用户名: 密码: 验证码:
桥隧工程安全监测的光纤光栅传感理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国现代化建设的不断深入,桥梁和隧道工程建设快速发展,且工程建设重点逐渐向复杂地区转移,与此同时施工环境逐渐恶劣,地质条件越发复杂,桥梁与隧道工程建设施工期与服役期的安全事故频发,并造成严重的人员伤亡与经济损失。针对灾害类型及事故特点,研究适用于桥梁与隧道工程安全监测的传感理论与技术,是解决桥隧工程安全难题的有效方法。光纤光栅(Fiber Bragg Grating, FBG)传感技术以其材质、精度、组网能力等优势,为解决该难题提供了可行的途径,但目前桥隧工程安全监测领域,植入光纤光栅的智能土工材料研究较少,传感器件大多仅考虑普通光纤光栅轴向均匀应变特性,器件选择与传感特性研究较为单一,微型化与高精度的光纤光栅传感器研究不够完善,不能满足复杂环境下桥隧工程实时监测的需要。
     针对上述问题,本文以桥梁与隧道工程安全监测为应用背景,研究光纤光栅传感理论与关键技术,以桥隧工程中不同灾害类型的工程现场应用及模型试验为依托,在分析光纤光栅轴向应变传感模型的基础上,根据桥隧工程的应用需求,采用有限元法优化设计了微型化、高精度光纤光栅传感器系列;发挥光纤光栅可植入性强的巨大优势,研究光纤光栅与土工格栅的在线复合工艺,研制了集测量与加固于一体的智能土工格栅及其二维、三维变形场传感方法;以新型光纤光栅的传感特性为突破口,研究了复杂空间应力条件下啁啾、相移光纤光栅的光谱变化规律,实现了光纤光栅传感器在桥隧工程现场及模型试验中应用,最后基于支持向量回归机对缺失数据进行修补,进一步提高系统的智能性与可靠性。本文的主要研究工作如下:
     1、根据桥隧工程某些应用场合对小体积、多参数传感器的需求,在分析光纤光栅传输理论与传感模型的基础上,基于有限元力学仿真,对多参数光纤光栅传感器进行优化设计,研制了高精度、微型化的光纤光栅传感器系列,包括:应变损失小的表贴式光纤光栅应变传感器、高精度的光纤光栅位移传感器、与被测介质匹配良好的微型光纤光栅土压力计、适用于裂隙与管道流速实时监测的光纤光栅流速计,详细研究了不同参数传感器的传感原理与性能特性,为桥隧工程安全监测特殊场合的应用提供有效的技术手段。
     2、针对桥隧工程的智能土工材料研究的不足,以桥隧工程中用于结构加固的土工格栅为载体,结合光纤光栅易植入、局部检测精度高、成本低等的优势,通过研究光纤光栅与土工格栅的在线植入工艺,研制了集测量与加固于一体的智能土工格栅;组建基于自修复FBG传感网络的智能土工格栅传感系统,并开展智能土工格栅拉伸性能试验,验证光纤光栅对格栅拉伸的响应特性。在此基础上重点研究了基于离散曲率的土工格栅变形传感方法,实现了基于智能土工材料的桥隧工程中二维及三维变形场传感,通过仿真与实验验证了其可行性,本章研究填补了具有空间变形场自传感功能的桥隧工程智能型土工材料的研究空白。
     3、针对均匀光纤光栅在空间复杂应力下容易发生光谱畸变,造成无法实现复杂应力的测量,且轴向应变测量严重失真的难题,以啁啾光纤光栅(Chirped Fiber Bragg Grating, CFBG)与相移光纤光栅(Phase Shifted Fiber Bragg Grating, PSFBG)这两种典型的非均匀光纤光栅空间应力传感特性为突破点,通过分析啁啾、相移光纤光栅这两种新型光纤光栅传感器件的空间“力—光”特性,研究其在轴向均匀与非均匀受力、不同大小径向力、不同径向力分布角度等复杂空间应力下光谱形状、中心波长、带宽、反射率等光谱信息的响应规律,获取了基于非均匀光纤光栅的复杂空间应力测量方法,并拓宽了新型光纤光栅器件的应用领域。
     4、针对桥梁与隧道工程中传统传感方式监测精度低、匹配性差的缺陷,组建了基于高精度与微型化光纤光栅传感器系列的光纤光栅传感系统,并应用于桥梁与隧道工程现场及模型试验中。针对桥梁与隧道工程中不同的事故类型与应用场合,分别对隧道支护变形、桥梁节段接缝位移、动水注浆裂隙流场流速、海底隧道围岩压力等不同物理参数进行实时监测,分析这些监测参数对隧道变形、桥梁下挠、突水等灾害治理、围岩应力释放等过程的响应规律,验证系统中光纤光栅传感器系列的实用效果。
     5、针对监测过程中的光纤光栅传感系统由于光谱畸变或传感器损坏可能造成关键点数据突然缺失的问题,研究基于支持向量机(Support Vector Machine,SVM)的缺失数据修补方法,首先根据其他传感器及影响因素与待修补传感器的相关性,建立数据缺失前待修补传感器数据与各影响因素的非线性函数关系模型,随后,根据该模型以其他传感器及影响因素为测试集输入,计算待修补传感器的缺失数据,实现对改点缺失数据的估计与修补,进一步提高安全监测中光纤光栅传感系统的智能性与可靠性。
With the deepening of the modernization construction in China, Bridge and Tunnel Engineering constructions develop rapidly, and engineering field transfer to those areas with more complex geological conditions gradually. Under this situation, more and more geological disasters and safety accidents occurs during the construction periods or service periods in Bridge and Tunnel Engineering, which lead to disastrous consequences. Study on safety monitoring theory and technology based on different disasters and accidents provide an effective solution to Bridge and Tunnel Engineering safety problem. Relying on the advantages in materials, accuracy, capacity of multiplexing, Fiber Bragg grating (FBG) sensing technology is regarded as one of the most feasible methods for the safety monitoring of Bridge and Tunnel Engineering. However, there are some drawback exsits in Bridge and Tunnel safety monitoring areas. Firstly, little research focuses on smart geotextiles embedded within FBG. Additionally, the investigation of sensing characteristics of new-type fiber grating elements are relatively onefold, as most research only study the uniform fiber Bragg grating sensing characteristic under equally axial strain. Thirdly, the design of FBG sensors with both small size and high precision is imperfect. Therefore, currently FBG sensing technology cannot meet the requirements of real-time monitoring in many applications in Bridge and Tunnel Engineering.
