用户名: 密码: 验证码:
电动汽车用双定子永磁无刷电机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染及石油危机的加剧,电动汽车的研发得到广泛重视,在目前车载蓄电池技术未得突破的前提下,电动汽车的电驱动系统是研究重点,显然电动汽车的电驱动系统依赖于不同类型的驱动电机。尽管永磁无刷电机在电动汽车驱动中具有综合优势,但其固有的难以实现弱磁扩速,从而难以实现较低逆变器容量下的低速大转矩和高速小转矩输出的缺陷,影响到电动汽车性能的进一步提高。因此,随着电动汽车对电机性能要求的不断提高,需要开发研究具有新结构、新概念的驱动电机。双定子永磁无刷电机是近几年提出的一种新型永磁无刷电机,因其具有双定子结构,大大改善了传统永磁无刷电机的性能,在电动汽车驱动中具有重要应用价值,目前对该种电机的研究相对较少,因此本文基于电动汽车应用对双定子永磁无刷电机进行深入分析研究,主要包括以下几部分内容:
     (1)分析了双定子永磁无刷电机适合用于电动汽车驱动的结构原理及其性能的优越性。
     双定子永磁无刷电机由内定子、中间转子、外定子嵌套而成,可以看作是一个外转子永磁无刷电机和一个内转子永磁无刷电机的合成。与传统的单定子永磁无刷电机相比,双定子永磁无刷电机不但具有一般永磁无刷电机的优点,且在相同的体积下,当内、外定子绕组共同作用时将具有更高的功率密度。当用作发电机时,可以提高电机的发电能力;当用作电动机时,可以提高电机的转矩输出能力。通过分析各种双定子永磁无刷电机的结构形式,得出串联磁路表贴式结构具有更适合电动汽车应用的性能优势:其转子铁心轭部圆周方向没有主磁通,在机械强度允许范围内转子铁心轭部可以很薄,从而减少电机的体积和重量。
     双定子永磁无刷电机的内、外定子上绕有独立的定子绕组,通常外定子绕组匝数多于内定子绕组匝数,因此,两套绕组既可串联运行,又可单独运行。当内、外定子绕组串联运行时,每相绕组有效串联匝数多,反电动势高,同时转折转速低,且产生较大的电磁转矩,从而能够很好的满足电动汽车低速爬坡及起动加速的要求。当外或内定子绕组单独运行时,每相绕组有效串联匝数少,反电动势低,产生的电磁转矩较小,但转折转速高,使电机能够高速运行,因此即使不经过弱磁扩速,电机也能达到较高的转速。而且当电机一套绕组出现故障时,另一套绕组可以单独运行,使电动汽车驱动具有容错性。同时,通过灵活控制绕组的连接方式,可使电机运行在不同工况下以满足电动汽车不同运行状态的需求。
     (2)根据双定子永磁无刷电机的结构特点,提出了一种双定子永磁无刷电机的设计方法。
     串联磁路表贴式结构的双定子永磁无刷电机因其双定子结构而具有优越的性能,但电机的结构更加复杂了,不仅内、外定子设计参数相互制约,其内、外定子间还存在电磁耦合关系,这大大增加了电机的设计难度,难以采用现有的设计手段对其进行电磁设计,从而限制了该种电机的深入研究和推广应用。因此,本文基于双定子永磁无刷电机的结构特点,提出了一种双定子永磁无刷电机的设计方法,即将双定子永磁无刷电机看作内、外两个单定子永磁无刷电机进行单独设计,然后合成为双定子永磁无刷电机设计方案。由于设计过程中涉及到内、外单定子电机设计参数的匹配,为了加快设计过程,并得到更为合理的设计方案,在设计过程中加入了响应面法和遗传算法进行优化。该方法对设计双定子永磁无刷发电机和电动机同样适用。本文以双定子永磁同步发电机为例,详细介绍了设计方法及设计过程,对最终的设计方案进行了有限元分析并制作了样机进行实验,验证了设计方法的正确性。
     (3)通过对双定子永磁无刷电动机的性能分析,提出了该种电机应用于电动汽车驱动时绕组连接方式的选择原则。
     本文首先设计了一台用于电动汽车驱动的双定子永磁无刷直流电动机,并对不同绕组连接方式下电机的性能进行了电磁场有限元分析,得到了相同逆变器供电时电机的三个额定工作点,即转折转速点,从而得到了双定子永磁无刷直流电动机的转矩转速曲线。其次,进一步对该电机的各运行区域进行细分,并对各运行区域内不同绕组连接方式下电机的性能进行有限元分析,得到了各运行区域内不同绕组连接方式下电机性能的优劣顺序。进而提出了双定子永磁无刷直流电动机基于电动汽车不同运行工况的绕组连接方式选择原则,使电机不仅具有较宽的运行范围,且在较宽的运行范围内能够高效运行,以满足电动汽车驱动系统的要求。最后制作了样机进行了实验验证。
     (4)提出了双定子永磁无刷电动机绕组连接方式的切换方法及绕组换接电路,并分析了绕组换接的动态过程。
     为了满足电动汽车不同运行工况的需求并使电机在各运行工况下具有高效率,需要合理的进行绕组连接方式的切换。经分析,常用的绕组换接方法需将电机电流降至零或接近零时进行绕组切换,换接过程会出现电流和转矩的明显中断。为了避免电流和转矩中断现象、降低绕组换接过程对电机正常运行的影响,本文提出了在电机各相绕组电流过零点时依次进行绕组切换的绕组换接方法,并提出了基于双向晶闸管的绕组换接电路。首先,为了降低控制系统的复杂性,选用双向晶闸管作为绕组换接电路的开关元件,给出了双定子永磁无刷电动机的绕组换接电路。其次,以方波电流驱动的双定子永磁无刷直流电动机和正弦波电流驱动的双定子永磁同步电动机为例,分别对绕组换接的动态过程进行了理论分析。最后,利用有限元仿真软件分别建立了两电机的场路耦合时步有限元仿真模型,对绕组换接的动态过程进行了有限元仿真,验证了绕组换接方法及绕组换接电路的可行性。
