用户名: 密码: 验证码:
反渗透膜系统处理维生素C凝结水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,环保节能的反渗透膜分离技术已被公认为国际上最具经济效益和社会效益、最具发展前途的高新技术之一。本文采用二级反渗透膜工艺处理维生素C凝结水,制备制药纯化水,主要考查其对水中电导率和TOC的去除效果。阐明反渗透膜系统运行条件对系统性能的影响,寻找一套有效策略确定最优运行工艺参数;确定反渗透膜系统连续处理维生素C凝结水处理效果的预测模型;推导并建立膜透水模型和膜污染模型,研究了最佳清洗时机判断方法,比较并确定最优清洗方式方法。
     通过对某制药集团维生素C公司的现场调研,确立了研究对象与主体处理工艺技术。为实现处理水质达到制药纯化水要求,深入分析了不同工艺参数(温度、压力、回流比、pH)下,反渗透膜处理VC凝结水系统回收率、脱盐率以及TOC去除率的变化规律,定量研究了各个工艺参数指标对产水指标体系的影响程度,在此基础上采用多元线性回归模型及多元二次回归正交旋转组合模型进行膜工艺的二次优化,为膜法工艺的最优化提供了一套理论方法。二级反渗透运行结果表明,终端产水水质电导率和TOC均达到欧洲药典2000版对制药纯化水的标准。
     为了保证反渗透膜系统产水水质的稳定,需要对反渗透膜分离过程实时控制。为此通过人工神经网络和多重多元回归将脱盐率与TOC去除率和进水水质及操作参数关联,建立了关于脱盐率与TOC去除率的预测模型。BP神经网络三种预测指标的皮尔逊相关系数都在0.95以上,数据拟合情况良好,相对误差小于5%的预测占到90%以上,最大相对误差为4.75%,最大的平均相对误差为1.52%,完全满足工程上10%的误差要求。同时建立的多重多元回归预测模型产水监控指标的预测误差平方和(PRESS)均小于5%,特别是针对产水回收率的残差为0。R2p进一步显示该模型对产水回收率y、脱盐率R和TOC去除率q的预测能力都达95%以上。
     针对反渗透膜处理维生素C凝结水,探讨了反渗透膜吸水性能机理、去除小分子有机酸的分离机理和表面氯化降解的机理。从唯象观点出发将反常扩散理论引入反渗透膜固液分离过程,基于随机游动理论导出了整个扩散区的扩散方程和动态吸附初期的吸附方程,研究了水分子在反渗透膜的动态吸附传递规律。基于不可逆热力学模型(S-K模型)、细孔模型(SHP模型)和固定电荷模型(TMS模型),研究了反渗透膜系统工艺参数(温度、压力和pH)对膜结构参数(膜孔半径、孔隙率、膜体积荷电密度等)的影响,进而深入了解膜分离有机酸的机理。
     分析了反渗透膜处理维生素C凝结水的膜污染机理,并对膜污染控制策略进行了研究(包括清洗时机和清洗方式)。基于临界通量理论,求得发生膜污染的临界通量介于1.1L/(m2·min)到12L/(m2·min)之间。在此基础上,提出了斜率变点分析法用于判断清洗时机,发现最佳的清洗周期为10-15d之间。进而考察不同清洗方式的清洗效果,加强型清洗策略EFM(Enhanced Flux Maintenance)的操作是针对不可逆膜污染的一种有效清洗方式,EFM操作执行起点选择通量衰减5-25%为宜,EFM持续30分钟,0.1%NaClO和025%NaOH都是有机污染的有效清洗剂,膜的平均恢复率分别为93.3%和81.6%。
At present, membrane separation technology of environmental protection and energy saving has been recognized as the most international economic and social benefits, and one of the most promising high-tech. This topic using reverse osmosis technology deal with vitamin C condensate for the preparation of pharmaceutical purified water, the main test of the water conductivity and TOC removal efficiency.The purpose are to clarify the impact of the reverse osmosis system operating conditions on system performance, to find an effective strategy to determine the optimal running conditions; to determine the soft control of the reverse osmosis system in order to lay the foundation for the implementation of optimal control; derivation and the establishment of the membrane permeable model and membrane fouling model to find an effective strategy to determine the optimum cleaning time; to compare and determine the optimal cleaning method.