     In response to above problems, detailed research concerning fiber Bragg grating sensing theory and key technology for Bridges and Tunnels Engineering safety monitoring are carried out in this dissertation. Based on the application of model tests and engineering projects, FBG axial strain sensing model is analyzed firstly, followed by the optimal design of a series of precision and miniature FBG sensors based on Finite Element Method (FEM) according to the requirement of measurement. And then, online embedding technologies which combine FBG into Geogrid are studied, and smart Geogrid embedded within FBG are developed to realize reinforcement and self-sensing. Deformation sensing algorithm based on discrete curvature is utilized to realize2-Dimensional or3-Dimensional deformation field sensing. In order to explore application of new-type fiber grating as well as realize complex spatial load precision measurement, the spectral characteristics of chirped fiber Bragg grating and phase shifted fiber Bragg grating under complex spatial load are studied systematically. Finally, applications of fiber Bragg grating technology for real tunnel as well as model tests are introduced, and missing data repair methods based on support vector machine (SVM) is used to improve intelligence and reliability of FBG sensing system. The major research is organized as followings:
     1. According to the needs of sensor with small-size and multi-parameter, precision and miniature FBG sensors for different measurands are designed and optimized by Finite Element Method simulation, including surface-mounted FBG strain sensor with less strain transfer loss, FBG crack/displacement senor with high-precision, miniaturized FBG soil-pressure sensor which has better match characteristic with soil medium; a target-type FBG flow velocity sensor which is suitable for both fracture and pipe flow velocity monitoring. On the basis of FBG strain sensing principles, all the sensing model and sensing properties of those sensors are studied theoretically and experimentally.
     2. In response to the deficiency of smart Geosynthetics, the Geogrid which is originally used for structure reinforcement in civil engineering is adopted as carrier material to embed optical fiber Bragg grating in. By studying online embeding technologies of FBG into Geogrid, the smart Geogrid which can be used for reinforcement and monitoring is developed, self-restore FBG sensing network are studied for the FBG sensing system in smart Geogrid to improve the reliability. And then, the stretching experiment of smart Geogrid is implemented to indicate its stretching property. Additionally, the deformation sensing algorithm based on discrete curvature is studied as the methods to realize2-Dimensional or3-Dimensional deformation field sensing, and feasibility of the method are verified by both numerical simulations and lab experiments. The research fills the blank of smart Geosynthetics with spatial deformation self-sensing capability in Bridges and Tunnels Engineering.
     3. Under non-uniform load stress, the spectrum of uniform fiber Bragg grating is prone to be distorted, which make it is not only impossible to realize accurate measurement of complex spatial load, but also could not obtain axial strain. According to this problem two non-uniform fiber Bragg grating-chirped fiber Bragg grating and phase shifted fiber Bragg grating-are selected as new-type fiber grating sensing elements. The spectral characteristics of these two kinds of fiber Bragg grating under complex spatial load stress including axial uniform and non-uniform stress, radial load with different values as well as distribution angels are studied systematically. Variation of spectral shapes, central wavelength, bandwidth, and reflectivity under complex spatial load stress are acquired. Relative research results explore application of new-type fiber grating as well as provide theoretical foundation for complex spatial load measurement based on non-uniform fiber Bragg grating.
     4. According to the defects that the traditional sensing technology used Bridges and Tunnels Engineering is low in accuracy and poor in mechanical matching characteristics with structure to be measured, the FBG sensing system based on the optimal designed FBG sensor has been constructed and used in engineering projects and model tests to monitor the variation of key physical parameters in real-time. Regarding to different disasters and accidents, the tunnel support deformation, shear displacement of bridge's segment joints, fracture flow velocity in process of dynamic water grouting, and pressure of surrounding rock are monitored by FBG sensing system to study the response of these physical parameters to tunnel deformation, bridge deflection, water inrush disaster, and tunnel stability.
     5. As data acquired by FBG sensing system might miss due to FBG spectrum distorted or FBG sensor failure in the process of monitoring, the missing data repair method based on SVM is studied. Firstly, based on correlation between the broken sensor and other sensors or relative factors, the nonlinear function relation model between broken sensor's data and other relative factors are established. Then the function, which utilizes other sensors' data and other relative factors as input, is adopted to calculate the failed sensor's data. Finally, the calculated data will be treated as missing data for analysis. This method further improved the intelligence and the reliability of FBG sensing system.