With the intensification of the environmental pollution and oil crisis, widespread concern is focused on the research and development of electric vehicles. Unfortunately, the breakthrough of the vehicle-mounted batteries is still not achieved. So the electrical drive system is still the the key of the research. Evidently, the electrical drive system depends on different driving motor types. According to the demand analyses for electric vehicles' drive motor, the permanent magnet brushless motors are predominant in the appliances. However, the indigenous permanent magnet structure of the motors impedes the flux weakening speed regulation; moreover, the low-speed-high-torque and the high-speed-low-torque operations are usually unattainable under a low capacity inverter. Accordingly, in pace with the continuously upgrades of the electric vehicles' performances and other demands, the permanent magnet motors with new structures and new concepts are desired. In recent years, a dual-stator permanent magnet brushless motor is proposed, which significantly promotes the motor performances due to the dual-stator structure. At present, the novel dual-stator motors are sparsely carried out in applications or researches. Therefore, the aim of this dissertation is to carry out an in-depth study into the dual-stator permanent magnet brushless motor's applications in electric vehicles.
     The main contents of this study are divided as follows:
     (1) Analyses on the dual-stator motor's structural principle and on its predominant performances in electric vehicle applications.
     The dual-stator motor comprises an inner stator, an intermediate rotor, and an outer stator. The total structure can be regard as a combination of an inner-rotor motor and an outer-rotor motor, and is more complicated than a conventional permanent magnet brushless motor. Except inheriting the advantages of the conventional permanent magnet brushless motors, the dual-stator motor attains a much higher power density under the same volume. Furthermore, when the dual-stator motor operates in the generator mode, it could promote the generating capacity; when the motor operates in the motor mode, it could multiply the torque outputs. Analyzing through the characteristics of the typical rotor structures, the surface-mounted series magnetic circuit structure is identified to be of the least material usage and the smallest volume and weight. Because, little magnetic flux passes through the yoke of the rotor core in the circumferential direction, giving the allowance for a very thin rotor yoke that just depends on the mechanical strength.