     By investigating the Northeast General Pharmaceutical Factory vitamin C workshop site the object of study and the main processing technology were established.In order to achieve the purification of the wastewater quality to pharmaceutical pure water standard, in-depth analysis of the different operating conditions (temperature, operating pressure, the reflux ratio and pH), variation on system recovery, desalination rate and TOC removal efficiency, quantitative studying on various operating conditions on the degree of influence of the index system of the water production.On this basis, using multiple linear regression model and multiple quadratic regression orthogonal rotation combination model quadratic optimization of membrane processes, providing a set of theoretical methods for the optimization of membrane processes.
     In order to guarantee the stability of the control system, the implementation of predictive control and real-time optimization is needed for membrane separation process. Against to reverse osmosis membrane systems, artificial neural networks and multiple multiple regression models were built to predict the water recovery and desalting rate, and connected the recovery, desalination rate and water quality and operating parameters for the basis of the process modeling of soft sensors.The pearson correlation coefficients of three predictors on BP neural network are above0.95, data fitting is good, the relative error of less than5%of the forecast accounts for more than90%, and the maximum relative error is4.75%, the maximum average relative error for1.52%, to fully meet the10%error in the engineering requirements. At the same time prediction error sum of squares of the multiple multiple regression prediction model (PRESS) were less than5%, especially for residual of permeate water recovery rate is0. R2P further indicates that predictive ability of the model more than95%about penetration of the water recovery rate y, the desalination rate R and the TOC removal q.
     Next for the typical commercial crosslinked aromatic polyamide composite reverse osmosis membrane:the LP2521, the mechanism of water absorption, the separation mechanism of removal small molecule organic acids, and the degradation mechanism of surface chloride were explored. From the phenomenological point of view, introduction the theory of anomalous diffusion into the solid-liquid separation process of reverse osmosis membranes, the diffusion equation in the diffusion zone and the initial adsorption equation of the dynamic adsorption were derived based on the random walk theory, studied the dynamics adsorption of water molecules in the reverse osmosis membrane.Based on irreversible thermodynamics model (SK model), the pore model (SHP model) and the fixed charge model (TMS model), the influence on the membrane structure parameters (the membrane pore radius, porosity the membrane volume density of charged, etc.) by the reverse osmosis system operating conditions(temperature, pressure and pH) were studied, and thus depth understanding of the separation mechanism of membrane for organic acids.
     In order to achieve industrialization, analysis of the mechanism of membrane fouling in reverse osmosis membrane treatment of vitamin C condensate, and membrane fouling control strategies were studied in detail (including the cleaning time and cleaning method).Based on the critical flux theory, the produce membrane fouling critical flux was seeked between1.1L/(m2·min) between the1.2L/(m2· min). On this basis, the slope change point analysis method was used to determine the cleaning time, and found the best cleaning cycle for the10-15d. And then examine the cleaning effect of different ways, the enhanced cleaning strategies EFM (Enhanced Flux Maintenance) operation is an effective cleaning method for irreversible membrane fouling. The EFM operation is performed starting at the point of the flux decline of5-25%appropriately, and it lasted30minutes.0.1%NaClO and0.25%NaOH is an effective cleaning agent for the organic pollution, the average recovery rate of the membrane were93.3%and81.6%.
引文
[1]张水英.动力锅炉蒸汽冷凝水的回收利用[D].首都经济贸易大学,2002.
    [2]王学成.工艺冷凝水回收利用处理研究[D].南京理工大学,2008.
    [3]杨丽芳.制药工艺给水系统[M].北京,化学工业出版社,2007.
    [4]张绍园,姜兆春,王菊思.饮用水消毒副产物控制技术研究现状与发展[J].水处理技术,1998,24(1):8-13
    [5]钱德林,刘礼斌,孙路路.3种制药用水处理工艺评价[J].中国药房,2005,16(24): 1913-1915.
    [6]王学军,许振良,杨座国.膜技术与制药用水[C].上海市化学化工学会2005年度学术年会,上海,2005.
