用户名: 密码: 验证码:
考虑不确定性因素的电力系统电压稳定与无功优化问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为电力系统分析领域两个重要的问题,电压稳定与无功优化的研究经历了多年的发展,分别取得了丰硕的成果。传统研究中所采用的数学模型和求解方法大多属于确定性分析的范畴,所获得的结论对于提高系统电压稳定性与优化无功资源配置均具有重要的指导意义。然而,电力系统本质上是一个含有诸多不确定性因素的大型系统。当前可再生能源发电大规模并网的新形势下,越来越多的随机因素不断涌现,电压稳定与无功优化研究中更为深入地考察电网不确定性因素带来的影响显得尤为必要。针对不确定性因素的分析思路、建模方法及求解策略将进一步完善电压稳定与无功优化研究的理论体系,产生更多具有参考价值和实用意义的成果。鉴于此,本文以考虑不确定性因素的电压稳定与无功优化问题为研究重点,内容涉及风速相关性对电压失稳鞍结分岔的影响分析、计及注入功率不确定性的电压稳定概率评估、多目标进化算法求解无功优化的比较分析与改进方法、计及负荷不确定性的鲁棒多目标无功优化策略等四个部分。本文工作和取得的主要成果归纳如下:
     分析了邻近风电场风速相关性对电压失稳鞍结分岔的影响。采用Nataf变换技术建立多风电场相关风速随机变量概率分布模型,结合鞍结分岔特征方程和蒙特卡罗仿真,获得不同相关强度的风速下电压稳定裕度的概率分布。此外,通过定义两种风险指标,对风速相关性引起电压失稳的风险予以量化分析,为精确判断系统电压稳定性提供了一种辅助手段。算例分析表明,风速强相关引起系统在较低的负荷增长水平下发生鞍结分岔的概率明显增加,不利于电网的安全稳定。
     提出了一种可以处理风速、负荷等输入随机变量相关性的电压稳定概率评估方法。根据输入随机变量的边缘累积分布,通过拉丁超立方采样生成风速和负荷样本用于蒙特卡罗仿真,在保证计算精度的前提下有效地提高了计算效率;将其和Nataf变换结合,使得所提出的方法能够方便地计及临近风电场风速之间及节点负荷之间的相关性因素。在考虑风电和负荷注入功率不确定性的条件下,通过IEEE118节点标准系统的仿真计算,验证了所提出方法的有效性和准确性。
     比较研究了基于不同算法框架的典型多目标进化算法应用于无功优化的性能特点。以IEEE30节点标准系统的多目标无功优化计算为例,从非支配解集质量和多样性、帕累托前沿分布广阔性和均匀性及收敛速度等多个方面,比较算法的寻优性能,分析其优势或不足,在评估各种算法计算性能的基础上提出了进一步改进的思路。
     提出了一种基于多种进化算法自适应选择(multiple evolutionary algorithms withadaptive selection strategies,MEAASS)的多目标无功优化方法。根据该领域研究现状,分析已有算法全局搜索能力、局部搜索能力、收敛速度、计算结果一致性及跳出局部最优能力等方面的特征;在考虑协调性与互补性的基础上,建立包含4类算法的备选池;在进化过程不同阶段根据寻优性能自适应地确定备选算法的使用比例,鼓励寻优性能更高的算法产生更多子代个体;所提出的方法综合了多种算法的性能优势,提高整体寻优效率。
     提出了能够计及节点负荷随机性及其相关性的鲁棒多目标无功优化策略。基于蒙特卡罗积分形式的鲁棒优化模型,以系统有功损耗和电压偏移的均值近似地替代负荷波动邻域内的期望值,并同时考虑各种负荷扰动条件下系统运行约束,搜索无功优化鲁棒解。算例分析中采用本文提出的新方法MEAASS求解IEEE30节点标准系统的鲁棒多目标无功优化问题,结果表明鲁棒性优化改善了无功调控方案在负荷不确定性环境下的稳定性和适应性,提高了无功优化的工程实用价值。
Voltage stability and optimal reactive power dispatch (ORPD) are two important andhot topics in power engineering field, in which many researches have been done andabundant achievements have been achieved. Conventional investigations in these twotopics, including mathematical models and solution methods, belong to the category ofdeterministic analysis, and their conclusions have significant instructive effect on voltagestability enhancement and reactive power resources optimal utilization. However, powersystem is in nature a large one with various uncertain factors. With the heavy integration ofrenewable energy sources, more and more random factors continue to emerge in currentpower system. Thorough consideration of these uncertain characteristics in these two topicsis particularly significant. Investigations on modeling methods and solving strategy foruncertain characteristics can make contribution to the amendment of academic theory ofvoltage stability as well as ORPD research, and obtain more achievements with referencevalue and practical significance. To this reason, research on the two topics under uncertainenvironments is chosen to be the theme of this thesis, with the following four aspectsincluded: impact of wind speed correlation (WSC) on voltage instability saddle-nodebifurcation (SNB), voltage stability probabilistic evaluation considering uncertainty inpower injection, comparison and improvement of multi-objective evolutionary algorithms(MOEAs) for multi-objective ORPD, and robust optimal strategy for multi-objectiveORPD with consideration of load uncertainty. The investigations and achievements of thisthesis are listed as follows.