     The windings in the inner and outer stators are independent, and the winding turns of the outer stator usually outnumbers that of the inner stator. The windings of both stators can be connected either in series or independently. If both windings are connected in series, the number of turns per phase is increased, bringing about an increased phase EMF and a reduced base speed. And this kind of connection also produces a high electromagnetic torque, which is beneficial for the low-speed-high-torque operation. If the windings are used independently, the number of turns per phase is decreased, bringing about a decreased phase EMF and electromagnetic torque but a high base speed. This kind of connection realizes a high speed operation without the flux weakening speed regulation. Besides, if one of the independent windings breaks down, the other winding can still maintain the motor fault-tolerance running independently. Therefore, according to the multiple winding connections, the dual-stator motor can work under various operating conditions and provide more flexibility for the electric vehicles drive.
     (2) According to the structural features of the dual-stator permanent magnet brushless motors, a design method of the dual-stator permanent magnet brushless motor is proposed.
     The dual-stator permanent magnet brushless motor with surface-mounted series magnetic circuit has a complex structure, which not only has the mutual restrained design parameters between the inner and outer stators, but also has the electromagnetic coupling of the inner and outer stators. It means that this kind of motors is difficult to be designed by available design methods, which is restricting their popularity. Accordingly, based on the structural features of the dual-stator permanent magnet brushless motor, a design method is proposed, regarding the dual-stator permanent magnet brushless motor as individual inner and outer single-stator motors, and then, compounding the two individual motor schemes into the final design scheme of the dual-stator permanent magnet brushless motor. As to the parameters matching between the inner and outer motor, the optimization algorithms such as the response surface method (RSM) and genetic algorithm (GA) are applied to achieve a faster design procedure and a more rational result. This method can be used both in the design of dual-stator permanent magnet brushless generator and dual-stator permanent magnet brushless motor. Taking a dual-stator permanent magnet synchronous generator's design as an example, this dissertation amply introduces the design method and procedure, and then the design scheme is verified by the finite element analysis (FEA) and prototype machine experiments.
     (3) According to the analyses of the dual-stator permanent magnet brushless motor's performances, the principles for selecting the connection modes of the inner and outer windings are proposed, when the motor is used in electric vehicle.
     Basing on the dual-stator permanent magnet brushless DC motor designed for electric vehicles, this dissertation performed the FEA on the motor with different winding connection modes. Then, the torque-speed curve is charted based on the three rated operating points. Furthermore, the operating region is subdivided, and under each operating subdivision, the performances of the motor with different winding connection modes are analyzed by the FEA. According to result, it can obviously determine which winding connection mode has the optimal performances under various operating states. Then, the principles for selecting the connection modes are obtained to adjust the motor working in a wide operation region with high efficiency, which is satisfying the demands of the electric vehicles' drive system. At last, the experiments are carried on the prototype machine.
     (4) The winding switching method of the dual-stator permanent magnet brushless motor is proposed, and the winding switching dynamic procedure is analyzed.
     In order to maintain a high efficiency under different operating states of the electric vehicles, the winding connection modes of the motor should be rationally switched. According to the analyses, the common method is to adjusting the all currents of the motor reducing to zero or nearly zero before the winding switching, which causes significant interrupt to the current and the electromagnetic torque. In order to avoid the interrupt state, this dissertation proposes a winding switching method that every phase winding should be successively switched when every phase current is crossing zero. The whole control system of the dual-stator permanent magnet brushless motor with the winding switching circuit is designed, and in the winding switching circuit, the triode AC switches (TRIAC) are utilized as switches to reduce the complexity of the circuits. Individually, taking a square-wave driven dual-stator permanent magnet brushless DC motor and a sine-wave driven dual-stator permanent magnet synchronous motor as examples, the winding switching dynamic procedures are analyzed. And the results of the field-circuit coupled time-step FEA show that the winding switching method and circuit are feasible.