    [7]王琳,胡景新.制药企业常用的水处理技术[J].中国药业,2002,11(9):24
    [8]张卫星.几种膜技术制备制药用水的比较[J].中国医院药学杂志,2001,21(6):367-368.
    [9]刘琨.制药纯化水系统工艺设计[J].中国医药技术与市场,2003,3(6):35-38.
    [10]赵文华.反渗透膜技术在制药行业的应用[J].太原科技,2000,(6):35-36.
    [11]黄海明,王国华,莫菊英.制药用纯水制备中二级反渗透膜系统的设计和应用[J].水处理技术,2005,31(7):76-77.
    [12]王春艳,靖大为.二级反渗透技术制备高纯水工艺研究[J].天津城市建设学院学报,2004,10(3):194-197.
    [13]罗园山.JY1800型RO二级反渗透纯化水系统[J].明胶科学与技术,2008,28(4):182-184
    [14]王学松.现代膜技术及其应用指南[M].北京,化学工业出版社,2005.
    [15]Matsuura T, Sourirajan S. Physicochemical criteria for reverse osmosis separation of alcohols, phenols, and monocarboxylic acid in aqueous solutions using porous cellulose acetate membranes[J]. J Appl Polym Sci,1971,15 (12): 2905-2927.
    [16]Matsuura T, Sourirajan S. Reverse osmosis separation of organic acids in aqueous solutions using porous cellulose acetate membranes[J]. J Appl Polym Sci,1973,17(12):3661-3682.
    [17]Kimura K, Amy G, Heberer T, et al. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes[J]. J Membr Sci, 2003,227:113-121.
    [18]Kimura K, Amy G, Watanabe Y, et al. Adsorption of hydrophobic compounds onto NF/RO membranes:an artifact leading to overestimation of rejection[J]. J Membr Sci,2003,221:89-101.
    [19]Ozakia H, Li H. Rejection of organic compounds by ultralow pressure reverse osmosis membrane[J]. Water Res,2002,36:123-130.
    [20]Ragaini V, Pirola C, Elli A. Separation of some light monocarboxylic acids from water in binary solutions in a reverse osmosis pilot plant[J]. Desalination, 2004,171:21-32.
    [21]Laufenberg G, Hausmanns S, Kunz B. The influence of intermolecular interactions on the selectivity of several organic acids in aqueous multicomponent systems during reverse osmosis[J]. J Membr Sci,1996,110: 59-68.
    [22]Sapienza F J, Gill W N, Soltanieh M. Separation of ternary salt/acid aqueous solutions using hollow fiber reverse osmosis[J]. J Membr Sci,1990,54 (1-2): 175-189.
    [23]Diltz R A, Marolla T V, Henley M V. Reverse osmosis processing of organic model compounds and fermentation broths[J]. Bioresource Technol,2007,98: 686-695.
    [24]Freger V, Arnot T C, Howell J A. Separation of concentrated organic/ inorganic salt mixtures by nanofiltration[J]. J Membr Sci,2000,178:185-193.
    [25]Bowen W R, Doneva T A, Yin H B. Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes[J]. J Membr Sci, 2002,206:417-429.
    [26]Li Shengji, Zhuang Jingmei, Zhi Tiantian, et al. Combination of complex extraction with reverse osmosis for the treatment of fumaric acid industrial wastewater[J].Desalination,2008,234:362-369.
    [27]梁钟璇MEUF中超滤膜污染特征及膜的清洗[D].湖南大学,2010.
    [28]连洁.膜分离技术处理含油污水的研究[D].天津工业大学,2009.
