133-150.
    [50]朱长安.断层破碎带隧道地震动力响应分析[D].西南交通大学硕士学位论文,2009.
    [51]蒋华,蒋树屏,土晓雯,林义.断层带处公路隧道横断面抗震分析[J].隧道建设,2009,2(1):14-19.
    [52]张林.山岭隧道洞口段地震动力响应及抗减震措施研究[D].重庆:重庆交通大学,2010.
    [53]孙建春.山岭隧道仰坡地震动力响应及减震措施研究[D].成都:西南交通大学,2010.
    [54]王琼,郭恩栋,杨丹等.走滑断层位移作用下山岭隧道非线性反应分析[J].地震工程与工程震动.
    [55]张雨霆,肖明,左双英.基于单元重构的岩土工程复杂地质断层建模方法[J].岩石力学与工程学报,2009,28(9):1848-1855.
    [56]杨军,尚吴.软土隧道地震反应的数值分析[J].建筑技术开发,2003,30(11)26-27.
    [57]严松宏.地下结构随机动力响应分析及其动力可靠度研究[D].成都:西南交大学,2003.
    [58]陈健云,胡志强,林皋.超大型地下洞室群的二维地震响应分析[J].岩土工程学报.2001,23,(4)494-498.
    [59]Yakovlevich, D. I. and Borisovna, M.J., Behavior of tunnel liner model on seismic platform, Symposium on earthquake engineering, University of Roorkee. Oct.5-7,1978,1:379-382.
    [60]Shunzo Okamoto. Introduction to Earthquake Engineering[M]2nd Edition. Tokyo:University of Tokyo Press,1984.
    [61]Goto Y, Matsuda Y, Ejiri J, et al. Influence of Distance between Juxtaposed Shield Tunnels on their Seismic Response[C].Proc.9th world Conf on Earthquake Eng.Tokyo-Kyoto,Japan,1988.
    [62]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993(4):1-7.
    [63]史常青.浅埋明挖地下铁道车站结构的抗震性能研究[D].成都:西南交通大学,1996.
    [64]季倩倩.地铁车站结构振动台模型试验研究[D]:[博士学位论文].上海:同济大学,2002
    [65]杨林德,杨超,季倩倩等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报,2003,31(10):1135-1120.
    [66]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].地下空间,2002,22(2):320-321.
    [67]赵大鹏,宫必宁,晏成明.大跨度地下结构振动性态试验研究[J].重庆建筑大学学报,2002,24(5):52-56.
    [68]周林聪,陈龙珠,宫必宁.地下结构地震模拟振动台试验研究[J].地下空间与工程学报,2005,1(2):182-213.
    [69]庄海洋.土-地下结构非线性动力相互作用及其大型振动台试验研究[D],南京工业大学博士论文,2006.
    [70]陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验[J].北京工业大学学报,2006,32(9):798-801.
    [71]车爱兰,岩循敞广,葛修润.关于地铁地震响应的模型振动试验及数值分析[J].岩土力学,2006,27(8):1293-1298.
    [72]李凯玲,张亚,刘妮娜.土-地铁隧道动力相互作用模型试验分析[J].工程地质学报,2007,15(4):534-538.
    [73]陈国兴,庄海洋,杜修力等.土-地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程振动,2007,27(2):171-176.
    [74]史晓军,陈隽,李杰.地下综合管廊大型振动台模型试验研究[J].地震工程与工程振动,2008.28(6):116123.
    [75]崔光耀.隧道洞口浅埋段和断裂粘滑段抗震设计计算方法及试验研究[D],西南交通大学博士论文,2012.
    [76]Wang W L, Wang T T, Su J J, Lin C H, Seng C R, Huang T H,2000. The seismic hazards and the rehabilitation of the tunnels in central Taiwan after Chi-Chi Earthquake. Sino-Geotechnics 81,85-96.
    [77]王国权.9.21台湾集集地震的近断层地面运动特征:[D].北京:中国地震局地质研究所博士论文,2001.
    [78]王国新,强地震动衰减研究[D],中国地震局工程力学研究所博士论文,2001.
    [79]王海云,近场强地震动预测的有限断层震源模型[D],中国地震局工程力学研究所博士论文,2004.
    [80]刘启方.基于运动学和动力学震源模型的近断层地震动研究[D],中国地震局工程力学研究所博士论文,2005.
    [81]周正华,周雍年,赵刚,强震近场加速度峰值比和反应谱统计分析[J].地 震工程与工程振动,2002,22(3).