     Impact of correlated wind speeds on voltage instability SNB is comprehensivelyinvestigated. Nataf transformation is adopted to establish WSC model for wind farms withclose locations. Based on SNB transversality condition equations and Monte Carlosimulation technique, probability distribution of voltage stability margin under differentWSC coefficients is obtained. Moreover, two risk indexes are presented and the voltage stability deterioration caused by WSC is evaluated from the viewpoint of risk analysis.Experimental results demonstrate that the probability of SNB under relative lower loadgrowth level increases with the strengthening of WSC, implying strong correlated windspeeds bring negative effect in safe and stable operation of power system as far as voltagestability is concerned.
     A probabilistic evaluation method of voltage stability accounting for uncertainties inwind speeds and load levels is proposed. Based on Latin hypercube sampling (LHS) MonteCarlo simulation technique, this method can maintain a high degree of accuracy and reducecomputational burden when compared with the simple random sampling Monte Carlomethod. In addition, by combining LHS with Nataf transformation, the presented methodcan deal with correlated wind speeds of different wind farms and correlated load levels ofdifferent buses. Interior point method is used to solve nonlinear programming problems forvoltage stability critical point on the sampling points, and the probability distribution ofvoltage stability margin is obtained. The effectiveness and accuracy of the proposedmethod is validated by case study on the IEEE118bus system.
     Five current typical MOEAs are selected and from an overall perspective theapplication of them in multi-objective ORPD is comparatively researched. Different fromtraditional approach that combines multiple objective functions into a single one by settingpreference parameters, the multi-objective model, in which the system network loss andvoltage deviation are taken into account, is directly utilized. Based on the test case of IEEE30bus system, the optimal performances of five MOEAs are compared and thesuperiorities and defects of them are analyzed in the viewpoints of quality and diversity ofnon-dominated solution set, extensity and uniformity of final Pareto front and convergencespeed. On the basis of evaluating computing performances of five MOEAs the prospect offurther research is put forward.
     A new optimal method based on multiple evolutionary algorithms with adaptiveselection strategies (MEAASS) for multi-objective ORPD is proposed. Based on analysisof characteristics of state-of-the-art MOEAs, and considering the rules of consistency andcomplementation, candidate algorithm pool containing four different algorithms is presented. By means of adaptively favoring individual algorithms that exhibit higherreproductive success during the search, MEAASS simultaneously merges the strengths ofmultiple algorithms for population evolution. Based on the test case of IEEE30bus system,the computing performance of MEAASS is compared with existing popular algorithms.The numerical simulations demonstrate that MEAASS can obtain better performance ofconvergence during the entire optimization process.
     A robust optimal strategy for multi-objective ORPD with consideration of loadrandomness and correlation is proposed. Based on Monte Carlo integral form of objectivefunctions, the expectations of system network loss and voltage deviation in presence ofload fluctuations are approximately calculated, meanwhile the operational constraints undervarious load perturbations are taken into account, finally robust non-dominated solutionswhich are insensitive to load uncertainty are achieved. To reduce the error of Monte Carlointegration, LHS combinated with Nataf transformation is adopted to generate load levelsample. MEAASS is utilized to solve the robust multi-objective ORPD on IEEE30bussystem, and the results demonstrate that control schemes obtained by robust optimalstrategy can maintain their performance and consistency with existence of load uncertainty.
引文
[1] Chemanoff A, Corroyer C. The Power System Failure of Dec.19,1978. RGE,1980,89(4).
    [2] Kurita A, Sakurai T. The power system failure on July23,1987in Tokyo:Proceedings of the27th IEEE Conference on Decision and Control,1988,2093-2097.
    [3] Taylor C W. Power System Voltage Stability. New York: McGraw-Hill,1994.
    [4] IEEE/CIGRE joint task force on stability terms and definitions. Definition andclassification of power system stability. Power Systems, IEEE Transactions on,2004,19(3):1387-1401.
    [5]马尔科维奇.动力系统及其运行情况,张钟俊译.北京:电力工业出版社,1956.
    [6]段献忠.电压稳定问题的机理和建模及实用算法研究[博士学位论文].华中理工大学,1992.
    [7] Van Cutsem T. Voltage instability: phenomena, countermeasures, and analysismethods. Proceedings of the IEEE,2000,88(2):208-227.
    [8]苏永春,程时杰,文劲宇,等.电力系统电压稳定性及其研究现状(一).电力自动化设备,2006,26(06):97-101.
    [9]苏永春,程时杰,文劲宇,等.电力系统电压稳定性及其研究现状(二).电力自动化设备,2006,26(07):97-100.
    [10]熊虎岗.计及静态电压稳定性的多目标无功潮流优化[博士学位论文].上海交通大学,2008.
    [11]程浩忠,吴浩.电力系统无功与电压稳定性.北京:中国电力出版社,2004.
    [12] Zhang W, Li F, Tolbert L M. Review of Reactive Power Planning: Objectives,Constraints, and Algorithms. Power Systems, IEEE Transactions on,2007,22(4):2177-2186.
    [13]张勇军,任震,李邦峰.电力系统无功优化调度研究综述.电网技术,2005,29(02):50-56.