    [29]冯占峰.反渗透膜在制药系统的应用及维护[J].中国科技信息,2005,(10):19
    [30]乔玉玲.膜技术在饮用水深度净化中的试验研究[D].东华大学,2006
    [31]S.S. Madaeni, S. Koocheki. Application of taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element[J]. Chemical Engineering Journal,2006,119(1):37-44
    [32]Young Geun Lee, Yun Seok Lee, Jong June Jeon, et al. Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant[J]. Desalination,2009,247(1-3):180-189
    [33]Ali Zilouchian, Mutaz Jafar. Automation and process control of reverse osmosis plants using soft computing methodologies[J]. Desalination,2001, 135(1-3):51-59
    [34]Marcus Verhuelsdonk, Tony Attenborough, Oliver Lex, et al. Design and optimization of seawater reverse osmosis desalination plants using special simulation software[J]. Desalination,2010,250(2):729-733
    [35]Supatpong Mattaraj, Wongphaka Phimpha, Pakasit Hongthong, et al. Effect of operating conditions and solution chemistry on model parameters in crossflow reverse osmosis of natural organic matter[J]. Desalination,2010, 253(1-3):38-45
    [36]T.H. Chong, F.S. Wong, A.G. Fane. Fouling in reverse osmosis:Detection by non-invasive techniques[J]. Desalination,2007,204(1-3):148-154
    [37]A. Villafafila, I.M. Mujtaba. Fresh water by reverse osmosis based desalination:simulation and optimisation[J].Desalination,2003,155(1):1-13
    [38]Sergei P. Agashichev, Khaled N. Lootahb. Influence of temperature and permeate recovery on energy consumption of a reverse osmosis system[J]. Desalination,2003,154(3):253-266
    [39]Robert Pohl, Martin Kaltschmitt, Robert Hollander. Investigation of different operational strategies for the variable operation of a simple reverse osmosis unit[J]. Desalination,2009,249(3):1280-1287
    [40]R. Salcedo, E. Antipova, D. Boer, et al. Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental concerns[J]. Desalination,2012,286:358-371
    [41]Kamal M. Sassi, Iqbal M. Mujtaba. Optimal design and operation of reverse osmosis desalination process with membrane fouling[J]. Chemical Engineering Journal,2011,171(2):582-593
    [42]M. Khayet, M. Essalhi, C. Armenta-Deu, et al. Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology[J]. Desalination,2010,261(3):284-292
    [43]Koros W J, MaYH, Shimizu T. Terminology for membranes and membrane processes-IUPAC recommendations[J]. J Membr Sci,1996,120:149-159.
    [44]张国俊,刘忠洲.膜过程中超滤膜污染机制的研究及其防治技术进展[J].膜科学与技术,2001,21(4):39-45.
    [45]刘忠洲,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193.
    [46]Piotr Czekaj, Francisco L, Carme Guell. Menbrane fouling during micro filtration of fermented beverages[J].Journal of menbrane Science,2000,166: 199-209.
    [47]王湛.膜分离技术基础[M].北京,化学工业出版社,2000:244-245.
    [48]Abdolhamid S, Mohsen A, Toraj M. Permeate flux decline during UF of oily wastewater:Experimental and modeling[J]. Desalination,2010,251:153-160
    [49]刘忠洲,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-192.
    [50]刘忠洲.膜过程的浓差极化和膜污染-膜技术手册[M].北京,化学工业出版社,2001:171-177.
    [51]Fane AG, Fell CJD. A review of fouling and fouling control in ultrafiltration[J]. Desalination,1987,62:117-136.
    [52]Potts DE, Ahlert RC, Wang SS. A critical review of fouling of reverse osmosis membranes[J]. Desalination,1981,36:235-264.
    [53]Marshall AD, Munro PA, Tragardh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity:A literature review[J]. Desalination,1993,91:65-64.
    [54]Gekas V, Hallstrom B. Mass transfer in the membrane concentration polarization layer under turbulent cross flow, I Critical literature review and adaptaion of existing Sherwood correlations to membrane operations[J]. J Membr Sci,1987,30:153-170.
    [55]K Matsumoto, S Katsuyama, H Ohya. Separation of yeast by cross-flow filtration with backwashing[J]·Journalof Fermentation-1987,1 (65):77-88
    [56]Jacob J, Pradanos P, Calvo J I, et al. Fouling kinetics and associated dynamics of structural modifications[J]. Colloids and Surfaces A:Physico chemical and Engineering Aspects,1998,138:173-183.
    [57]Tansel B, Bao W Y, Tansel I N. Characterization of fouling kinetics in ultrafiltration systems by resistances in series model[J]. Desalination,2000, 129:7-14.
