用户名: 密码: 验证码:
洪灾多级模糊综合评估方法研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洪水灾害是自然界一种矛盾集合体,它一方面具有极强破坏力,对人类社会和自然环境造成巨大损害;另一方面又是维持自然生态平衡的必要环节。国内外治水的经验教训证明,单纯的―防御洪水‖策略是没有出路的,并且随着流域经济建设规模的不断加大和多种因素导致的洪水规模的不断上升趋势,来自于防洪风险的威胁正变得越来越严重。在遭受了惨痛的教训后,学者们进行了反思,提出了洪水灾害风险管理的理念
     洪水灾害成灾机制的复杂性、致灾过程中的随机性以及承灾体的差异性决定了洪灾等级划分的难度巨大。但是近年来随着特大灾害频发且危害巨大,出于灾害预报和御灾减损的需要,灾害等级评估工作作为洪水灾害风险管理的重要环节越来越受到重视。本文在研究多级模糊综合评判理论与多维指标定量类别划分原理的基础上,以洪水灾害等级评估为研究对象,对如何实现标准缺失的复杂随机洪水样本集准确分类,建立具有普适性指标、跨时空性和高认可度的洪水灾害等级评估标准体系,明确分级标准存在条件下大信息量、高精确度的洪水灾情综合评估等科学问题进行了研究与探讨,给出了解决方案并进行了有效性及可靠性验证。相关研究成果已应用于973项目的工程应用示范中。本文的主要研究内容和创新包括:
     (1)针对模糊聚类迭代方法对于样本分布的依赖性问题,将核函数方法应用于模糊聚类模型中,通过核映射将样本空间映射到高维特征空间,并在高维特征空间推求线性回归方程,使处理后的样本更适合于聚类运算,有效提高聚类效果和聚类准确率,且其计算复杂度不会随着特征空间维数的增加而有明显变化。
     (2)针对样本集中出现超大样本时模糊聚类模型中聚类中心会出现极大偏移导致分类效果急剧转劣,提出了以样本值对于平均值的加权相对距离及切比雪夫不等式为判据的超大样本辨识方法,并给出了存在超大样本的洪灾样本集的准确评估方案。
     (3)针对目前具有强普适性、高认可度的洪灾评估标准缺失的问题,深入研究了模糊聚类迭代方法的理论与流程,利用聚类中心矩阵及模糊分类的欧式权距离判别依据,开发了模糊聚类迭代的标准制定功能,并在此基础上进行了洪水灾害等级评估标准制定的建模工作,标准制定过程中进行了指标及样本值的二次标准化,保证了所定标准的普适性。模型经过实例验证是可行且有效的。
     (4)针对现有投影寻踪模型或参数设置主观性强或对于训练样本及经验值过于依赖的问题,提出了对于投影寻踪聚类效果有着更好解释的投影指标函数,构建了全新的投影寻踪聚类模型,极大提高了聚类客观性与评估效果的同时,大大降低了运算量,结合多项式函数可以得到待评估样本的精确连续性等级值
     (5)针对传统优化算法对于洪灾评估模型中存在的优化问题寻优效果不佳的问题,提出了与文化算法相结合的自适应混沌差分进化算法,利用文化算法的学习与进化能力,提高差分进化算法搜索效率,同时采用自适应的变异因子和交叉因子,改善了算法的收敛能力。
Flood disaster is a kind of natural phenomenon. The paradox is that on the one hand ithas a strong destructive power, cause great damage to human society and naturalenvironment, and on the other hand it is essential for maintaining natural ecologicalbalance. The experience and lessons of water conservancy in the domestic and overseasshow that the kind of pure "flood preventing" strategy is no way out. And, with theincreasing of the economic construction scale near the basin and the rising trend of thescale of flood caused by many complicated factors, the threat of flood is becoming moreand more serious. After suffered a painful lessons, the scholars put forward the concept offlood disaster risk management
     The complexity of flood mechanism, the randomness in the process and the differencesof hazard-bearing body determines the immense difficulty of floods classfication. But inrecent years with the frequent occuring of heavy disasters and its great harm, as animportant part of flood disaster risk management, disaster grade evaluation is paid moreand more attention for disaster forecasting and royal disaster loss. Based on the researchon the theory of multistage fuzzy comprehensive evaluation and the principle ofquantitative multi-dimensional multi-index classification, the dissertation take the flooddisaster level assessment as the research object, study and discuss the questions that howto set complex random samples‘accurate classification under the condition of standardslackness, how to set up a flood disaster level assessment criteria system with universalflood index, the space and time acrossing attribute, higher recognition, and how to assessthe flood samples with large amount of information and high accuracy under a clearclassification standard. Some solutions are given and their validity and reliability areverified. Related research achievement has been applied in engineering application. Thisarticle‘s main research content and innovation can be described as follows:
     (1) According to the dependence on sample distribution of the fuzzy clustering iterationmethod for of, kernel function method was applied in fuzzy clustering model, through thekernel mapping, the sample space is mapped to a high-dimensional feature space, andlooking for linear regression equation in high dimensional feature space, making thetreated sample more suitable for clustering algorithm, effectively improving the effect andaccuracy of clustering. And its computation complexity is not obvious increased with theincrease of the feature space dimension.