引文
[1]邹国棠,程明.电动汽车的新型驱动技术[M].北京:机械工业出版社,2010,4.
    [2]徐国凯,赵秀春,苏航.电动汽车的驱动与控制[M].北京:电子工业出版社,2010,6.
    [3]Brian J Chalmers, Lawrence M and David F G. Variable Frequency Synchronous Motor Drives for Electric Vehicle[J]. IEEE Transactions on Industry Applications,1996,32:896-903.
    [4]Katsunori N and Akira N. New Technology of Drive System for Electric Vehicle[C]. Proc.of EVS-13. Osaka Japan,1996:552-556.
    [5]Chan C C, Ruoju Z and Chou K T. A Novel Permanent Magnet Hybrid Motor for Electric Vehicle[C]. Proc. of CICEM'95, Hangzhou China,1995:552-556.
    [6]黄卫星,王雪帆,韦忠朝等.新型双定子电机的原理及应用综述[J].电机电器技术,1999,(4):2-5.
    [7]Levy D. Analysis of a Double-stator Induction Machine Used for a Variable-Speed/Constant-Frequency Small-scale Hydro/Wind Electric Power Generator[J]. Electric Power System Research,1986,11 (3):205-223.
    [8]王雪帆,韦忠朝,黄卫星等.双定子感应电动机等效电路分析[J].中国电机工程学报,1999,19(5):39-43.
    [9]黄卫星,王雪帆,韦忠朝等.基于MATLAB的双定子电机起动性能仿真[J].微特电机,2000(2):7-9.
    [10]胡明正,曾成碧,黄耀群等.双定子笼型感应电动机的数学模型及起动过程仿真[J].电工技术学报,1995,(4):16-19.
    [11]Liu Lingshun, Zhao Guorong, Yong Jiang, Jun Yu. Optimal Design of Dual Stator-Winding Induction Generator System Based on Particle Swarm Algorithm[C]. ICIC 2010,2010: 175-178.
    [12]Kano Y, Tonogi K, Kosaka T, et al. Torque-Maximizing Design of Double-Stator, Axial-Flux, PM Machines Using Simple Non-linear Magnetic Analysis[C]. Industry Applications Conference,2007:875-881.
    [13]Xiaogang Luo, Dinyu Qin, Thomas A Lipo. A Novel Two Phase Doubly Salient Permanent Magnet Motor[C]. Conference Record-IAS Annual Meeting,1996:808-815.
    [14]柴凤,崔淑梅,程树康.双定子电机的发展状况及展望[J].微特电机,2001,5:23-26.
    [15]Chai Feng, Pei Yulong, Zheng Ping, et.al. Analysis and Restrain Strategy of Cogging Torque in Double-Stator Permanent Magnet Brushless Motor[C]. IEEE International Electric Machines and Drives Conference,2003:1073-1077.
    [16]柴凤.混合电动车用双定子一体化启动—发电机的基础研究[D].哈尔滨工业大学博士学位论文,2003:32-64.
    [17]Chai Feng, Xia Jing, Guo Bin and Cheng Shukang. Double-Stator Permanent Magnet Synchronous In-Wheel Motor for Hybrid Electric Drive System [J]. IEEE Transactions on Magnetics,2009,45(1):278-281.
    [18]Chai Feng, Shumei Cui, Shukang Cheng. Performance Analysis of Double-Stator Starter Generator for the Hybrid Electric Vehicle[J]. IEEE Transactions on Magnetics,2005,41(1): 484-487.