    [58]Hermia J. Constant pressure blocking filtration laws-application to power-law non-Newtonian fluids[J]. Trans Inst Chem Eng.,1982,60:183-187.
    [59]时钧.膜分离技术[M].北京,化学工业出版社,2001.
    [60]Huimin Ma, Luis F. Hakim, Christopher N, et al. Factors affecting membrane fouling reduction by surface modification and backpulsing[J]. Journal of Membrane Science,2001,18(2):255-270
    [61]魏新渝.集成膜技术处理制药废水中膜污染机理和防治及药剂对膜结构和性能的影响[D].天津大学,2007.
    [62]Ahmed Z, Cho J, Lim B, et al. Effectofsludge retention time on membrane fouling and microbial community structure in a membrane bioreactor[J]. Journal of Membrane Science,2007,287(2):211-218.
    [63]S. Senthilmurugan, Sharad K. Gupta. Separation of inorganic and organic compounds by using a radial flow hollow-fiber reverse osmosis module[J]. Desalination,2006,196(1),221-236
    [64]郭晓燕,叶笑风,张振家,等.工艺参数对UF&RO工艺制取纯水效率的影响[J].安全与环境学报,2005,5(3):26-29
    [65]王娟,杨永强,李井峰,等.耐高温反渗透膜在化工废水处理中的应用[J].化工环保,2010,30(2):125-129
    [66]Cynthia L. Pederson, Richard M. Lueptow. Fouling in a high pressure, high recovery rotating reverse osmosis system[J]. Desalination,2007,212(1):1-14
    [67]马琳,秦国彤.膜污染的机理和数学模型研究进展[J].水处理技术,2007,33(6):1-4
    [68]员文权,杨庆峰.计算流体力学在反渗透膜分离中的应用[J].化工进展,2008,27(9):1357-1369
    [69]周志鹏,吴克宏.基于量纲分析的氧化铝陶瓷膜通量关联式的研究[J].膜科学与技术,2005,25(3):22-25
    [70]杨波.亚硝化细菌应用于生物滤池及反渗透深度处理城市污水现场中试研究[D].山东大学,2007.
    [71]冯逸仙,杨世纯.反渗透水处理工程[M].北京,中国电力出版社,2000:162-163.
    [72]周正立.反渗透水处理应用技术及膜水处理剂[M].北京,化学工业出版 社,2007.
    [73]吕监,阎光明,李桂枝.纳滤膜在水处理中的应用[J].环境工程,2001,19(1):23-25
    [74]Isabel C. Escobar, Seungkwan Hong, Andrew A.Randall. Removal of Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon by Reverse Osmosis and Nanofiltration Membranes[J]. Journal of Membrane Science,2000,175(1):1-17.
    [75]胡亮,杨大锦.Excel与化学化工试验数据处理[M].北京,化学工业出版,2004:183-185
    [76]何绪文,宋志伟,王殿芳,等.反渗透技术在煤矿苦碱水处理中的应用研究[J].中国矿业大学学报,2002,31(6):618-621
    [77]陈欢林,戴兴国,吴礼光.反渗透、纳滤膜技术脱除小分子有机物的研究进展[J].膜科学与技术,2009,29(3):4-5
    [78]邓念庭,马颖,方振东.国外超低压反渗透膜的研究现状及发展趋势[J].后勤工程学院学报,2003,19(3):40-42
    [79]唐启义.DPS数据处理系统[M].北京:科学出版社,2010,258-262.
    [80]魏基业,王孙崯,陈英文,等.响应面法优化Fenton氧化处理高浓度丙烯酸废水[J].环境化学,2011,30(7):1303-1310.