     (2) In order to solve the problem that classification effect will rapid decrease with theoccuring of a super big sample which cause large deviation of the fuzzy cluster centers,this article put forward the identification method of the super big samples by the weightedaverage relative distance and chebyshev inequality.
     (3) Aiming at the missing of the flood disaster evaluation standards which have stronguniversality and high recognition, this article deeply studied the theory of fuzzy clustering iteration method and process, develop the standards formulating function of fuzzyclustering iteration model based on the clustering center matrix and fuzzy classification ofeuropean-style distance discriminant and build a flood disaster level assessment standardsformulating model. In the modeling process, indicators and the sample values carried ontwice standardizing to ensure the universality of the standards. Model is verified to befeasible and effective through example.
     (4) In view of that the strong subjectivity in parameter setting and high dependence oftraining samples and the experience value in existing projection pursuit, this article putforward a new projection index function with a better explanation for projection pursuitclustering effect and build a new projection pursuit clustering model, which greatlyimproves the clustering objectivity and evaluation effect and reduces the computationalcomplexity. The model can get a precision continuity level value of a sample bycombining with polynomial function.
     (5) In consideration of that the traditional optimization algorithms perform poorly in theoptimization problem in the flood classification model, an adaptive chaos differentialevolution algorithm with the combination of cultural algorithm is put forward. With thelearning and evolution ability of the cultural algorithm, the new algorithm improves theefficiency. Meanwhile, by using adaptive mutation factor and crossover factor, theconvergence ability of the algorithm is improved.
引文
[1] Scheuren J M, de Waroux O P, Below R, et al. Annual disaster statistical review [J].The numbers and trends,2007.
    [2]崔宗培.中国水利百科全书[M].水利电力出版社,1991.
    [3] Jin J L, Wang Z Z, Ding J. Flood classification model based on projectionpursuit[C]. Research Basins and Hydrological Planning: Proceedings of theInternational Conference on Research Basins and Hydrological Planning,22-31March, Hefei/Anhui, PR China. Taylor&Francis,2004:177.
    [4] Anselmo V, Galeati G, Palmieri S, et al. Flood risk assessment using an integratedhydrological and hydraulic modelling approach: a case study[J]. Journal ofhydrology,1996,175(1):533-554.
    [5] Plate E J. Flood risk and flood management[J]. Journal of Hydrology,2002,267(1):2-11.
    [6] James L D, Hall B. Risk information for floodplain management [J]. Journal ofWater Resources Planning and Management,1986,112(4):485-499.
    [7]童国庆.洪水资源化与洪水风险管理[J].水利水电快报,2007,28(21):10-11.
    [8]李景保,巢礼义,杨奇勇,等.基于洪水资源化的水库汛限水位调整及其风险管理[J].自然资源学报,2007,3.
    [9]陈进,黄薇,程卫帅.风险分析在水利工程中的应用.武汉:长江出版社,2006.
    [10]王道席,陈焰明,靳锋,等.黄河洪水资源化及其保障措施[J].水电能源科学,2004,22(1):26-28.
    [11]胡四一,程晓陶,户作亮,等.海河流域洪水资源安全利用关键技术研究[J].中国水利,2004(22):49-51.