引文
[1].王梦恕.中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家[J].铁道标准设计,2003(1):1-4.
    [2].韩亮,樊健生.近年国内桥梁垮塌事故分析及思考[J].公路,2013,(3):124-127.
    [3].戈铭,王涛.桥梁坍塌事故的原因分析及其预防措施[J].特种结构,2012,29(2):72-75.
    [4].邬立,万军伟,陈刚,赵璐.宜万铁路野三关隧道“8.5”突水事故成因分析[J].中国岩溶,2009,28(02):212-218.
    [5].金新锋,夏日元,梁彬.宜万铁路马鹿箐隧道岩溶突水来源分析[J].水文地质工程地质,2007.(02):71-74.
    [6].张建伟.运营隧道健康检测评估模型研究[D].重庆:重庆交通大学.2012.
    [7].石志龙,徐超.亚婆髻隧道施工监控量测与稳定分析[J].地下空间与工程学报,2010,6(3):526-531.
    [8].王汉鹏,李术才,郑学芬,朱维申.地质力学模型试验新技术研究进展及工程应用[J].岩土力学与工程学报,2009,28(21):2765-2771.
    [9].陈陆望,白世伟,殷晓曦,赵瑜.坚硬岩体中马蹄形洞室岩爆破坏平面应变模型试验[J].岩土工程学报,2008,30(10):1520-1526.
    [10].赵瑜,卢义玉,陈浩.深埋隧道三心拱洞室平面应变模型试验研究[J].土木工程学报,2010,43(3):68-74.
    [11].刘梦微.基于GPS的桥梁变形监测应用研究[D].东华理工大学.2013.
    [12].孙言强.无线传感器网络中干扰攻击关键技术研究[D].长沙:国防科学技术大学.2012.
    [13].李庶林.试论微震监测技术在地下工程中的应用[J].地下空间与工程学报,2009,5(1):122-128.
    [14]. Alan D. Kerse, Miehae A. Davis, Heather J. Patrick,etaLFiber Grating Sensors [J]. Journal of Lightwave Technology,1997,15(8):442-463.
    [15].Sungchul Kim,Seungwoo Kim,Jaejoong Kwon etal.Fiber Bragg Grating Strain Sensor Demodulator Using a Chirped Fiber Grating [J]. IEEE Photonies Technology Letters,2001,13(8):839-841.
    [16].Peter K.C, Chan, et al. Multi-point strain measurement of composite-bonded concrete materials with a RF-band FMCW multiplexed FBG sensor array [J]. Sensors and Actuators,2000 (87):19-25.
    [17].Agostino Iadieiceo, Andrea Cusano, Stefania Campopiano etal.Thinned Fiber Bragg Gratings as Refractive Index Sensors[J].IEEE Sensors Journal,2005, 5(6):1288-1295.
    [18].CHEN Jinjie, LIU Bo, ZHANG Hao. Review of fiber bragg grating sensor technology.Frontiers of Optoelectronics in China,2011,4(2):204-212.
    [19].Hang-yin Ling, Kin-tak Lau, et al. Viability of using an embedded FBG sensor in a composite structure for dynamic strain measurement [J]. Measurement,2006 (39):328-334.
    [20].赵星光,邱海涛.光纤Bragg光栅传感技术在隧道监测中的应用[J].岩石力学与工程学报,2007,26(3):587-593.
    [21].Mousumi Majumder, Tarun Kumar Gangopadhyay, Ashim Kumar Chakraborty, et al. Fibre Bragg gratings in structural health monitoring—Present status and applications[J]. Sensors and Actuators A,2008,147:150-164.
    [22].K.O.Hill,Y.Fujii,D.C.Johnson,B.S.Kawasaki. Photosensitivity in Optical Fiber Waveguides-Application to Reflection Filter Fabrication[J]. Appl.Phys.Lett., 1978,32(10):647-649.
    [23].GMeltz.W.W.Morey, W.H.Glenn, Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method[J],Optics Letters,1989,14(15):823-825.
    [24].K.O.Hill,B.Malo,F.Bilodeau,D.C.Johnson, J.Albert,Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J],Appl.Phys.Lett,1993,62(10):1035-1037.
    [25].P.J.Lemaire,R.M.Atkins,V.Mizrahi,and W.A.Reed,High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2doped optical fibers[J],Electron.Lett,1993,29:1191-1193.
    [26].A.M.Vengsarkar,J.R.Pedrazzani,J.B.Judkins,P.J.Lemaire,N.S.Bergano,and C.R.Davidson, Long-period fiber-grating-based gain equalizers[J], Opt.Lett, 1996,21(5):336-338.
    [27].M.Bemier,D.Faucher, R.Valeeeta1.Bragg Gratings Photo-Induced in ZBLAN Fibers by Femtosecond Pulses at 800nm[J].Opt.Lett.,2007,32(5):454-456.
    [28].贾宏志.光纤光栅传感器的理论与技术研究[D].西安:中国科学院西安光学精密机械研究所.2000.
    [29].黄权,秦子雄等.光纤光栅制作技术的最新进展[J].光通信技术,2006,30(6):19-21.