    [19]程树康,寇宝泉,杨世彦等.串联磁路结构双定子混合式直接驱动电动机的转矩特性[J].中国电机工程学报,2004,24(7):127-132.
    [20]寇宝泉,张千帆,程树康.串联磁路结构双定子混合式直接驱动电动机的定位转矩分析及抑制策略[J].中国电机工程学报,2005,25(8):145-150.
    [21]寇宝泉,谢大纲,程树康.串联磁路结构双定子混合式直接驱动电动机的电感特性[J].微特电机,2007(4):4-7.
    [22]Sangster A J, Samper Victor D. Accuracy Assessment of a 2D and 3D Finite-Element Models of a Double Stator Electrostatic Wobble Motor[J]. Journal of Micro-Electromechanical Systems,1997,6(2):142-150.
    [23]余晋岳,杨春生,朱军.直径1mm电磁型双定子微马达的结构特点及稀土永磁在其中的应用[J].磁性材料及器件,2000,31(1):15-17.
    [24]Baoquan K, Liyi L, Shukang C, et al. Torque Characteristics of Double-Stator Hybrid Stepping Motor with Serial Magnetic Circuit Structure[C]. Electric Machines and Drives Conference,2003,1:313-318.
    [25]Yubin Wang, Ming Cheng, Ying Fan, K.T.Chau. Design and Analysis of Double-Stator Permanent Magnet Brushless Motor for Hybrid Electric Vehicles[C]. ICEMS2008,2008: 3241-3246.
    [26]王玉彬,程明,花为,邹国棠.双定子永磁无刷电机裂比的分析与优化[J].中国电机工 程学报,2010,30(30):62-67.
    [27]Wang Y, Cheng M, Chen M, Du Y, Chau K T. Design of High-Torque-Density Double-Stator Permanent Magnet Brushless Motors[J]. IET Electric Power Applications,2011,5(3): 317-323.
    [28]Chai Feng, Xia Jing, Gong Hailong, Guo Bin, Cheng Shukang. Torque Analysis of Double-Stator Permanent Magnet Synchronous for Hybrid Electric Vehicle[J]. IEEE Vehicle Power and Propulsion Conference, Harbin, China,2008.
    [29]Ronghai Qu. Design and Parameter Effect Analysis of Dual-Rotor, Radial-Flux, Toroidally Wound, Permanent-Magnet Machines[J]. IEEE Transactions on Industry Application, 2004,40(3):771-779.
    [30]夏静.双定子永磁同步轮毂电机的设计研究[D].哈尔滨工业大学硕士学位论文,2008.
    [31]王洪莹.电动摩托车用双定子永磁电机电磁设计与仿真研究[D].重庆大学硕士学位论文,2010.
    [32]刘细平,林鹤云,杨成峰.双定子永磁电机内外定子绕组相轴相对位置确定方法[J].电工技术学报,2009,24(4):60-65.
    [33]Chai Feng, Zhu Chunbo, Cheng Shukang. Calculation for Electromagnetic Torque of Double-Stator Permanent-Magnet Synchronous Motor[J]. Harbin Institute of Technology (New Series),2000,7 (2):58-61.
    [34]张东.新型双定子永磁电机的设计与研究[D].上海大学博士学位论文,2007.
    [35]王玉彬,程明.双定子永磁无刷电机电感特性分析[J].微电机,2011,44(7):20-22,32.
    [36]王玉彬,程明,樊英,邹国棠.功率分配用双定子永磁无刷电机设计与电磁特性分析[J].电工技术学报,2010,25(10):37-43.
    [37]刘细平,黄筱霞.一种双定子低速稀土永磁同步风力发电机设计研究[J].微电机,2006,39(8):25-27.
    [38]刘细平,黄筱霞.新型双定子混合励磁风力发电机三维有限元分析及实验研究[J].中国电机工程学报,2008,28(20):142-146.
    [39]王秀和.永磁电机[M].北京:中国电力出版社,2007.