    [12]郭方,刘国纬.海河流域洪水资源化利用初析[J].海河水利,2004,1:8-11.
    [13]管延海,魏占起.缓解区域水资源短缺与洪水资源化[J].吉林水利,2003,4.
    [14]涂向阳,高学平,韩延成,等.天津市洪沥水资源化存储研究[J]. JOURNALOF NATURAL RESOURCES,2006,21(3).
    [15] Lind N, Pandey M, Nathwani J. Assessing and affording the control of flood risk[J]. Structural Safety,2009,31(2):143-147.
    [16]杜国志.洪水资源管理研究[D].大连:大连理工大学,2005.
    [17]洪小康.流域洪水管理理论与方法的研究[博士学位论文].西安:西安理工大学,2003.
    [18] Anselmo V, Galeati G, Palmieri S, et al. Flood risk assessment using an integratedhydrological and hydraulic modelling approach: a case study[J]. Journal ofhydrology,1996,175(1):533-554.
    [19] Fu Xiang, Chu Xuefeng,Tan Guangming.Sensitivity Analysis for anInfiltration-runoff Model with Parameter Uncertainty.Journal of HydrologicEngineering2010,15(9):671-679
    [20]徐乾清.对未来防洪减灾形势和对策的一些思考.水科学进展,1999,(3):235-241
    [21]谢小平,水库防洪关键问题的理论与方法研究[D].西安:西安理工大学,2007.
    [22] Sanyal J, Lu X X. Application of remote sensing in flood management with specialreference to monsoon Asia: a review [J]. Natural Hazards,2004,33(2):283-301.
    [23]李纪人. GIS在洪涝灾害监测评估中的应用[J].地理信息世界,2005,3(3):26-29.
    [24]宁方贵,韩俊山,左海洋,等.基于GIS技术的松花江洪水管理信息系统的构建[J].东北水利水电,2007,25(6):37-38.
    [25] Xu Y, Du J, Zhang L, et al. Research on system of flood disaster control andreduction supported by gis in medium and small basins [J]. Chinese GeographicalScience,2002,12(1):30-34.
    [26]毛德华,何梓霖,贺新光,等.洪灾风险分析的国内外研究现状与展望(Ⅰ)——洪水为害风险分析研究现状[J].自然灾害学报,2009,18(1):139-149.
    [27]冯凯,徐志胜,冯春莹,等.小城镇基础设施防灾减灾决策支持系统的研究与开发[J].中国安全科学学报,2004,14(6):74-77.
    [28]何建邦,田国良,王劲峰.重大自然灾害遥感监测与评估研究进展[M].中国科学技术出版杜,1993.1~15.
    [29]曲国胜,高庆华.我国自然灾害评估中亟待解决的问题[J].地学前缘,1996,3(2):212-218.
    [30]史培军.五论灾害系统研究的理论与实践[J].自然灾害学报,2009,18(5):1-9.
    [31] Ma Z J, Li M F. Degree of seismic hazard, zoning of hazard reduction measuresand prediction. Earthquake Research in China,1988,2(3):379-387.
    [32]闵赛.洪险度及其灾害学意义.灾害学,1996,11(2):80-85.
    [33]周晓阳,张勇传.洪水分类的预测及优化调度.水科学进展,1997,8(2):123–129.
    [34]董前进,王先甲,艾学山,等.基于投影寻踪和粒子群优化算法的洪水分类研究.水文,2007,27(4):10-14
    [35]邱超.特征加权FCM算法在洪水样本分类中的应用.水文,2007,27(5):49-51.
    [36]孙倩,段春青,邱林,等.基于熵权的模糊聚类模型在洪水分类中的应用.华北水利水电学院学报,2007,28(5):4-6.
    [37]张灵,陈晓宏,翁毅,等.人工免疫算法在洪水分类中的应用.中山大学学报(自然科学版).2008,47(5):110-114
    [38] Lu Hongjun, Chen Yinchuan. The grey clustering method of the evaluation offlood severity. Proceedings of International Symposium on Floods and Droughts.Nanjing: Hohai University Press,1999:18-20.
    [39] McBean E A, Rovers F A. Statistical procedures of environmental monitoring dataand risk assessment [M]. Prentice Hall PTR,1998.