    [30].K.O Hill, G.Melt Z.Fiber Bragg grating technology fundunmentals and overview[J], IEEE J. Light wave Technol,1997,15(8):1253-1276.
    [31].A.Othonos. Fiber Bragg gratings[J], Rev.Sci.Instrum,1997,68(12):4309-4341.
    [32].J.A.R. Williams, et al. Fiber dispersion compensation using a chirped in fiber Bragg grating[J]. Electron. Lett.,1994,30(12):985-987.
    [33].F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides[J], Opt. Lett.,1987,12(10):847-849.
    [34].L. Zhang, et al. Wide-stop band chirped fiber moire grating transmission filters[J]. Electron. Lett.,1995,31:477-479.
    [35].M.G. Xu, et al. Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre[J]. Electron. Lett.,1995,31(10):823-825.
    [36]. J. Azana, et al. Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings[J]. Electron. Lett., 1999,35(25):2223-2224.
    [37].R.Zengerle and O.Leminger. Phase-shifted Bragg Filters with improved transmission characteristics[J]. IEEE Journal of Light wave Tech., 1995,13:2354-2358.
    [38].L. R. Chen. Designs of flat-top band pass filters based on symmetric multiple phase-shifted long-period fiber gratings[J]. Optics Communications, 2002,205(4):271-276.
    [39].周少玲.相移光纤光栅特性分析[J].光通信技术,2003,27(4):47-49.
    [40].Yariv A.Coupled-Mode Theory for Guided-Wave Optics[J].IEEE Journal of Quantum Electronics,1973,9:919-933.
    [41].Kogelnik H.Filter Response of Nonuniform Almost-Periodic Structures[J].Bell System Technical Journal,1976,55:109-126.
    [42].Yamada M,and Sakuda K.analysis of Almost-Periodic Distributed Feedback Slab Waveguide Via a Fundamental Matrix Approach[J].Applied Optics, 1987,26:3473-3478.
    [43].W.W.Morey, GMeltz, W.H.Glenn. Bragg Grating Temperature and Strain Sensor: Sixth Optieal Fiber Sensor Conferenee[J].Paris,Franee:Springer,1989,526-531.
    [44].T. Erdogan. Fiber grating spectra[J]. Lightwave Technol,1997,15(8):1277-1294.
    [45].张东生.光纤光栅的谱形控制及其应用研究[D].天津:南开大学,2001.
    [46].HUANG Hong-mei. Study on the spectral response of fiber Bragg grating sensor under non-uniform strain distribution in structural health monitoring [J]. OPTOELECTRONICS LETTERS,2011,7(2):0109-0112.
    [47].R. Gafsi, M. A. E1-Sherif. Analysis of Induced-Birefringence Effects on Fiber Bragg Gratings[J].Opt. Fiber Technol.,2000,(6):229-322.
    [48].Federico Bosiaa, John Botsisa, Mauro Facchinia, Philippe Giaccarib. Deformation characteristics of composite laminates part I:speckle interferometry and embedded Bragg grating sensor measurements[J]. Composites Science and Technology,2002,62:41-54.
    [49].Jingxi Zhao, Xia zhang, Yongqing Huang, Xiaomin Ren. Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression[J]. Optics Communications,2004,229:203-207.
    [50].N. Takeda, S. Yashiro, T. Okabe. Estimation of the damage patterns in notched laminates with embedded FBG sensors[J]. Composites Science and Technology,2006,66:684-693.
    [51].吴飞.基于光纤光栅的多力参数测量及信号分析技术的研究[D].秦皇岛:燕山大学,2009.
    [52].黄娟,姜德生,周次明,廖胜辉.相移光纤光栅的反射光谱特性及其应用[J].武汉理工大学学报·信息与管理工程版,2005,27(5):66-69.
    [53].余华清,姜向东.相移光纤光栅分析方法的比较研究[J].激光与红外,2005,35(5):352-355.
    [54].蔡璐璐,吴飞,王玉田.相移光纤光栅的反射谱特性分析[J].中国激光,2009,36(8):2070-2075.
    [55].周少玲,朱清,陈小宝,陈建平.相移光纤光栅应变传感特性的实验研究[J].光纤与电缆及其应用技术,2003,(1):16-22.
    [56].姜德生,廖胜辉,周次明.应变、温度对λ/4相移光栅反射光谱特性的影响[J].光子学报,2005,34(10):1577-1581.
    [57].D. Gatti, G. Galzerano, D. Janner, S. Longhi, P. Laporta. Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique[J].OPTICS EXPRESS,2008,16(8):1945-1950.
    [58].Tongqing Liu, Ming Han. Analysis of π-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection[J]. IEEE SENSORS JOURNAL,2012,12(7):2368-2373.
    [59].鲁韶华,许鸥,董小伟,刘艳,李彬,简水生.啁啾相移光纤光栅的反射谱特性[J].中国激光,2008,35(4):0577-0581.
    [60].康赞.啁啾相移光纤光栅的光谱特性分析及其应用[D].厦门:厦门大学.2005.
    [61].Karin Ennser, Mikhail N. Zervas, and Richard I. Laming. Optimization of Apodized Linearly Chirped Fiber Gratings for Optical Communications[J]. IEEE JOURNAL OF QUANTUM ELECTRONICS,1998,34(5):770-778.
    [62].贾宏志,李育林.线性啁啾光纤光栅的耦合模理论分析[J].光子学报,2002,29(2):147-151.