    [81]Willis M J, Montague G A, Massimo C D, et al·Artificial neural networks in process estimation and control[J]. Automatic,1992,28(6):1083-1112
    [82]陈兴,程吉林,刘芳.BP神经网络用于水质评价的参数确定[J].水利与建筑工程学报,2007,5(1):12-15
    [83]夏克文,李昌彪,沈钧毅.前向神经网络隐含层节点数的一种优化算法[J].计算机科学,2005,32(10):143-145
    [84]Jose M.Paruelo, Femando Tomasel. Prediction of functional characteristics of ecosystem:acomparison of artificial neural network and regression models[J]. Ecol model,1996,98:173-186
    [85]K.c.Luk, J.E.Ball, A. sharma. A study of optimal model lag and Spatial inputs to artificial neural network for rainfall forecasting[J]. Hydrol,2000,227:56-65
    [86]王强,田学民.基于KPCA-LSSVM的软测量建模方法[J].化工学报,2011,62(10):2813-2817
    [87]何绪文,宋志伟,王殿芳,等.反渗透技术在煤矿苦碱水处理中的应用研究[J].中国矿业大学学报,2002,31(6):618-621.
    [88]李颖,凌霄.反渗透膜经济寿命分析[J].工业安全与环保,2007,33(11): 30-32.
    [89]JI Chao-qing, CHEN Hao. Physical chemistry study on RO and NF process (I) [J]. Journal of Chemistry Industry and Engineering (China), 2006,57 (3):601-606.
    [90]章丽萍,鲁雪梅,高振凤,等.反渗透污染膜水通量迁移方程的改进及应用研究[J].水处理技术,2010,36(1):64-66.
    [91]钟常明,方夕辉,徐振良.膜耦合过程处理矿山废水的特征方程与预测计算[J].过滤与分离,2008,18(4):1-4.
    [92]胡中爱,郑鸿,周欣欣,等.混合电解质体系反渗透膜性能的预测[J].水处理技术,1994,20(3):123-128.
    [93]于梦婕.操作因素对反渗透膜分离性能的影响及模型参数分析[D].北京:北京交通大学,2008.
    [94]C.W. Thrall, R.W. Lawrence预测反渗透装置性能的计算法[J].国外舰船技术(特辅机电设备),1984,20(10):23-25.
    [95]A.M.Helal, A.M.El-Nashar, E.S.Al-Katheeri, etal. Optimal design of hybrid RO/MSF desalination plants, Part II:Results and discussion[J]. Desalination,2003,160 (20):13-27.
    [96]程会文,姬朝青,许力.基于吸附-扩散模型和遗传算法的反渗透膜性能预测[J].化工学报,2007,58(8):2027-2032.
    [97]夏艳.基于遗传算法的海水淡化系统的优化设计[D].青岛:中国海洋大学,2007.
    [98]覃光华, 李祚泳.BP网络过拟合问题研究及应用[J].武汉大学学报,2006,39(6):55-58.
    [99]Johnson R A, Wichern D W实用多元统计分析第六版[M].陆璇,叶俊译.北京,清华大学出版社,2008:347-366.
    [100]于秀林,任雪松.多元统计分析[M].北京,中国统计出版社,2004:237-243.
    [101]Montgomery D C实验设计与分析[M].傅钰生译.北京,人民邮电出版社,2009:342-361.
    [102]靳朝辉,张凤宝.多孔介质中的分数扩散方程[J].化学工业与工程,2004,21(3):206-209.
    [103]O. Kedem and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes[J]. Biochim. Biophys. Acta, 1958,27:229.
    [104]K.S. Spiegler and O. Kedem.Thermodynamics of hyperfiltration (reverse osmosis):criteria for efficient membranes[J].Desalination,1966,1:311-326.
    [105]王晓琳,中尾真一.低分子量中性溶质体系纳滤膜的透过特性[J].南京化工大学学报,1998,20(4):36-40
    [106]X.L. Wang, T. Tsuru, S.I. Nakao, et al. Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model[J]. J. Membr.Sci,103(1995):117-133.
    [107]Van der Bruggen B, Schaep J, W ilms D. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration[J]. J Membrane Sci,1999,156(1):29-41.