    [82]陶夏新,王国新,2003,近场强地震动模拟中对破裂方向效应和上盘效应的表达[J].地震学报,25(2),191-198.
    [83]Aagaard B T, Hall J F, Heaton T H.1999. Characterization of near-source ground motions with earthquake simulations [J]. Earthquake Spectra,17(2): 177-207.
    [84]Engquist, B. and A. Majda, Absorbing boundary condition for the numerical simulation of waves, Math. Comp., Vol.No.135, pp.629-651,1977.
    [85]Olsen, K. and R. Archuleta (1996, June). Three-Dimensional simulation of earthquakes on the Los Angeles fault system. Bulletin of the Seismological Society of America 86(3),575-596.
    [86]Yousef Bozorgnia,Mansour Niazi, Distance scaling of vertical and horizontal response spectra of the Loma Prieta earthquake[J]. Eathquake engineering and Structural Dynamics,22(1993),695-707.
    [87]汤建良.高烈度地震区公路隧道抗震设防及减震措施的研究[D].重庆:重庆交通大学,2009.
    [88]龚志红.国道318线黄草坪隧道抗震安全性评价研究[D].成都:成都理工大学,2007.
    [89]吕和林.一种用于浅埋隧道抗震分析的拟静力数值方法[J].西南交通大学学报,1999,34(3):315-319.
    [90]张缄.隧道震害综述[J].铁道工程建设科技动态报告文集.中国铁道出版社,1993.
    [91]吕和林,张缄.地震R波对浅埋隧道的影响[C].成都:西南交通大学百年校庆论文集(土木工程分册),1996,4:190-195.
    [92]于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及现状[J].解放军理工大学学报,20001(5):63-69.
    [93]郑金龙,李海清,王联.都汶公路高速路段震后隧道恢复重建方案[J].西南公路,2008,4:125-129.
    [94]王志杰.地震区隧道洞口段减震模式研究[D].成都:西南交通大学,1996.
    [95]赵宝友.大型岩体洞室地震响应及减震措施研究[D].大连:大连理工大学,2009.
    [96]黄胜,高烈度地震下隧道破坏机制及抗震研究[D],武汉:中国科学院武汉岩土力学研究所,2010.
    [97]李德武.断层破碎带隧道衬砌受力特性研究[D]兰州:兰州交通大 学,2005.
    [98]李彬,刘晶波,尹骁.双层地铁车站的强地震反应分析[J].地下空间与工程学报.2005.10,1(5):779-782
    [99]高峰,石玉成,严松宏等.隧道的两种减震措施研究[J].岩石力学与工程学报.2005.1,24(2):222-229
    [100]高峰,关宝树.隧道地震反应分析中几种边界条件的比较[J].甘肃科学学报.2004.3,16(1):109-113
    [101]孔戈,周健,徐建平,许敢.盾构隧道横向地震响应规律研究[J].岩石力学与工程学报.2..7.7,26(增1):2872-2879
    [102]李德武,高峰.隧道洞口段三维地震反应分析[J].兰州铁道学院学报.1998.6,17(2):1-5
    [103]Monsees JE,Merritt JL. Seismic modeling and design of under ground struetures[J]. Numerieal Method In Geomechanics. Innsbruck,1833-1842,1991.
    [104]Shukla DK,Rizzo PC,StePhenson DE. Earthquake load analysis of tunnels and shafts[C]. Proeeeding of The 7th World Confereneeon Earthquake Engineering.1980, (8):20-28.
    [105]T.Krauthammera and Y Chen. Soil-structure interface effects on dynamic interaetion analysis of reinforced concrete life lines[J]. soil Dynamies and Earthquake Engineering,1998,8(1):32-42.
    [106]J.Dominguez. Boundry elements in dynamies[M]. Computational Meehanies Publications, Elsevier Applied Seienee,1993.
    [107]Davis C A,Lee V M,Bardet J P. Transverse response of underground cavities and Pipes to ineident SV waves[J]. Earthquake Engineering and Structural Dynamie.2001,30 (3):383-410.
    [108]Lee V M,Karl J.On. deformation of near a cireular underground cavity subjeeted to ineident plane P wave[J]. European Journal of Earthquake Engineering,1993,7(1):29-36.
    [109]吕涛.震作用下岩体地下洞宝响应及安全评价方法研究[D].武汉:中国科学院武汉岩土力学研究,2008.
    [110]黄先锋.地下结构的抗震计算[J].铁道建筑,1999,6:3-6
    [111]孙超.地下结构抗震性能及分析方法研究[D].哈尔滨:中国地震局工程力学研究所,2009.