    [63].吕明双.啁啾光纤光栅特性分析及压杆调谐技术[D].济南:山东大学.2009.
    [64].Wenjun Zhou, XinyongDong, Kai Ni, C.C.Chan, P. Shum. Temperature-insensitive accelerometer based on a strain-chirped FBG[J]. Sensors and Actuators A:Physical,2010,157(1):15-18.
    [65].郭炳霞.线性啁啾光纤布拉格光栅的偏振特性研究[D].哈尔滨:哈尔滨工业大学.2010.
    [66].孙丽.光纤光栅传感技术与工程应用研究[D].大连:大连理工大学.2006.
    [67].P. Moyo, J.M.W. Brownjohn, R. Suresh, S.C. Tjin. Development of fiber Bragg grating sensors for monitoring civil infrastructure[J].Engineering Structure, 2005,27:1828-1834.
    [68].任亮,李宏男,胡志强,李建波,林皋.一种增敏型光纤光栅应变传感器的开发及应用[J].光电子.激光,2008,19(11):1437-1441.
    [69].沈小燕.光纤光栅应变传感及扩大应变传感范围的技术研究[D].天津:天津大学.2010.
    [70].何俊,周智,董惠娟,张广玉,欧进萍,灵敏度系数可调布拉格光栅应变传感器的设计[J].光学精密工程.2010,18(11):2339-2346.
    [71].李东升,李宏男.埋入式封装的光纤光栅传感器应变传递分析[J].力学学报,2005,37(4):435-441.
    [72].魏世明.岩体变形光纤光栅传感检测的理论与方法研究[D].西安:西安科技大学.2008.
    [73].张伟刚,刘艳格,王跃等.利用单光纤光栅实现力学量垂直感测的研究[J].中国激光,2003,30(1):71-74.
    [74]. Yong Zhao, Hua-wei Zhao, Xin-yuan Zhang, Qing-yao Meng, Bo Yuan. A Novel Double-Arched-Beam-Based Fiber Bragg Grating Sensor for Displacement Measurement[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2008,20(15):1296-1298.
    [75].何俊,董惠娟,周智,张广玉.一种适合工程应用的新型光纤光栅位移传感器[J].哈尔滨理工大学学报,2011,15(5):0061-0065.
    [76].丁腾蛟.基于悬臂梁结构的大量程光纤Bragg光栅位移传感器[D].武汉:武汉理工大学.
    [77].Chia-Chen Changa, Gregg Johnson, Sandeep Vohra, Bryan Aithouse. Development of Fiber Bragg Grating Based Soil Pressure Transducer for Measuring Pavement Response [J]. Smart Structures and Materials,2000, 3986.480-488.
    [78].Zhi Zhou, Hezhe Wang, Jinping Ou. A New Kind of FBG-based Soil-Pressure Sensor[C].OFS22.2006.
    [79].Ricardo Correia, Jin Li, Stephen Staines et al. Fibre Bragg grating based effective soil pressure sensor for geotechnical applications[C].20th International Conference on Optical Fibre Sensors,2009,7503,75030F-1-4.
    [80].胡志新,王震武,马云宾,张君.温度补偿式光纤光栅土压力传感器[J].应用光学,2010,31(1):110-113.
    [81].Feng Li,Yanliang Du,Wentao Zhang,Fang Li. Fiber Bragg grating soil-pressure sensor based on dual L-shaped levers[J]. Optical Engineering,2013,52(1): 014403-1-5.
    [82].Lueas J.Cashdollar, KevinP.Chen. Fiber Bragg Grating Flow Sensors Powered by in-Fiber Light[J]..IEEE Sensor Journa,2005,5(6):1327-1331.
    [83].禹大宽,乔学光,贾振安,王敏.一种测量温度和流速的光纤光栅传感器[J].应用光学,2006,27(3):228-231.
    [84].陈建军,张伟刚,涂勤昌,邹玉姣,赵天工,杜晓娜,董孝义.光纤光栅的高灵敏度流速传感器[J].光学学报,2006,26(8):1136-1139.
    [85].杨淑连,申晋,李田泽.基于双光纤布拉格光栅的流速传感器[J].半导体光电,2009,30(5):759-762.
    [86].Takeda S, Aoki Y, Ishikawa, Takeda N, Kikukawa. Structural health monitoring of composite wing structure during durability test[J], Compos. Struct, 2007(79):133-139.
    [87].V.Antonucci, M.Giordano, et al. Ballistic impact monitoring of glass fibers composites by Fiber Bragg Grating Sensors[J]. Conference of SMART.2009.
    [88].Takeda S, Minakuchi S, Okabe Y and Takeda N. Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter FBG sensors[J]. Composites A,2005(36):903-08.
    [89].Sein J, Udd E, Schulz W. Health monitoring of an oregon his torical bridge with fiber grating strain sensors[J]. Proceedings of SPIE,1999,3671:128-134.
    [90].孙东亚.光纤智能材料器件与智能锚索结构系统的研究[D].武汉:武汉理工大学.2001.
    [91].Zhi Zhou, Zhichun Zhang, Nianchun Deng, Xuefeng Zhao, Dongsheng Li, Chuang Wang, Jinping Ou. Applications of FRP-OFBG Sensors on Bridge Cables[C]. Proceedings of SPIE,2005,5765:668-677.
    [92].李剑芝.基于光纤光栅传感的智能纤维复合材料斜拉索丝的研究[D].北京:北京交通大学2011.