    [40]刘细平,林鹤云.双定子永磁同步电机齿槽转矩削弱方法[J].东南大学学报,2007,37(4):618-622.
    [41]柴凤,崔淑梅,宋立伟等.双定子永磁同步电动机的结构设计[J].微电机,1999,32(6):12-14.
    [42]Chai Feng, Pei Yulong, Zheng Ping, et.al. Analysis and Restrain Strategy of Cogging Torque in Double-Stator Permanent Magnet Brushless Motor[C]. IEEE International Electric Machines and Drives Conference,2003:1073-1077.
    [43]王洪莹,严欣平,黄嵩,隋天日.电动摩托车用双定子永磁电机设计及其转矩分析[J].微电机,2011,44(1):7-10.
    [44]刘细平,于仲安,梁建伟.基于有限元的双定子永磁同步发电机齿槽转矩研究[J].微电机,2007,40(12):31-34.
    [45]徐衍亮,许家群,唐任远.电动汽车用永磁同步电动机的绕组换接运行分析[J].电工技术学报,2002,17(5):21-25.
    [46]Xu yanliang, Feng kaijie. Parameter Design and Winding Switch Analysis on Driving BDCM Based on the Simulation of Electric Vehicle [C]. IEEE Conference on Industrial Electronics and Applications,2007:2859-2864.
    [47]徐衍亮.电动汽车用永磁同步电动机及其驱动系统研究[D].沈阳工业大学博士学位论文,2001:42-55.
    [48]Huang Hong, Chang Liuchen. Electrical Two-Speed Propulsion by Motor Winding Switching and Its Control Strategies for Electric Vehicles[J]. IEEE Transactions on Vehicular Technology,1999,48(2):607-619.
    [49]Nipp E, Norberg E. On the Feasibility of Switched Stator Windings in Permanent Magnet Motors for Traction Drives[C]. Proceedings of the 1998 ASME/IEEE Joint, Railroad Conference,1998:33-39.
    [50]罗宏浩,王福兴,姜红军.三相绕组切换电路分析与设计[J].装甲兵工程学院学报,2012,26(6):56-59.
    [51]罗宏浩,王福兴.永磁电动机绕组换接的性能分析与切换电路研究[J].兵工学报,2012,33(7):804-809.
    [52]王成元,候曦瑞,夏加宽.轮式机器人用直接驱动电机的设计[J].沈阳工业大学学报,2008,30(2):121-124,138.
    [53]马瑞卿,刘卫国,李钟明.双绕组切换型洗衣机用无刷直流电动机控制系[J].微电机,2006,39(2):35-38.
    [54]Wei Xing, Hong Guo, Wei Wang. Design of a Novel Double-Stator Tri-Redundant Brushless DC Motor[C]. Proceeding of International Conference on Electrical Machines and Systems, Seoul, Korea,2007:1655-1659.
    [55]Shuangxia Niu, Chau K T, Jiang J Z. A Permanent-Magnet Double-Stator Integrated Starter-Generator for Hybrid Electric Vehicles[C]. IEEE Vehicle Power and Propulsion Conference, Harbin, China,2008.
    [56]Dong Zhang, Shuangxia Niu, Chau K T, Jiang J Z. Design and Analysis of a Double-Stator Cup-Rotor PM Integrated-Starter-Generator[C]. Industry Applications Conference,41st IAS Annual Meeting.,2006,1:20-26.
    [57]Pei Yulong, Chai Feng, Shi Jia, Cheng Shukang. Design of the Double-Stator Permanent Magnet Synchronous Starter and Generator Used in Electric Vehicles[C]. ICEMS2011,2011: 1-4.
    [58]Shuangxia Niu, KT.Chau, J.Z.Jiang, Chunhua Liu. Design and Control of a New Double-Stator Cup-Rotor Permanent-Magnet Machine for Wind Power Generation[J]. IEEE Transactions on Magnetics,2007,43(6):2501-2503.