    [40]施国庆,洪灾损失率及其确定方法探讨[J].水利经济,1990(2).
    [41]曹永强,杜国志,王方雄.洪灾损失评估方法及其应用研究[J].辽宁师范大学学报:自然科学版,2006,29(3):355-358.
    [42]李观义.基于GIS的洪灾损失评估技术及其应用[J].地理与地理信息科学,2003,19(4):97-100.
    [43]王艳艳,陆吉康,陈浩.洪灾损失评估技术的应用[J].水利水电技术,2002,33(10):30-33.
    [44]李红英,李洋.基于GIS的洪灾损失评估应用研究[J].西北水力发电,2007,23(1):45-48.
    [45]康相武,吴绍洪,戴尔阜,等.大尺度洪水灾害损失与影响预评估[J].科学通报,2006,51(1):155-164.
    [46]谢田.基于GIS的荆江分蓄洪区洪灾损失动态评估及系统实现[D].华中科技大学,2011.
    [47]张成才,陈秀万,郭恒亮.基于GIS的洪灾淹没损失计算方法[J].武汉大学学报:工学版,37(1):55-58.
    [48]武靖源,韩文秀,徐杨,等.洪灾经济损失评估模型研究(I)-直接经济损失评估[J].系统工程理论与实践,1998,18(11):53-56.
    [49]武靖源,韩文秀,徐杨,等.洪灾经济损失评估模型研究(II)-间接经济损失评估[J].系统工程理论与实践,1998,18(12):84-88.
    [50]冯平,崔广涛,钟昀.城市洪涝灾害直接经济损失的评估与预测.水利学报,2001,(8):64-68.
    [51]陈德清,杨存建,黄诗峰.应用GIS方法反演洪水最大淹没水深的空间分布研究.灾害学,2002,17(2):1-6.
    [52]章恒全,林武星.单次洪灾经济损失评价方法研究.水利经济,2007,25(6):13-15,22.
    [53]朱强,陈秀万,彭俊.基于网格的洪水损失计算模型.武汉大学学报(工学版),2007,40(6):42-46.
    [54]周念来,刘军武,周玉琴.蓄滞洪区洪灾损失分散模型研究.中国水利,2008,15:21-23.
    [55]吕娟,苏志诚.区域洪灾直接经济损失快速评估方法在太湖流域的应用研究.中国水利,2008,17:9-12.
    [56]王宝华,付强,冯艳,杨娜.洪灾经济损失快速评估的混合式模糊神经网络模型.东北农业大学学报,2008,39(6):47-51
    [57]黄伟杰,程述,陈文龙,郭珊.基于BP神经网络的洪灾经济损失评估.广东水利电力职业技术学院学报,2008,6(2):36-38.
    [58]孙莉英,毛小苓,黄铮,刘永伟.洪水灾害对区域可持续发展的长期影响分析.北京大学学报(自然科学版),2009,2:121-129.
    [59]余萍,冯平,周潮洪.蓄滞洪区洪灾损失的评估方法及其应用.中国农村水利水电,2009,4:15-17,21..
    [60]仇蕾,王慧敏,马树建.极端洪水灾害损失评估方法及应用.水科学进展,2009,20(6):869-875.
    [61]李奔,李涛,翟戌亮.黄河下游滩区洪灾损失评估及预测方法研究.人民黄河,2012,34(11):18-20.
    [62]赵阿兴,马宗晋.自然灾害损失评估指标体系的研究[J].自然灾害学报,1993,2(3):1~7.
    [63]徐海量,陈亚宁.洪水灾害等级划分的模糊聚类分析[J].干旱区地理,2000,23(004):350-352.
    [64] Li Q., Zhou J.Z., Liu D.H. et al.. Research on Flood Risk Analysis and EvaluationMethod Based on Variable Fuzzy Sets and Information Diffusion [J]. SafetyScience,2012,50(5):1275~1283.
    [65] Zou Q., Zhou J.Z., Zhou C., et al.. The practical research on flood risk analysisbased on IIOSM and fuzzy α-cut technique [J]. Applied Mathematical Modelling,2012,36(7):3271~3282.