    [93].C.T. Gnanendran, A.P.S. Selvadurai. Strain measurement and interpretation of stabilising force in geogrid reinforcement[J]. Geotextiles and Geomembranes, 2001,(19)177-194.
    [94].E Thiele, R Helbig, H Erth, K Krebber, N Nother, A Wosniok. DIKE MONITORING[C].4th International Symposium on Flood Defence, Toronto, Ontario, Canada,2008,19-1-7.
    [95].M. Bartholmaia, P. P. Neumanna, D. Lazikb. Multifunctional Sensor for Monitoring of CO2 Underground Storage by Comprehensive and Spatially Resolved Measuring of Gas Concentrations, Temperature and Structural Changes [J]. Energy Procedia,2013,(37):4033-4040.
    [96].吴忠杰,罗根传,刘新喜.隧道监测系统研究现状及其发展趋势[J].吉首大学学报(自然科学版),2012,33(6):70-77.
    [97].周智.土木工程结构光纤光栅智能传感元件及其监测系统[D].哈尔滨:哈尔滨工业大学博士学位论文.2003.
    [98].刘永前.大型桥梁结构健康监测技术研容与应用[D].北京:北京交通大学.2007.
    [99].裴强,郭迅,张敏政.桥梁健康监测及诊断研究综述[J].地震工程及工程震动[J],2003,23(2):61-67.
    [100].张家坤,弓俊青,岳清瑞.光纤光栅传感技术在土木工程结构监测中的应用[J].北方交通大学学报.2003,27(5):94-97.
    [101].毕卫红,郎利影.光纤传感技术在桥梁检测中的应用[J].仪表技术与传感器,2002,6,49-51.
    [102]. MCCREARY R,MCGAUGHEY J,POTVIN Y,et al.Results From Microseismic Monitoring,Conventional Instrumentation,And Tomography Surveys in the Creation And Thinning of A Burst-Prone Sill Pillar[J].Pure and Applied Geophusics,1992,139(3/4):349-373.
    [103]. MILEV A M,SPOTTISWOODE S M,RORKE A J,et al.Seismic Monitoring of a Simulated rock Burst on a wall of an Underground Tunnel[J] Journal of the South African Institute of Mining and Metallurgy,2001,101(5):253-260.
    [104]. THEODORE I U,TRIFU C I.Recent Advances in Seismic Monitoring Technology at Canadian mines [J].Journal of Applied Geophysics,2000, 45(4):225-237.
    [105]. 杨天鸿,唐春安,谭志宏,朱万成,冯启言.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.
    [106]. 姜福兴,叶根喜,王存文,张党育,关永强.高精度微震监测技术在煤矿突水监测中的应用[J].岩石力学与工程学报,2008,27(9):1932-1938.
    [107]. 姜福兴,宋广东,孔令海,王存文.微地震波在煤矿岩层中的传播特征研究[J].岩石力学与工程学报,2009,28(suppl):2674-2679.
    [108]. 陈炳瑞,冯夏庭,曾雄辉,肖亚勋,张照太,明华军,丰光亮.深埋隧洞TBM掘进微震实时监测与特征分析[J].岩石力学与工程学报,2011,30(2):275-283.
    [109]. 徐奴文,唐春安,沙椿,梁正召,杨菊英,邹延延.锦屏一级水电站左岸边坡微震检测系统及其工程应用[J].岩石力学与工程学报,2010,29(5):915-925.
    [110]. 盛东,吴荣新,曹煜.采煤面覆岩变形与破坏立体电法动态测试[J].岩石力学与工程学报,2009,28(9):1870-1875.
    [11 1]. 刘斌,李术才,李树忱,李利平.电阻率层析成像法监测系统在矿井突水模型试验中的应用研究[J].岩石力学与工程学报,2010,29(02):297-307.
    [112].刘枝辰,俞腾,谭力.桥梁结构安全健康监测的技术方法探究[J].科技通报,2013,29(5):87-92.
    [113]. Lynch J P, Sundararajan A, Law K H. et al. Design of a wireless active sensing unit for structural health monitoring[J], Proceedings of the 11th Annual International Symposium on Smart Structures and Materials, San Diego, CA, 2004,5394:157-168.
    [114]. Nagayama T, Spencer B F, Structural Health Monitoring Using Smart Sensors[C], Newmark Structural Engineering Laboratory Report Series, No.001, 2007.
    [115]. 喻言,李宏伟,欧进萍.结构监测的无线加速度传感器设计与制作[J].传感技术学报,2004,(3):463-466.
    [116]. 叶伟松,袁慎芳.无线传感网络在结构健康监测中的应用[J].传感技术学 报,2006,19(3):890-894.
    [117]. 陈旭丹.基于无线传感的土木工程状态监测研究[D].上海:同济大学,2007.
    [118]. 欧进萍,周智,武湛君,赵雪峰,莫淑华.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(01):45-49+64.
    [119]. 周智,何建平,吴源华,欧进萍.土木结构的光纤光栅与布里渊共线测试技术[J].土木工程学报,2010,43(03):111-118.
    [120]. 李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展[J].地震工程与工程振动,2002,22(06):76-53.
    [121]. 秘雪衡,李宏男,任亮,孙丽.光纤布拉格光栅传感器在钢架结构健康监测中的应用研究[J].防灾减灾工程学报,2005,25(01):43-48.