    [14] Kundur P. Power System Stability and Control. New York: McGraw-Hill,1994.
    [15] Greene S, Dobson I, Alvarado F L. Sensitivity of the loading margin to voltagecollapse with respect to arbitrary parameters. Power Systems, IEEE Transactions on,1997,12(1):262-272.
    [16] Zhou Y, Ajjarapu V. A Fast Algorithm for Identification and Tracing of Voltage andOscillatory Stability Margin Boundaries. Proceedings of the IEEE,2005,93(5):934-946.
    [17]李兴源,宋永华,刘俊勇,等.基于人工神经元网络的复杂电力系统故障后电压安全评估.中国电机工程学报,1996,16(03):147-150.
    [18] Xue Y, Xu T, Liu B, et al. Quantitative assessments for transient voltage security.Power Systems, IEEE Transactions on,2000,15(3):1077-1083.
    [19]周双喜,朱凌志,郭锡玖.电力系统电压稳定性及其控制.北京:中国电力出版社,2004.
    [20]王刚.电力系统静态电压稳定域及其可视化研究[博士学位论文].清华大学,2008.
    [21] Van Cutsem T, Vournas C. Voltage Stability of Electrical Power Systems. Dordrecht:Kluwer Academic Publishers,1998.
    [22]彭志炜,胡国根,韩祯祥.基于分叉理论的电力系统电压稳定性分析.北京:中国电力出版社,2005.
    [23] Flatabo N, Ognedal R, Carlsen T. Voltage stability condition in a power transmissionsystem calculated by sensitivity methods. Power Systems, IEEE Transactions on,1990,5(4):1286-1293.
    [24] Lee B, Ajjarapu V. Invariant subspace parametric sensitivity (ISPS) ofstructure-preserving power system models. Power Systems, IEEE Transactions on,1996,11(2):845-850.
    [25] Tamura Y, Mori H, Iwamoto S. Relationship Between Voltage Instability andMultiple Load FLow Solutions in Electric Power Systems. Power Apparatus andSystems, IEEE Transactions on,1983, PAS-102(5):1115-1125.
    [26] Yorino N, Harada S, Cheng H. A method to approximate a closest loadability limitusing multiple load flow solutions. Power Systems, IEEE Transactions on,1997,12(1):424-429.
    [27] Gao B, Morison G K, Kundur P. Voltage stability evaluation using modal analysis.Power Systems, IEEE Transactions on,1992,7(4):1529-1542.
    [28] Lof P A, Smed T, Andersson G, et al. Fast calculation of a voltage stability index.Power Systems, IEEE Transactions on,1992,7(1):54-64.
    [29] Lof P A, Andersson G, Hill D J. Voltage stability indices for stressed power systems.Power Systems, IEEE Transactions on,1993,8(1):326-335.
    [30]冯治鸿,刘取,倪以信,等.多机电力系统电压静态稳定性分析——奇异值分解法.中国电机工程学报,1992,12(03):12-21.
    [31] Tamimi A A, Pahwa A, Starrett S. Effective Wind Farm Sizing Method for WeakPower Systems Using Critical Modes of Voltage Instability. Power Systems, IEEETransactions on,2012,27(3):1610-1617.
    [32] Morison G K, Gao B, Kundur P. Voltage stability analysis using static and dynamicapproaches. Power Systems, IEEE Transactions on,1993,8(3):1159-1171.
    [33]杨小煜,周孝信.基于极小扩张系统方法的静态电压稳定临界点计算.中国电机工程学报,2009,29(25):32-36.
    [34]刘永强,严正,倪以信,等.基于辅助变量的潮流方程二次转折分岔点的直接算法.中国电机工程学报,2003,23(05):10-14.
    [35] Canizares C A, Mithulananthan N, Berizzi A, et al. On the linear profile of indicesfor the prediction of saddle-node and limit-induced bifurcation points in powersystems. Circuits and Systems I: Fundamental Theory and Applications, IEEETransactions on,2003,50(12):1588-1595.
    [36] Kataoka Y, Shinoda Y. Voltage stability limit of electric power systems withGenerator reactive power constraints considered. Power Systems, IEEE Transactionson,2005,20(2):951-962.
    [37] Iba K, Suzuki H, Egawa M, et al. Calculation of critical loading condition with nosecurve using homotopy continuation method. Power Systems, IEEE Transactions on,1991,6(2):584-593.
    [38] Ajjarapu V, Christy C. The continuation power flow: a tool for steady state voltagestability analysis. Power Systems, IEEE Transactions on,1992,7(1):416-423.
    [39] Chiang H, Flueck A J, Shah K S, et al. CPFLOW: a practical tool for tracing powersystem steady-state stationary behavior due to load and generation variations. PowerSystems, IEEE Transactions on,1995,10(2):623-634.
    [40] Alves D A, Da Silva L C P, Castro C A, et al. Continuation fast decoupled powerflow with secant predictor. Power Systems, IEEE Transactions on,2003,18(3):1078-1085.
    [41] Xu P, Wang X, Ajjarapu V. Continuation power flow with adaptive stepsize controlvia convergence monitor. Generation, Transmission Distribution, IET,2012,6(7):673-679.