    [66] Zou Q., Zhou J.Z., Zhou C., et al.. Fuzzy risk analysis of flood disasters based ondiffused-interior-outer-set model [J]. Expert Systems with Applications,2012,39:6213~6220.
    [67]邹强,周建中,周超,陈生水,宋利祥,等.基于最大熵原理和属性区间识别理论的洪水灾害风险分析.水科学进展,2012,23(3):323~334.
    [68]邹强,周建中,周超,宋利祥,等.基于可变模糊集理论的洪水灾害风险分析.农业工程学报,2012,28(5):126~132.
    [69]邹强,周建中,杨小玲等.属性区间识别模型在溃坝后果综合评价中的应用[J].四川大学学报(工程科学版),2011,43(2):45~50.
    [70]田玉刚,杜渊会,覃东华,等.基于数据场和云模型的洪水灾害风险等级评估[J].中国安全科学学报,2011,21(8):158-163.
    [71]潘华盛,张桂华,董淑华.黑龙江省洪水灾害等级评估模型——模糊综合评价法[J].黑龙江气象,2000,2(1):1-4.
    [72]金菊良,金保明.建立洪水灾情等级模型的实用方案[J].灾害学,2000,15(2):1-6.
    [73]陈亚宁,杨思全.自然灾害的灰色关联灾情评估模型及应用研究[J].地理科学进展,1999,18(2):158-162.
    [74]张亦飞,程传国,郝春玲,等.一种灾害等级的区间数评估模型[J].防灾减灾工程学报,27(4):421-424.
    [75]冯利华.灾害等级研究进展[J].灾害学,2000,15(3):72-76.
    [76]杨小玲,周建中,丁杰华等.基于熵值法的洪灾等级评估属性识别模型[J].人民长江,2010,41(12):16-19.
    [77]金菊良,张礼兵,魏一鸣.基于遗传算法的理想区间法在洪水灾情评价中的应用[J].地理科学,2004,24(5):586-590.
    [78]闻珺,方国华,方正杰,等. BP神经网络在洪水灾害灾情等级评价中的应用[J].水利科技与经济,2007,13(1):43-45.
    [79]汪丽娜,陈晓宏,李粤安,等.支持向量机多分类模型的洪水分类[J].灌溉排水学报,2009,28(5):38-40.
    [80]田俊峰,吴丽.洪水灾情SVM评估模型[J].水文,2009,29(1):66-68.
    [81] Huang Z, Zhou J, Song L, et al. Flood disaster loss comprehensive evaluationmodel based on optimization support vector machine[J]. Expert Systems withApplications,2010,37(5):3810-3814.
    [82]付湘,谈广鸣,纪昌明.洪灾直接损失评估的不确定性研究.水电能源科学,2008,26(3):35-38
    [83]邱超。特征加权FCM算法在洪水样本分类中的应用。水文,2007.10.27(5),pp49-51.
    [84]程卫帅,纪昌明,刘丹.基于改进模糊C均值聚类算法的洪水过程分类[J].华中科技大学学报:自然科学版,2009(11):35-38.
    [85]汪丽娜,陈晓宏,李粤安,等.基于人工鱼群算法和模糊C-均值聚类的洪水分类方法[J].水利学报,2009,40(6):743-748.
    [86]卢有麟,周建中,覃晖,杨俊杰,张勇传.基于自适应混合差分进化算法的水火电力系统短期发电计划优化[J].电网技术,2009
    [87]赵小勇.投影寻踪模型及其在水土资源中的应用[D].东北农业大学,2006.
    [88]王顺久,张欣莉,侯玉,等.洪水灾情投影寻踪评估模型[J].水文,2002,22(4):1-4.
    [89]金菊良,张欣莉,丁晶.评估洪水灾情等级的投影寻踪模型[J].系统工程理论与实践,2002,22(2):140-144.
    [90]倪长健,崔鹏.投影寻踪动态聚类模型[J][J].系统工程学报,2007,22(6):634-638.
    [91]何耀耀,周建中,罗志猛,卢有麟.基于混沌DE算法和PP多项式函数的洪灾评估人民长江2010,41(3):92-95
    [92]卢有麟,周建中,宋利祥,等.基于CCPSO及PP模型的洪灾评估方法及其仿真应用[J].系统仿真学报,2010,22(2).