    [108]J. Glater, J.W. McCutchan, S.B. McCray, et al. Effect of halogens on the performance and durability of reverse-osmosis membranes[J]. ACS Symp. Ser,1981,171-190
    [109]J. Glater, J.W. McCutchan, S.B. McCray, et al. Halogen interactions with typical reverse osmosis membranes[J]. Proc. Water Reuse Symp,1982, 1399-1409
    [110]J. Glater, M.R. Zachariah. A mechanistic study of halogen interaction with polyamide reverse-osmosis membranes[J]. ACS Symp. Ser,1985,281:345-358
    [111]Y. N. Kwon, J.O. Leckie. Hypochlorite degradation of crosslinked polyamide membranes Ⅱ. changes in hydrogen bonding behavior and performance[J]. J.Membr. Sci,2006,282:456-464
    [112]S.-Y. Kwak, S.G. Jung, Y.S. Yoon, et al. Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy[J]. J. Polym. Sci. Part B:Polym. Phys, 1999,37:1429-1440
    [113]M. Hirose, H. Ito, Y. Kamiyama. Effect of skin layer surface structures on the flux behaviour of RO membranes[J].J. Membr. Sci,1996,121:209-215
    [114]J.S. Jensen, Y.F. Lam, G.R. Helz. Role of amide nitrogen in water chlorination:Proton NMR evidence[J].Environ. Sci. Technol,1999,33: 3568-3573
    [115]N.P. Soice, A.R. Greenberg, W.B. Krantz, et al. Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis[J]. J. Membr. Sci,2004,243:345-355
    [116]G.J.Priee, D.A.Haddon, A.Bainbridge, et al. Vapour sorption studies of polymer-solution thermodynamics using a piezoelectric quartz crystal microbalance[J]. Polym.Int,2006,55(7):515-516
    [117]Howell J A. Sub-critical flux operation of microfiltration[J]. J Membr Sci, 1995,107:165-171
    [11 8]袁栋栋,樊耀波,徐国良,等.膜生物反应器中临界通量理论的研究[J].膜科学与技术,2010,30(2):97-103.
    [119]vontron产品技术支持与服务手册[M].北京.时代沃顿科技有限公司,2008:78
    [120]马琳,秦国彤.膜污染的机理和数学模型研究进展[J].水处理技术,2007,33 (6):1-4
    [121]Altmann J, Ripperger S. Particle deposition and layer formation at the crossflow microfiltration[J]. J Membr Sci.,1997,124:119-128.
    [122]Vyas H K, Bennett R J, Marshall A D. Influence of operating conditions on membrane fouling in crossflow micro filtration of particulate suspensions[J]. International Dairy Journal,2000,10:477-487.
    [123]Sharp M M, Escobar I C. Effects of dynamic or secondary-layer coagulation on ultrafiltration[J]. Desalination,2006,186:239-249
    [124]姬朝青.关于反渗透、超滤过程中的浓差极化比及其表达式的研究[J].膜科学与技术,1992,12(3):15-20.
    [125]徐腊梅,夏罡,毕飞,等.反渗透膜系统中浓差极化的影响[J].工业水处理,2004,24(1):63-65.
    [126]罗敏,王占生,侯立安.纳滤膜污染的分析与机理研究[J].水处理技术,1998,6:318-323
    [127]赵国玺.表面活性剂物理化学[M].第二版,北京大学出版社,1991:35-63,103-126
    [128]Field R W, WU D, Howell J A, et al. Critical flux concept for microfiltration fouling[J]. Journal of Membrane Science,1995,100:259-272
    [129]Pierre Le Clech, Bruce Jefferson. Critical flux determination by the flux-stepmethod in a submerged membrane bioreactor[J]. Journal of membrane science,2003,227:81-93.
    [130]刘文峰,杨凤林,柳丽芬,等.一种确定超滤在线反冲洗周期的新方法[J].膜科学与技术,2009,29(1):13-18
    [131]项静恬,史九恩.非线性系统中数据处理的统计方法[M].北京,科学出版社,1997:1-43.
    [132]陈希孺.变点统计分析简介[M].数理统计与管理,1991,(1-4):1-43.
    [133]Lee S, Elimelech M. Salt cleaning of organic-fouled reverse osmosis membranes[J]. Water Research,2007,41(5):1134-1142.
    [134]卜建伟,何文杰,黄廷林,等.浸没式膜工艺处理滦河水的膜污染清洗技术研究[J].供水技术,2009,3(4):1-5
    [135]康华,何文杰,王胜江,等.PVDF膜污染及清洗试验研究[J].给水排水,2008,34(4):12-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700