    [42] Li S H, Chiang H D. Nonlinear predictors and hybrid corrector for fast continuationpower flow. Generation, Transmission Distribution, IET,2008,2(3):341-354.
    [43] Neto A B, Alves D A. Improved geometric parameterisation techniques forcontinuation power flow. Generation, Transmission Distribution, IET,2010,4(12):1349-1359.
    [44] Cao G, Chen C. Novel Techniques for Continuation Method to Calculate theLimit-induced Bifurcation of the Power Flow Equation. Electric Power Componentsand Systems,2010,38(9):1061-1075.
    [45]熊宁,程浩忠,马则良,等.基于连续潮流的极限诱导分岔检测方法.电力系统自动化,2008,32(18):35-38.
    [46] Li S, Chiang H. Continuation Power Flow With Nonlinear Power InjectionVariations: A Piecewise Linear Approximation. Power Systems, IEEE Transactionson,2008,23(4):1637-1643.
    [47]孙宏斌,李钦,张明晔,等.基于动态潮流方程的连续潮流模型与方法.中国电机工程学报,2011,31(07):77-82.
    [48]赵晋泉,钱天能.计及发电机励磁电流约束和电枢电流约束的连续潮流.中国电机工程学报,2012,32(22):118-125.
    [49] Zhang X, Ju P, Handschin E. Continuation Three-Phase Power Flow: A Tool forVoltage Stability Analysis of Unbalanced Three-Phase Power Systems. PowerSystems, IEEE Transactions on,2005,20(3):1320-1329.
    [50] Canizares C A, Alvarado F L, Demarco C L, et al. Point of collapse methods appliedto AC/DC power systems. Power Systems, IEEE Transactions on,1992,7(2):673-683.
    [51] Chiang H, Jean-Jumeau R. A more efficient formulation for computation of themaximum loading points in electric power systems. Power Systems, IEEETransactions on,1995,10(2):635-646.
    [52]胡林献,陈学允.崩溃点法交直流联合系统电压稳定性分析.中国电机工程学报,1997,17(06):36-39.
    [53] Canizares C A. Calculating optimal system parameters to maximize the distance tosaddle-node bifurcations. Circuits and Systems I: Fundamental Theory andApplications, IEEE Transactions on,1998,45(3):225-237.
    [54] Yan Z, Liu Y, Wu F, et al. Method for direct calculation of quadratic turning points.Generation, Transmission and Distribution, IEE Proceedings-,2004,151(1):83-89.
    [55]江伟,王成山,余贻鑫,等.直接计算静态电压稳定临界点的新方法.中国电机工程学报,2006,26(10):1-6.
    [56] Yang X, Zhou X, Du Z. Efficient solution algorithms for computing fold points ofpower flow equations. International Journal of Electrical Power&Energy Systems,2011,33(2):229-235.
    [57] Irisarri G D, Wang X, Tong J, et al. Maximum loadability of power systems usinginterior point nonlinear optimization method. Power Systems, IEEE Transactions on,1997,12(1):162-172.
    [58] Dai Y, Mccalley J D, Vittal V. Simplification, expansion and enhancement of directinterior point algorithm for power system maximum loadability. Power Systems,IEEE Transactions on,2000,15(3):1014-1021.
    [59]韦化,丁晓莺.基于现代内点理论的电压稳定临界点算法.中国电机工程学报,2002,22(03):28-32.
    [60]郭瑞鹏,韩祯祥,王勤.电压崩溃临界点的非线性规划模型及算法.中国电机工程学报,1999,19(04):14-17.
    [61]李华强,刘亚梅, Yorino N.鞍结分岔与极限诱导分岔的电压稳定性评估.中国电机工程学报,2005,25(24):56-60.
    [62]蔡广林,张勇军,任震,等.采用非线性互补约束模型确定静态电压稳定临界点.中国电机工程学报,2008,28(16):8-14.
    [63]鲍海波,韦化.考虑发电机运行极限的电压稳定临界点互补模型与算法.电力系统自动化,2012,36(22):12-18.
    [64] Rosehart W, Roman C, Schellenberg A. Optimal power flow with complementarityconstraints. Power Systems, IEEE Transactions on,2005,20(2):813-822.
    [65] Vu K, Begovic M M, Novosel D, et al. Use of local measurements to estimatevoltage-stability margin. Power Systems, IEEE Transactions on,1999,14(3):1029-1035.
    [66]李卫星,牟晓明,李志民.电力系统戴维南等值参数的解析与思考.中国电机工程学报,2012,32(S1):28-34.
    [67]廖国栋,王晓茹.利用局部区域量测的电压稳定在线监测.中国电机工程学报,2010,30(04):56-62.
    [68]李连伟,吴政球,钟浩,等.基于节点戴维南等值的静态电压稳定裕度快速求解.中国电机工程学报,2010,30(04):79-83.
    [69] Parniani M, Vanouni M. A Fast Local Index for Online Estimation of Closeness toLoadability Limit. Power Systems, IEEE Transactions on,2010,25(1):584-585.
    [70] Milosevic B, Begovic M. Voltage-stability protection and control using a wide-areanetwork of phasor measurements. Power Systems, IEEE Transactions on,2003,18(1):121-127.