    [93]于雪峰,陈守煜.模糊聚类迭代模型在洪水灾害度划分中应用[J]. Journal ofDalian University of Technology,45(1).
    [94] He Y, Zhou J, Qin H, et al. Flood disaster classification based on fuzzy clusteringiterative model and modified differential evolution algorithm[C]//Fuzzy Systemsand Knowledge Discovery,2009. FSKD'09. Sixth International Conference on.IEEE,2009,3:85-89.
    [95] Huang D, Zhang R, Huo Z, et al. An assessment of multidimensional floodvulnerability at the provincial scale in China based on the DEA method [J]. Naturalhazards,2012,64(2):1575-1586.
    [96] Jin J L, Wei Y M, Zou L L, et al. Risk evaluation of China‘s natural disastersystems: an approach based on triangular fuzzy numbers and stochasticsimulation[J]. Natural hazards,2012,62(1):129-139.
    [97] Kandilioti G, Makropoulos C. Preliminary flood risk assessment: the case ofAthens [J]. Natural hazards,2012,61(2):441-468.
    [98] Jin J L, Wang Z Z, Ding J. Flood classification model based on projection pursuit
    [C]. Xi, Gu&Seiler (eds). Research Basins and Hydrological Planning [J].2004.
    [99] LIU Y, LIANG C. Watershed Flood Classification Research Based on PCP-CCoupling Model [J]. Journal of China Hydrology,2010,1:005.
    [100] Lu Z B, Hou Z C. Cluster validity analysis for flood clustering [J]. South-to-NorthWater Transfers and Water Science&Technology,2007,5(2):87-90.
    [101] Ju-liang J, Liang C, Yue-qing L, et al. Fuzzy clustering method based on set pairanalysis and optimal fuzzy equivalent matrix for flood classification[C]. Controland Decision Conference,2009. CCDC'09. Chinese. IEEE,2009:5923-5927.
    [102]吴成国,王义民,唐言明,等.基于集对分析的洪水危险性评价可变模糊识别模型[J].西北农林科技大学学报(自然科学版),2012,1:037.
    [103] Xiaoling Yang, Jianzhong Zhou, Jiehua Ding, Weiping Deng, Yongchuan Zhang.Study on evaluation methods of flood disaster grade. The6th InternationalConference on Fuzzy Systems and Knowledge Discovery,2009,386-390.
    [104] Deng W, Zhou J. Approach for feature weighted support vector machine and itsapplication in flood disaster evaluation[J]. Disaster Advance.2013,Vol.6,51-58.
    [105]马宗晋,杨华庭,高建国,等.我国自然灾害的经济特征与社会发展[J].科技导报,1994,7:61-64.
    [106]于庆东,沈荣芳.自然灾害综合灾情分级模型及应用[J].灾害学,1997,12(3):12-17.
    [107]杨仕升.一种考虑地域经济差异的自然灾害灾情分级方法及应用α[J].系统工程理论与实践,1997.
    [108]于庆东.灾度等级判别方法的局限性及其改进[J].自然灾害学报,1993,2(2):8-10.
    [109]赵黎明,王康,邱佩华.灾害综合评估研究[J].系统工程理论与实践,1997.
    [110]吴红华,李正农.灾害损失评估的区间数模糊综合评判方法[J].自然灾害学报,2006,15(6):149-153.
    [111]金菊良,魏一鸣,杨晓华.基于遗传算法的洪水灾情评估神经网络模型探讨[J].灾害学,1998,13(2):6-11.
    [112]高燕,陈云翔,丁永生,汤兵勇.基于免疫遗传算法的洪灾神经网络评估模型[J].自然灾害学报,2006,15(1):110-114.
    [113] XU D, CHEN S, QIU L. Study on Flood Classification Based on Variable FuzzySets Theory [J]. Water Resources and Power,2011,1:008.
    [114] Liao L, Zhou J, Liu Y, et al. Formulation of Flood Disaster Classification StandardsBased on Fuzzy Clustering Iterative Model and Chaotic Differential EvolutionAlgorithm[C]. Power and Energy Engineering Conference (APPEEC),2012Asia-Pacific. IEEE,2012:1-5.
    [115] Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M].Kluwer Academic Publishers,1981.