    [59]王玉彬,程明,马炳荣.双定子永磁无刷电机建模及其控制[J].微电机,2011,44(6):67-72.
    [60]马炳荣,程明,王玉彬,陈牧.双定子永磁无刷电机矢量控制系统研究[J].微电机,2012,45(6):31-35.
    [61]Yubin Wang, Ming Cheng, Yi Du, Shichuan Ding. Vector Control of Double-Stator Permanent Magnet Brushless Motor with Surface Mounted Topology[C]. ICEMS2010, 2010:855-858.
    [62]韩建群,郑萍.基于Matlab的永磁同步双定子/双转子电机直接转矩控制的仿真建模[J].微电机,2007,40(4):1-4.
    [63]Han Jianqun, Zheng Ping. Fuzzy Control of Rotor Speed in Permanent Magnet Synchronous Double-Rotor/Double-Stator Machine[J]. Journal of Jilin University (Engineering and Technology Edition),2009:1252-1256.
    [64]韩建群,郑萍.永磁同步双转子/双定子电机控制策略[J].控制工程,2009,16(3):350-353.
    [65]Shuangxia Niu, Linni Jian. Scalar Control of Double-Stator Permanent Magnet Brushless Motor Drives [C]. PEDS2009,2009:354-359.
    [66]Shuangxia Niu, K. T. Chau, J. Z. Jiang. Analysis of Eddy-Current Loss in a Double-Stator Cup-Rotor PM Machine[J]. IEEE Transactions on Magnetics,2008,44 (11):4401-4404.
    [67]唐任远等.现代永磁电动机理论与设计[M].北京:机械工业出版社,1997:163-168.
    [68]李钟民,刘卫国.稀土永磁电动机[M].北京:国防工业出版社,1999:32-38.
    [69]王雅玲,徐衍亮.基于电动汽车驱动的双定子永磁无刷直流电机绕组换接运行分析[J].电工技术学报,2014,29(1):98-103.
    [70]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240.
    [71]陈立周.工程稳健设计的发展现状与趋势[J].中国机械工程,1997,9(6):59-62.
    [72]文泽军,刘德顺等.基于响应面模型的永磁直流微电机堵转力矩稳健设计[J].机械设计与制造,2007(3):16-18.
    [73]王雅玲,徐衍亮,刘西全.双定子永磁同步发电机(Ⅰ)—结构原理及其响应面法设计[J].电工技术学报,2011,26(7):167-172.
    [74]徐衍亮,王雅玲,刘西全.双定子永磁同步发电机(Ⅱ)—有限元分析及样机试验[J].电工技术学报,2012,27(3):68-72.
    [75]Hwang Kyu Yun, Rhee Sang Bong, et al. Rotor Pole Design in Spoke-Type Brushless DC Motor by Response Surface Method[J]. IEEE Transactions on Magnetics,2007,43(4): 1833-2007.
    [76]Jae Hak Choi, Tae Heoung Kim, KiBong Jang, and Ju Lee. Geometric and Electrical Optimization Design of SR Motor Based on Progressive Quadratic Response Surface Method[J]. IEEE Transactions on Magnetics,2003,39(5):3241-3243.
    [77]Yong Kwon Choi, Hee Sung Yoon, and Chang Seop Koh. Pole-Shape Optimization of a Switched-Reluctance Motor for Torque Ripple Reduction[J]. IEEE Transactions on Magnetics,2007,43(4):1797-1800.
    [78]Dyck Derek, Lowther David A, Malik Zahid, Robert Spence, Nelder John. Response Surface Models of Electromagnetic Devices and Their Application to Design[J]. IEEE Transactions on Magnetics,1999,35(3):1821-1824.
    [79]Pan Seok Shin, Han-Deul Kim, Gyo Bum Chung, Hee Sung Yoon, Gwan-Soo Park, Chang Seop Koh. Shape Optimization of a Large-Scale BLDC Motor Using an Adaptive RSM Utilizing Design Sensitivity Analysis[J]. IEEE Transactions on Magnetics,2007,43(4): 1653-1656.