    [71]赵金利,余贻鑫.基于本地相量测量的电压失稳指标工作条件分析.电力系统自动化,2006,30(24):1-4.
    [72]赵晋泉,杨友栋,高宗和.基于局部相量量测的电压稳定评估方法评述.电力系统自动化,2010,34(20):1-6.
    [73]余娟,李文沅,颜伟.对几个基于线路局部信息的电压稳定指标有效性的质疑(英文).中国电机工程学报,2009,29(19):27-35.
    [74] Meio A C G, Jco M, Granville S. The effects of voltage collapse problems in thereliability evaluation of composite systems. Power Systems, IEEE Transactions on,1997,12(1):480-488.
    [75] Momoh J A, Makarov Y V, Mittelstadt W. A framework of voltage stabilityassessment in power system reliability analysis. Power Systems, IEEE Transactionson,1999,14(2):484-491.
    [76]李生虎,丁明,汪兴强.电力系统静态电压安全问题的概率评价.电力系统自动化,2003,27(20):26-30.
    [77] Billinton R, Aboreshaid S. Voltage stability considerations in composite powersystem reliability evaluation. Power Systems, IEEE Transactions on,1998,13(2):655-660.
    [78]吴蓓.电力系统静态电压稳定的概率评估方法研究[博士学位论文].上海交通大学,2008.
    [79]戴剑锋,王海超,周双喜,等.基于负荷裕度随机特性的电压失稳概率问题研究.中国电机工程学报,2006,26(13):26-30.
    [80] Schellenberg A, Rosehart W, Aguado J A. Cumulant-based stochastic nonlinearprogramming for variance constrained voltage stability analysis of power systems.Power Systems, IEEE Transactions on,2006,21(2):579-585.
    [81]周玮,彭昱,孙辉,等.含风电场电力系统的负荷裕度概率分析混合方法.电网技术,2008,32(12):79-83.
    [82] Zhang J F, Tse C T, Wang W, et al. Voltage stability analysis based on probabilisticpower flow and maximum entropy. Generation, Transmission Distribution, IET,2010,4(4):530-537.
    [83]王敏,丁明.考虑分布式电源的静态电压稳定概率评估.中国电机工程学报,2010,30(25):17-22.
    [84]吴蓓,张焰,陈闽江.点估计法在电压稳定性分析中的应用.中国电机工程学报,2008,28(25):38-43.
    [85] Haesen E, Bastiaensen C, Driesen J, et al. A Probabilistic Formulation of LoadMargins in Power Systems With Stochastic Generation. Power Systems, IEEETransactions on,2009,24(2):951-958.
    [86]鲍海波,韦化.考虑风电的电压稳定概率评估的随机响应面法.中国电机工程学报,2012,32(13):77-85.
    [87] Wu B, Zhang Y, Chen M J. Probabilistic approach to voltage stability analysis withload uncertainty considered. European Transactions on Electrical Power,2009,19(2):209-224.
    [88]吴蓓,张焰,陈闽江.基于负荷模糊聚类的电压稳定概率评估.电力系统自动化,2007,31(04):23-27.
    [89]胡泽春,周前,程浩忠.考虑发电出力调整的最近电压稳定临界点求取方法.中国电机工程学报,2010,30(25):37-43.
    [90]王成山,王兴刚.考虑静态电压稳定约束并计及负荷和发电机出力不确定性因素的概率最大输电能力快速计算.中国电机工程学报,2006,26(16):46-51.
    [91]王成山,王兴刚,孙玮.含大型风电场的电力系统概率最大输电能力快速计算.中国电机工程学报,2008,28(10):56-62.
    [92] Arya L D, Titare L S, Kothari D P. Determination of probabilistic risk of voltagecollapse using radial basis function (RBF) network. Electric Power SystemsResearch,2006,76(6–7):426-434.
    [93]崔峰,齐占庆,姜萌.基于模糊神经网络的电力系统电压稳定评估.电力系统保护与控制,2009,37(11):40-44.
    [94] Arya L D, Titare L S, Kothari D P. An approach to mitigate the risk of voltagecollapse accounting uncertainties using improved particle swarm optimization.Applied Soft Computing,2009,9(4):1197-1207.
    [95]舒隽,张粒子,刘易,等.电力市场下日无功计划优化模型和算法的研究.中国电机工程学报,2005,25(13):80-85.
    [96] Yu J, Yan W, Li W, et al. An Unfixed Piecewise-Optimal Reactive Power-FlowModel and its Algorithm for AC-DC Systems. Power Systems, IEEE Transactions on,2008,23(1):170-176.
    [97] Rabiee A, Vanouni M, Parniani M. Optimal reactive power dispatch for improvingvoltage stability margin using a local voltage stability index. Energy Conversion andManagement,2012,59:66-73.
    [98] Chebbo A M, Irving M R, Sterling M J H. Reactive power dispatch incorporatingvoltage stability. Generation, Transmission and Distribution, IEE Proceedings C,1992,139(3):253-260.
    [99] Thukaram D, Jenkins L, Visakha K. Optimum allocation of reactive power forvoltage stability improvement in AC-DC power systems. Generation, Transmissionand Distribution, IEE Proceedings-,2006,153(2):237-246.