    [116] Jain A K, Dubes R C. Algorithms for clustering data [M]. Prentice-Hall, Inc.,Englewood Cliffs, NJ.1988.
    [117] Zhang L., Da Z.W.&Jiao L.C.(2002). Kernel clustering algorithm. Chinese JComput,2002,25,587-590
    [118] Graves D, Pedrycz W. Kernel-based fuzzy clustering and fuzzy clustering: Acomparative experimental study [J]. Fuzzy sets and systems,2010,161(4):522-543.
    [119] Shen H, Yang J, Wang S, et al. Attribute weighted mercer kernel based fuzzyclustering algorithm for general non-spherical datasets [J]. Soft Computing,2006,10(11):1061-1073.
    [120]陈守煜.工程模糊集理论与应用[D].北京:国防工业出版社,1998.
    [121]陈守煜.复杂水资源系统优化模糊识别理论与应用.长春:吉林大学出版社,2002.
    [122] Anderberg M R. Cluster analysis for applications[R]. OFFICE OF THEASSISTANT FOR STUDY SUPPORT KIRTLAND AFB N MEX,1973.
    [123] Das S, Sil S. Kernel-induced fuzzy clustering of image pixels with an improveddifferential evolution algorithm [J]. Information Sciences,2010,180(8):1237-1256.
    [124] Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme forglobal optimization over continuous spaces [R]. International Computer ScienceInstitute,1995(8):22-25.
    [125] Storn R, Price K. Differential evolution—A simple and efficient heuristic forglobal optimization over continuous spaces [J]. Journal of Global Optimization1997,11:341–359
    [126] Lu Y, Zhou J, Qin H, et al. An adaptive hybrid differential evolution algorithm fordynamic economic dispatch with valve-point effects [J]. Expert Systems withApplications,2010,37(7):4842-4849.
    [127] Zhang X, Zhou J, Wang C, et al. Multi-class support vector machine optimized byinter-cluster distance and self-adaptive deferential evolution [J]. AppliedMathematics and Computation,2012,218(9):4973-4987.
    [128] Das S, Konar A. Automatic image pixel clustering with an improved differentialevolution[J]. Applied Soft Computing,2009,9(1):226-236.
    [129] He Y, Zhou J, Kou P, et al. A fuzzy clustering iterative model using chaoticdifferential evolution algorithm for evaluating flood disaster [J]. Expert Systemswith Applications,2011,38(8):10060-10065.
    [130] Koloseni D, Lampinen J, Luukka P. Optimized distance metrics for differentialevolution based nearest prototype classifier [J]. Expert Systems With Applications,2012.
    [131] Muller K R, Mika S, Ratsch G, et al. An introduction to kernel-based learningalgorithms [J]. Neural Networks, IEEE Transactions on,2001,12(2):181-201.
    [132]张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590
    [133]王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报,2006,5(4).
    [134]孙红卫,于朝霞. Mercer定理的推广[J].济南大学学报(自然科学版),2004,18(3):280-282.
    [135]张道强,陈松灿.在核诱导的鲁棒度量下的模糊C一均值与可能性C一均值算法[J].模式识别与人工智能,2004,17(4):390-395.
    [136]吴小燕,陈松灿.联机核模糊C均值聚类方法[J].系统工程与电子技术,2012,34(12).
    [137] Zhang D Q, Chen S C. Clustering incomplete data using kernel-based fuzzyc-means algorithm [J]. Neural Processing Letters,2003,18(3):155-162.
    [138]于德亮,唐海燕,丁宝,张永明,齐维贵.基于粒子群优化模糊核聚类的电梯群交通模式识别[J],哈尔滨工业大学学报,2012,44(10):84-88.
    [139]李超顺,周建中,方仍存,李清清,罗志猛,黄志伟.基于混沌优化的模糊聚类分析方法[J],系统仿真学报,2009,21(10):2977-2980.
    [140] Qian W. Li A. Adaptive differential evolution algorithm for multiobjectiveoptimization problems [J]. Applied Mathematics and Computation,2008,201(1):431-440.
    [141] Shouyu C, Yu G. Variable fuzzy sets and its application in comprehensive riskevaluation for flood-control engineering system [J]. Fuzzy Optimization andDecision Making,2006,5(2):153-162.