    [122]. 信思金,梁磊,左军.光纤光栅传感技术在重大工程结构诊断与监测中的应用[J].河南科技大学学报(自然科学版),2005,26(3):52-55.
    [123]. 卢哲安,江志学,石玉华,王佶.光纤光栅传感技术在桥梁监测中的应用研究[J].武汉理工大学学报,2003,25(11):57-59.
    [124]. 赵星光,邱海涛,李川.隧道二次衬砌FBG智能监测与数值模拟[J].西安建筑科技大学学报(自然科学版),2008,40(1):114-120.
    [125]. 薛光桥,张开银,张兵兵,孙峙华.光纤光栅传感器在隧道稳定性判定中的应用[J].武汉理工大学学报(交通科学与工程版),2006,30(6):1088-1090.
    [126]. 蔡周春.FBG传感器在公路隧道二次衬砌和围岩压力监测中的研究[D].昆明:昆明理工大学.2013.
    [127]. 苏胜昔,杨昌民,范喜安.光纤光栅传感技术在高速公路隧道围岩变形实时监测中的应用[J].第22届全国结构工程学术会议.中国新疆乌鲁木齐.2013.
    [128]. 张文涛,孙宝臣,杜彦良.基于光纤光栅的青藏铁路冻土路基地温监测试验研究[J].石家庄铁道学院学报,2005,18(4):49-51.
    [129]. 宋志强,张复荣,赵林,周忠,刘统玉.光纤光栅传感器在路基沉降监测中的应用研究[J].山东科学,2011,24(5):18-21.
    [130]. 李石馨.基于光纤光栅传感器的CRTSⅡ型板式无砟轨道线路状态监测系统[D].北京:北京交通大学.2012.
    [131].刘优平,吴文清,黎剑华,颜涛.高等级公路软基沉降光纤光栅监测技术研究[J].建筑科学,2013,29(9):21-24.
    [132].李仲奎,王爱民.三维地质力学模型试验中光纤传感器的应用研究[J].实 验技术与管理,2006,23(12):57-60.
    [133].柴敬.岩体变形与破坏光纤传感测试基础研究[D].西安:西安科技大学.2003.
    [134]. 朱鸿鹄,殷建华,张林.大坝模型试验的光纤传感变形监测[J].岩石力学与工程学报,2008,27(6):1188-1194.
    [135]. 王静,李术才,隋青美,施斌等.基于相似材料的光纤应变传感器在分区破裂模型试验中的研究[J].煤炭学报,2012,37(9):1570-1575.
    [136]. 王静,隋青美,李术才等.新型光纤光栅渗压传感器在隧道涌水模型中的应用[J].光电子·激光,2009,20(10):1285-1289.
    [137]. 王静,王正方,隋青美等.FBG应变传感系统在巷道涌水模型试验中的研究[J].光电子·激光,2010,21(12):1768-1772.
    [138]. 王静,李术才,施斌,隋青美等.三向FBG应变传感器及在隧道开挖模型试验中的应用研究[J].工程地质学报,2013,21(2):182-189.
    [139]. 王静,施斌等.基于光纤光栅传感器的灾变滑坡模型试验研究[J].工程地质学报,2012,20:810-815.
    [140]. 马豪豪,刘保健,翁效林.光纤Bragg光栅传感技术在隧道模型试验中应用[J].岩土力学,2011,33(2):185-190.
    [141]. 任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连:大连理工大学.2008.
    [142]. E.Peral,J.Capmany,J.Marti.Interative Solution to The Gel-fand-Levitan-Marchenko Coupled Equations and Application to Synthesis of Fiber Gratings [J]. IEEE.Quantum Electron,1996,32(12):2078-2084.
    [143]. 王晓霞.热固性树脂基复合材料的固化变形数值模拟[D].济南:山东大学.2012.
    [144]. 简多.光子晶体光纤特性分析与优化设计[D].重庆:重庆大学.2013.
    [145]. 蒋善超,王静,隋青美,王正方,王宁,曹玉强.微型FBG位移传感器研制及其在模型试验中的应用[J].防灾减灾工程学报,2013,33(3):348-353.
    [146]. 蒋善超,曹玉强,隋青美,王静,王宁,王正方.微型高精度光纤布拉格光栅土压力传感器研究[J].中国激光,2013,40(4):0405002-1-6.
    [147]. 邱荣凯,湛华海,张绪瑞.基于ANSYS的圆形膜片式压力传感器的非线性分析[C].四川省电子学会传感技术专委会第11届学术年会.2009,36-38.
    [148]. 蔡守允,杨大明,朱其俊.模型试验流速测量仪的分析研究[J].水资源与水利工程学报,2007.18(3):36-38.
    [149]. 蔡守允,张晓红.水利工程模型试验量测技术的发展[J].水资源与水工程学报,2009,20(1):78-80.
    [150]. 吴俊,丁牲奇,陈伟民.基于光学互相关发的开放流场流速测量[J].仪表技术与传感器,2009(9):68-70.
    [151].吴俊,丁牲奇,余葵,李晓飚.光电非接触式表面流速测量[J].光学精密工程,2010,18(2):349-356.
    [152].胡玉瑞,唐源宏,李川.光纤Bragg光栅流量传感器[J].传感技术学报,2010,23(4):471-474.
    [153].赵存友.工程流体力学[M].哈尔冰:哈尔冰工业大学出版社,2010.