    [100] Liu H, Jin L, Mccalley J D, et al. Planning Reconfigurable Reactive Control forVoltage Stability Limited Power Systems. Power Systems, IEEE Transactions on,2009,24(2):1029-1038.
    [101] Raoufi H, Kalantar M. Reactive power rescheduling with generator ranking forvoltage stability improvement. Energy Conversion and Management,2009,50(4):1129-1135.
    [102] Menezes T V, Da Silva L C P, Affonso C M, et al. MVAR management on thepre-dispatch problem for improving voltage stability margin. Generation,Transmission and Distribution, IEE Proceedings-,2004,151(6):665-672.
    [103] Capitanescu F. Assessing Reactive Power Reserves With Respect to OperatingConstraints and Voltage Stability. Power Systems, IEEE Transactions on,2011,4(26):2224-2234.
    [104]周任军,段献忠,周晖.计及调控成本和次数的配电网无功优化策略.中国电机工程学报,2005,25(09):23-28.
    [105] Zhang Y J, Ren Z. Optimal Reactive Power Dispatch Considering Costs of Adjustingthe Control Devices. Power Systems, IEEE Transactions on,2005,20(3):1349-1356.
    [106]缪楠林,刘明波,赵维兴.电力系统动态无功优化并行算法及其实现.电工技术学报,2009,24(02):150-157.
    [107]刘明波,朱春明,钱康龄,等.计及控制设备动作次数约束的动态无功优化算法.中国电机工程学报,2004,24(03):34-40.
    [108] Ramirez J M, Gonzalez J M, Ruben T O. An investigation about the impact of theoptimal reactive power dispatch solved by DE. International Journal of ElectricalPower&Energy Systems,2011,33(2):236-244.
    [109]杨以涵,李亚男,张粒子.考虑电压约束裕度的无功优化及其内点解法.中国电机工程学报,2001,21(09):2-5.
    [110] Amjady N, Rabiee A, Shayanfar H A. Multiobjective clearing of coupled active andreactive power market considering power system security. European Transactions onElectrical Power,2010,20(8):1190-1208.
    [111]李智欢,李银红,段献忠.无功优化多目标模型转换方法的等值线分析.电工技术学报,2012,27(06):153-160.
    [112] El-Dib A A, Youssef H K M, El-Metwally M M, et al. Optimum VAR sizing andallocation using particle swarm optimization. Electric Power Systems Research,2007,77(8):965-972.
    [113] Varadarajan M, Swarup K S. Network loss minimization with voltage security usingdifferential evolution. Electric Power Systems Research,2008,78(5):815-823.
    [114]李鑫滨,朱庆军.一种改进粒子群优化算法在多目标无功优化中的应用.电工技术学报,2010,25(07):137-143.
    [115] Li Z, Li Y, Duan X. Multiobjective Optimal Reactive Power Flow Using ElitistNondominated Sorting Genetic Algorithm: Comparison and Improvement. Journal ofElectrical Engineering&Technology,2010,5(1):70-78.
    [116] Jeyadevi S, Baskar S, Babulal C K, et al. Solving multiobjective optimal reactivepower dispatch using modified NSGA-II. International Journal of Electrical Power&Energy Systems,2011,33(2):219-228.
    [117] Carvalho R, Saldanha R R, Gomes B N, et al. A Multi-Objective EvolutionaryAlgorithm Based on Decomposition for Optimal Design of Yagi-Uda Antennas.Magnetics, IEEE Transactions on,2012,48(2):803-806.
    [118] Wang Z, Tang K, Yao X. Multi-Objective Approaches to Optimal Testing ResourceAllocation in Modular Software Systems. Reliability, IEEE Transactions on,2010,59(3):563-575.
    [119] Ongsakul W, Chayakulkheeree K. Coordinated fuzzy constrained optimal powerdispatch for bilateral contract, balancing electricity, and ancillary services markets.Power Systems, IEEE Transactions on,2006,21(2):593-604.
    [120]哈比比,余贻鑫,孙刚.基于安全域的电力系统有功及无功优化.中国电机工程学报,2006,26(12):1-10.
    [121]林济铿,石伟钊,武乃虎,等.计及离散变量基于互补约束全光滑牛顿法的无功优化.中国电机工程学报,2012,32(01):93-100.
    [122]邸弢,李华强,范锫.基于奇异值分解和内点法的交直流系统无功优化.电工技术学报,2009,24(02):158-163.
    [123] Yan W, Yu J, Yu D C, et al. A new optimal reactive power flow model in rectangularform and its solution by predictor corrector primal dual interior point method. PowerSystems, IEEE Transactions on,2006,21(1):61-67.
    [124]梁才浩.基于新型进化算法和微机集群的电力系统并行无功优化研究[博士学位论文].华中科技大学,2006.
    [125]余娟.无功优化新模型和算法研究及其在电压稳定风险评估中的应用[博士学位论文].重庆大学,2007.
    [126]李钟煦.电力系统分布式多目标无功优化研究[博士学位论文].山东大学,2009.
    [127] Fogel L J, Owens A J, Walsh M J. Artificial intelligence through simulationevolution. New York: John Wiley,1966.