    [80]倪光正,杨仕友,钱秀英等.工程电磁场数值分析[M].北京:机械工业出版社,2004.
    [81]于雷,郑云龙.逐步回归响应面法[J].大连理工大学学报,1999,39(6):792-796.
    [82]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.
    [83]徐宁,李春光,张健,虞厥邦.几种现代优化算法的比较研究[J].系统工程与电子技术,2002,24(12):100-103.
    [84]慕运动.响应面法及其在食品工业中的应用[J].郑州工程学院学报,2001,22(3):68-71.
    [85]赵明华,曾昭宇,苏永华.改进响应面法及其在倾斜荷载桩可靠分析中的应用[J].岩土力学,2007,28(12):2539-2547.
    [86]吕震宙,杨子政,赵洁.基于加权线性响应面的神经网络可靠性分析方法[J].航空学报,2006,27(6):67-71.
    [87]江涛,陈建军,张建国,刘德平.基于区间模型的响应面法[J].机械设计与研究,2005,21(6):12-16.
    [88]刘金辉,乔志德,杨旭东,郝国芬.基于响应面法的机翼气动-结构多学科优化设计[J].空军工程大学学报(自然科学版),2006,7(1):1-3.
    [89]闰明,孙志礼,杨强.基于响应面方法的可靠性灵敏度分析方法[J].机械工程学报,2007,43(10):67-71.
    [90]桂劲松,康海贵.结构可靠度分析的响应面法及其MATLAB实现[J].计算力学学报,2004,21(6):683-687.
    [91]张哲,李生勇,石磊,王会利.结构可靠度分析中的改进响应面法及其应用[J].工程力学,2007,24(8):111-115.
    [92]Xu Jun, Zheng Yingren. Research on Response Surface Restructure Method and Its Application in Reliability Analysis[J]. Chinese Journal of Computational Mechanics,2002, 19(2):217-221.
    [93]桂劲松,康海贵.结构可靠性分析的全局响应面法研究[J].建筑结构学报,2004,25(4):100-105.
    [94]吕震宙,赵洁,岳珠峰.机械可靠性分析的高精度响应面法[J].应用数学和力学,2007,28(1):17-24.
    [95]张凯渊,胡洁,王伟明,彭颖红.基于响应面模型的多目标鲁棒设计方法研究[J].机械设计与研究,2006,22(3):6-10.
    [96]窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报,2007,14(5):359-363.
    [97]张志红,何桢,郭伟.在响应曲面方法中三类中心复合设计的比较研究[J].沈阳航空工 业学院学报,2007,24(1):87-91.
    [98]李生勇,张哲,石磊,余报楚.一种在响应面法中选取样本点的新方法[J].计算力学学报,2007,24(12):899-903.
    [99]魏义坤,杨威,刘静.关于径向基函数插值方法及其应用[J].沈阳大学学报,2008,20(1):7-9.
    [100]韩旭里,庄陈坚,刘新儒.基于径向基函数与B样条的散乱数据拟合方法[J].计算技术与自动化,2007,26(1):63-65.
    [101]李道伦,卢德唐,孔祥言,吴刚.径向基函数网络的隐式曲面方法[J].计算机辅助设计与图形学学报,2006,18(8):1142-1148.
    [102]孙健,申瑞民,韩鹏.一种新颖的径向基函数(RBF)网络学习算法[J].计算机学报.2003,26(11):1562-1567.
    [103]雷英杰,张善文,李续武,周创明.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [104]陈桂明.应用MATLAB建模与仿真[M].北京:科学出版社,2001.
    [105]Wang Yaling, Xu Yanliang. A Design Study of Dual-Stator Permanent Magnet Brushless DC Motor[J]. TELKOMNIKA,2013,11(4):653-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700