    [154]. YONG ZHAO, KUN CHEN, JIAN YANG Novel Target Type Flowmeter Based On A Differential Fiber Bragg Grating Sensor[J]. Measurement, 2005,38(3):230-235.
    [155].李海鹰,陈南梁.经编土工格栅的性能和应用[J].国际纺织导报.2000,(2):79-82.
    [156].钱劲松,凌建明,黄琴龙.土工格栅加筋路堤的三维有限元分析[J].同济大学学报,2013,31(12):1421-1425.
    [157]. 王秀成,丁新波,韩建等.经编土工格栅用聚酯长丝的力学性能研究[J].浙江理工大学学报,2009,26(5):0673-0676.
    [158].陈南粱,谈亚飞.玻璃纤维经编土工格栅的生产和性能测试.针织工业.1999.6.
    [159]. 贺晓丽.经编土工格栅的开发与应用[J].天津纺织科技,2007,(3):9-11.
    [160]. 陈南梁,谈亚飞,张晨曙.涂层工艺对经编涤纶土工格栅拉伸性能的影响[J].针织工业,2003,10(5):105-107.
    [161].吴家麒,杨东英,沈林勇,陈建军.基于曲率数据的曲线拟合方法研究[J].应用科学学报,2003,21(3):258-262.
    [162].朱晓锦,张合生,谢春宁,樊红朝.一种基于曲率信息的太空帆板空间曲面拟合算法分析[J].系统仿真学报,2007,19(11):2496-2499.
    [163]. 王静,王正方,隋青美等.基于中心波长位置约束的光纤光栅啁啾效应剔除方法研究[J].中国激光,2012,39(3):1-8.
    [164]. 蒲会兰.线性啁啾光栅的特性分析及仿真[J].甘肃科技,2008,24(8):50-52.
    [165]. Jung-Ryul Lee, Hiroshi Tsuda, Bon-Yong Koo. Single-mode fibre optic Bragg grating sensing on the base of birefringence in surface-mounting and embedding applications[J]. Optics & Laser Technology,2007,39(1):157-164.
    [166], M C Emmons, G P Carmana, K P Mohanchandraa, W L Richards. Characterization and birefringence effect on embedded optical fiber Bragg gratings[J]. Health Monitoring of Structural and Biological Systems,2009,7295 72950C-1-11.
    [167]. 王静.光纤光栅多参数传感理论技术研究及在地下工程灾害监测中的应用[D].济南:山东大学.2010.
    [168]. 于颜华.地下工程灾害光纤多参数监测系统软件平台开发[D].济南:山东大学.2012.
    [169]. 肖裕民,黄仁富.隧道围岩体内位移监测分析[J].西部交通科技.2009,28(10):93-96.
    [170]. 张谢东,郭慧光,耿波.大跨径桥梁的安全监测方法及发展趋势[D].交通科技,2003,(2):1-3.
    [171]. 王荣霞.节段接缝剪切变形及其在桩—土—桥梁体系中的影响效应研究[D].天津:天津大学.2009.
    [172]. 孟新奇,魏伦华,张津辰,李春津,刘云清.大跨径刚构桥梁跨中下挠问题研究[J].世界桥梁,2013,41(2):76-79.
    [173]. 李宏江,刘杰,王荣霞,叶见曙.大跨PC箱梁节段接缝对结构变形的影响[J].应用基础与工程科学学报,2013,21(3):562-568.
    [174]. 何大学,胡世强.大跨径PC连续刚构桥跨中下挠原因分析及防治措施探讨[J].城市道桥与防洪,2012,4(4):112-114.
    [175]. 张霄.地下工程动水注浆过程中浆液扩散与封堵机理研究及应用[D].济南:山东大学.2010.
    [176]. 王梦恕.水下交通隧道发展现状与技术难题[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [177]. 王梦恕.台湾海峡海底铁路隧道建设方案[J].隧道建设2008,28(5):517-526.
    [178]. 洪代玲.大型海底隧道与隧道工程技术的发展[J].世界隧道,1995,(3):50-62.
    [179].郭陕云.关于我国海底隧道建设若干工程技术问题的思考[J].隧道建设,2007,27(3):1-5.
    [180].赵岩.大断面隧道施工过程荷载释放规律研究[D].济南:山东大学,2011.
    [181].宋曙光.青岛胶州湾海底隧道施工过程围岩渗流与变形规律及覆岩厚度的影响研究[D].济南:山东大学,2010.
    [182]. 赵磊,李国和,马现峰.基于支持向量机的缺失数据补齐方法[J].计算机工程与应用,2006,36,207-208.
    [183]. 阎辉,张学工,李衍达.应用SVM方法进行沉积微相识别[J].物探化探计算技术,2000,(2):158-164.
    [184]. 张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,(1):32-42.
    [185]. Vapnik V, Golowich S, Smola A.Support Vector method for function approximation, regression estimation, and signal processing[M].Neural Information Processing Systems.[S.1.]:MIT Press,1997.
    [186]. 李凯,郭子雪.一种基于SVM的函数模拟方法[J].微机发展,2001(3):5-6.
    [187]. 马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报:自然科学版,2000(3):76-78.
    [188].邵伟明,田学民.基于快速留一交叉验证法的在线递推最小二乘支持向量机建模方法[J].青岛科技大学学报(自然科学版),2012,33(5):510-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700