    [128] Rechenberg I. Evolution strategies:Optimizer technique systematic principle underbiologist evolution. Frommann-Holzboog Verlag,1973.
    [129] Holland J H. Adaption in natural and artificial system. Ann Arbor: The University ofMichigan Press,1975.
    [130] Koza J R. Genetic Programming: on the Programming of computers by means ofnatural evolution. Massachusetts: MIT Press,1992.
    [131] Kennedy J, Eberhart R. Particle swarm optimization: Proceedings of IEEEInternational Conference on Neural Networks. Perth, Australia,1995:4,1942-1948.
    [132] Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme forglobal optimization over continuous spaces: Technical report TR-95-012. Berkley:International Computational Science Institute,1995.
    [133] Rosenberg R S. Simulation of genetic populations with biochemical properties [PhDThesis]. Ann Harbor, Michigan: University of Michigan,1967.
    [134]李智欢.无功优化进化计算的局部搜索策略及多目标处理方法[博士学位论文].华中科技大学,2010.
    [135] J D S. Multi objective optimization with vector evaluated genetic algorithms:Proceedings of the First International Conference on Genetic Algorithm. LawrenceErlbaum,1985,93-100.
    [136] Coello Coello C A. Evolutionary multi-objective optimization: a historical view ofthe field. Computational Intelligence Magazine, IEEE,2006,1(1):28-36.
    [137] D E G. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston:Addison-Wesley,1989.
    [138] N S, K D. Multiobjective optimization using nondominated sorting in geneticalgorithms. Evolutionary Computation,1994,2(3):221-248.
    [139] Iba K. Reactive power optimization by genetic algorithm. Power Systems, IEEETransactions on,1994,9(2):685-692.
    [140] Varadarajan M, Swarup K S. Solving multi-objective optimal power flow usingdifferential evolution. Generation, Transmission Distribution, IET,2008,2(5):720-730.
    [141]李智欢,段献忠.多目标进化算法求解无功优化问题的对比分析.中国电机工程学报,2010,30(10):57-65.
    [142] Wu Q H, Cao Y J, Wen J Y. Optimal reactive power dispatch using an adaptivegenetic algorithm. International Journal of Electrical Power&Energy Systems,1998,20(8):563-569.
    [143] Liang C H, Chung C Y, Wong K P, et al. Comparison and improvement ofevolutionary programming techniques for power system optimal reactive power flow.Generation, Transmission and Distribution, IEE Proceedings-,2006,153(2):228-236.
    [144] Badar A Q H, Umre B S, Junghare A S. Reactive power control using dynamicParticle Swarm Optimization for real power loss minimization. International Journalof Electrical Power&Energy Systems,2012,41(1):133-136.
    [145] Zhang X, Chen W, Dai C, et al. Dynamic multi-group self-adaptive differentialevolution algorithm for reactive power optimization. International Journal ofElectrical Power&Energy Systems,2010,32(5):351-357.
    [146]向铁元,周青山,李富鹏,等.小生境遗传算法在无功优化中的应用研究.中国电机工程学报,2005,25(17):48-51.
    [147]崔挺,孙元章,徐箭,等.基于改进小生境遗传算法的电力系统无功优化.中国电机工程学报,2011,31(19):43-50.
    [148]林广明,欧阳森,曾江,等.改进灾变遗传算法在无功优化规划中的应用.电网技术,2010,34(04):128-133.
    [149] Niknam T, Narimani M R, Aghaei J, et al. Improved particle swarm optimisation formulti-objective optimal power flow considering the cost, loss, emission and voltagestability index. Generation, Transmission Distribution, IET,2012,6(6):515-527.
    [150] Mahadevan K, Kannan P S. Comprehensive learning particle swarm optimization forreactive power dispatch. Applied Soft Computing,2010,10(2):641-652.
    [151] Yang C, Lai G G, Lee C, et al. Optimal setting of reactive compensation devices withan improved voltage stability index for voltage stability enhancement. InternationalJournal of Electrical Power&Energy Systems,2012,37(1):50-57.
    [152] Vlachogiannis J G, Ostergaard J. Reactive power and voltage control based ongeneral quantum genetic algorithms. Expert Systems with Applications,2009,36(3,Part2):6118-6126.
    [153] Hong Y, Pen K. Optimal VAR Planning Considering Intermittent Wind Power UsingMarkov Model and Quantum Evolutionary Algorithm. Power Delivery, IEEETransactions on,2010,25(4):2987-2996.
    [154]张勇军,任震,钟红梅,等.实时无功优化调度中的邻域搜索改进遗传算法.电网技术,2003,27(01):22-25.
    [155] Bakirtzis A G, Biskas P N, Zoumas C E, et al. Optimal power flow by enhancedgenetic algorithm. Power Systems, IEEE Transactions on,2002,17(2):229-236.
    [156]彭磊,张建平,吴耀武,等.基于GA、PSO结合算法的交直流系统无功优化.高电压技术,2006,32(04):78-81.
    [157] Laouafi F, Boukadoum A, Leulmi S. Reactive Power Dispatch with HybridFormulation: Particle Swarm Optimization and Improved Genetic Algorithms withReal Coding. International Review of Electrical Engineering,2010,5(2):601-607.