    [112]卢慈荣,蒋建群.地下隧道结构抗震分析综述[M].史佩栋编.浙江省建筑业行业协会地下工程分会,2003.
    [113]梁建文,张浩,Leevw.地下双洞室在sv波入射下动力响应问题解析解[J].振动工程学报,2004,17(2):132-140.
    [114]梁建文,张浩,Leevw.平面P波入射下地下洞室群动应力集中问题解析解[J].岩土工程学报,2004,26(6):815-819.
    [115]李建波.结构地基动力相互作用的时域数值分析方法研究[D]大连:大连理工大学,2005.
    [116]陈磊,陈国兴,李丽梅.近场和远场地震动作用下双层竖向重叠地铁隧道地震反应特性[J].中国铁道科学,2010,31(1):79-86.
    [117]隋斌,朱维申,李晓静.地震荷载作用下大型地下洞室群的动态响应模拟[J].岩土工程学报,2008,28(12):187-182.
    [118]王如宾,徐卫亚,石崇等.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报,2008,28(3):569-575.
    [119]陶连金等.在地震载荷作用下的节理岩体地下洞室围岩稳定性分析[J].中国地质灾害与防治学报,1998,9(1):32-40.
    [120]张楚汉,刘海笑.层状与各向异性介质波动问题的时域边界元法及工程应用[J].重庆建筑大学学报,2000,22(6):100-104.
    [121]丁伯阳,宋新初,袁金华.饱和土隧道内集中荷载作用下振动位移反应的Green函数解答[J].工程力学,2009,26(6):153-157.
    [122]Toshihiko, NaonobuT, Katsumis, etal [M]. Dynamic response of twin circular tunnels during earthquakes. Equehi RT Dames, Moore. Proeeedings of the 4th US-Japan Workshop Prevention for lif eline Systems. Washington:US Government Printing Offiee,1992.
    [123]HamadaH,KitaharaM. Earthquake observation and BIE analysis on dynamie behavioro frock cavern[C]. Numerical Methodsin Geomeehanics. Preoeeedings of the Fifthhit Cmational Confereneeon Numetieal Methodsin Geomechanics.Nagoyav 1-5 APRIL 1985 1525-1532.
    [124]SharmaS,JuddR.J. Undergroundopening damage from earthquakes[J]. Engineering Geology,1991,30:263-276.
    [125]Dowding C.H.,RozenA. Damage to rock tunnels from earthquake shaking [J].Geoteeh.Eng.Div, ASCE104(GTZ),1978:175-191.
    [126]Anders Ansell. In situ testing of young shotcrete subjected to vibrations from blasting[J]. Tunnelling and Underground Space Technology.2004,19:587-596.
    [127]Yong-Hun Jong, Chung-In Lee. Influence of geological conditions on the powder factor for tunnel blasting[J]. Int. J. Rock Mech. Min. Sci.2004,41(3):1-7
    [128]C.S. Wu, J.X. Li, X. Chen, Z.P. Xu. Blasting in twin tunnels with small spacing and its vibration control [J]. Tunnelling and Underground Space Technology.2004,19:518.
    [129]Guowei Ma, Hong Haoa, Yingxin Zhou. Assessment of structure damage to blasting induced ground motions[J]. Engineering Structures.2000,22:1378-1389.
    [130]P.K. Singh. Blast vibration damage to underground coal mines from adjacent open-pit blasting[J]. International Journal of Rock Mechanics & Mining Sciences.2002,39:959-973.
    [131]Zhongqi Wang, Yong Lu. Numerical analysis on dynamic deformation mechanism of soils under blast loading[J]. Soil Dynamics and Earthquake Engineering.2003,23:705-714.
    [132]Balendra T, Koh C G, Ho Y C. Dynamic response of buildings due to tains in underground tunnel [J].Earthquake Engineering and Structural Dynamics,1991, 20:275-291.
    [133]Toki.Unified formulation of radiation conditions for the wave equation.International Journal for Numerical Methods in Engineering. 2002,53(2):275-95.
    [134]Sato..Infinite elements in quasi-static materially nonlinear problems, Comput-ers and Structures 1983;18(4):739-751.
    [135]Ali Kahriman. Analysis of parameters of ground vibration produced from bench blasting at a limestone quarry [J]. Soil Dynamics and Earthquake Engineering.2004,24:887-892.
    [136]J.-P. Latham, Ping Lu. Development of an assessment system for the blastability of rock masses [J]. International Journal of Rack Mechanics and Mining Sciences.1999,36:41-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700