    [142]中华人民共和国国务院.国家突发公共事件总体应急预案[Z].2005.
    [143]任明磊,王本德.基于模糊聚类和BP神经网络的流域洪水分类预报研究[J].大连理工大学学报,2009,49(1):121-127.
    [144]刘玉邦,梁川.基于PCP—C耦合模型的流域洪水分类研究[J].水文,2010(001):18-22.
    [145] Chang-jian N I, Peng C U I. Projection pursuit dynamic cluster model[J]. Journalof Systems Engineering,2007,6:011.
    [146] GUAN Y, ZHAO S. Application of Fuzzy Clustering Based on Entropy Weights inFlood Classification [J]. Journal of North China Institute of Water Conservancyand Hydroelectric Power,2009,4:003.
    [147] Ju-liang J, Liang C, Yue-qing L, et al. Fuzzy clustering method based on set pairanalysis and optimal fuzzy equivalent matrix for flood classification[C]. Controland Decision Conference,2009. CCDC'09. Chinese. IEEE,2009:5923-5927.
    [148]何耀耀.基于混沌进化的水库调度和洪灾评估理论与方法[D].武汉:华中科技大学,2010.
    [149]陈曜,丁晶,赵永红.基于投影寻踪原理的四川省洪灾评估[J].水利学报,2010,41(2):220-225
    [150]周建中.国家重点基础研究发展计划项目课题“坝堤溃决风险分析理论与评估方法”课题任务书.国家科技部,2007.
    [151]蒋金才,季新菊.河南省1950~1990年水旱灾害分析[J].灾害学,1996,11(4):69-73.
    [152] Chen S. Y., Wang S. Y. Fuzzy Clustering Algorithmic and Rationality TestModel[C]. Proceedings of the5th World Congress on Intelligent Control andAutomation,2004:2339-2343.
    [153]卢有麟,周建中,李英海,等.混沌差分文化算法及其仿真应用研究[J].系统仿真学报,2009(016):5107-5111.
    [154] Alderman K., Turner L.R., Tong S.L.(2012) Floods and human health: Asystematic review. Environment International,2012,47:37~47.
    [155] Friedman J H, Tukey J W. A projection pursuit algorithm for exploratory dataanalysis. IEEE Transon Computer,1974,23(9):881-890.
    [156] Friedman J H. Exploratory projection pursuit [J]. Journal of the Americanstatistical association,1987,82(397):249-266.
    [157] Friedman J H, Stuetzle W. Projection pursuit regression [J]. Journal of theAmerican statistical Association,1981,76(376):817-823.
    [158] Friedman J H, Stuetzle W, Schroeder A. Projection pursuit density estimation[J].Journal of the American Statistical Association,1984,79(387):599-608.
    [159] Kruskal J B. Toward a practical method which helps uncover the structure of a setof multivariate observations by finding the linear transformation which optimizes anew index of condensation‘[C] Statistical Computation. Academic Press, NewYork,1969:427-440.
    [160] Hwang J N, You S S, Lay S R, et al. The cascade-correlation learning: a projectionpursuit learning perspective [J]. Neural Networks, IEEE Transactions on,1996,7(2):278-289.
    [161] Zhao Y, Atkeson C G. Implementing projection pursuit learning [J]. NeuralNetworks, IEEE Transactions on,1996,7(2):362-373.
    [162] Flick T E, Jones L K, Priest R G, et al. Pattern classification using projectionpursuit[J]. Pattern Recognition,1990,23(12):1367-1376.
    [163] Bachmann C M. Novel projection pursuit indices for feature extraction andclassification: An inter-comparison in a remote sensing application[C]. NeuralNetworks for Signal Processing [1997] VII. Proceedings of the1997IEEEWorkshop. IEEE,1997:54-63.
    [164]张欣莉,丁晶,郑祖国.投影寻踪回归在紫坪埔洪水预报中的应用[J].四川大学学报:工程科学版,2000,32(2):22-24.
    [165]金菊良,魏一鸣,丁晶.投影寻踪门限回归模型在年径流预测中的应用[J].地理科学,2002,22(2):171-175.
    [166]魏一鸣,金菊良,杨存建,等.洪水灾害风险管理理论.北京:科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700