    [158]李如琦,李芝荣,王维志,等.基于差分策略的多目标电力系统无功优化.电网技术,2012,36(12):170-175.
    [159] Chung C Y, Liang C H, Wong K P, et al. Hybrid algorithm of differential evolutionand evolutionary programming for optimal reactive power flow. Generation,Transmission Distribution, IET,2010,4(1):84-93.
    [160] Mozafari B, Ranjbar A M, Amraee T, et al. A hybrid of particle swarm and antcolony optimization algorithms for reactive power market simulation. Journal ofIntelligent and Fuzzy Systems,2006,17(6):557-574.
    [161]李玉龙,宗伟,吕鲜艳,等.基于抗体浓度调节新定义下的免疫遗传算法在电压无功优化中的应用.电工技术学报,2008,23(02):115-119.
    [162]鲁忠燕,邓集祥,汪永红.基于免疫粒子群算法的电力系统无功优化.电网技术,2008,32(24):55-59.
    [163] Huang C M, Chen S J, Huang Y C, et al. Comparative study of evolutionarycomputation methods for active-reactive power dispatch. Generation, TransmissionDistribution, IET,2012,6(7):636-645.
    [164]曾令全,罗富宝,丁金嫚.禁忌搜索–粒子群算法在无功优化中的应用.电网技术,2011,35(07):129-133.
    [165] Liu Y, Ma L, Zhang J. Reactive power optimization by GA/SA/TS combinedalgorithms. International Journal of Electrical Power&Energy Systems,2002,24(9):765-769.
    [166]王淑芬,万仲平,樊恒,等.基于二层规划的无功优化模型及其混合算法.电网技术,2005,29(09):22-25.
    [167] Yan W, Lu S, Yu D C. A novel optimal reactive power dispatch method based on animproved hybrid evolutionary programming technique. Power Systems, IEEETransactions on,2004,19(2):913-918.
    [168] Chuanwen J, Bompard E. A hybrid method of chaotic particle swarm optimizationand linear interior for reactive power optimisation. Mathematics and Computers inSimulation,2005,68(1):57-65.
    [169]丁晓群,王艳华,臧玉龙,等.基于内点法和改进遗传算法的无功优化组合策略.电网技术,2008,32(11):45-49.
    [170] Yan W, Liu F, Chung C Y, et al. A hybrid genetic algorithm-interior point methodfor optimal reactive power flow. Power Systems, IEEE Transactions on,2006,21(3):1163-1169.
    [171]王建学,王锡凡,陈皓勇,等.基于协同进化法的电力系统无功优化.中国电机工程学报,2004,24(09):124-129.
    [172]赵波,郭创新,张鹏翔,等.基于分布式协同粒子群优化算法的电力系统无功优化.中国电机工程学报,2005,25(21):1-7.
    [173] Liang C H, Chung C Y, Wong K P, et al. Parallel Optimal Reactive Power FlowBased on Cooperative Co-Evolutionary Differential Evolution and Power SystemDecomposition. Power Systems, IEEE Transactions on,2007,22(1):249-257.
    [174]李英,江全元,曹一家.基于并行协同粒子群优化算法和PC集群的无功优化.电力系统自动化,2010,34(19):42-47.
    [175]李智欢,李银红,段献忠.无功优化协同进化计算的控制变量分区方法研究.中国电机工程学报,2009,29(16):28-34.
    [176]李亚男,张粒子,舒隽,等.结合专家知识的遗传算法在无功规划优化中的应用.电网技术,2001,25(07):14-17.
    [177]颜伟,孙渝江,罗春雷,等.基于专家经验的进化规划方法及其在无功优化中的应用.中国电机工程学报,2003,23(07):76-80.
    [178]倪炜,单渊达.具有优化路径的遗传算法应用于电力系统无功优化.电力系统自动化,2000,24(21):40-44.
    [179]王函韵,胡骅,朱卫东,等.信息不确定性对电网无功优化的影响.中国电机工程学报,2005,25(13):24-28.
    [180] Viswanadha Raju G K, Bijwe P R. Reactive power/voltage control in distributionsystems under uncertain environment. Generation, Transmission Distribution, IET,2008,2(5):752-763.
    [181] Hu Z, Wang X, Taylor G. Stochastic optimal reactive power dispatch: Formulationand solution method. International Journal of Electrical Power&Energy Systems,2010,32(6):615-621.
    [182] Hong Y, Luo Y. Optimal VAR Control Considering Wind Farms Using ProbabilisticLoad-Flow and Gray-Based Genetic Algorithms. Power Delivery, IEEE Transactionson,2009,24(3):1441-1449.
    [183] Malekpour A R, Niknam T. A probabilistic multi-objective daily Volt/Var control atdistribution networks including renewable energy sources. Energy,2011,36(5):3477-3488.
    [184] Malekpour A R, Tabatabaei S, Niknam T. Probabilistic approach to multi-objectiveVolt/Var control of distribution system considering hybrid fuel cell and wind energysources using Improved Shuffled Frog Leaping Algorithm. Renewable Energy,2012,39(1):228-240.
    [185] Liang R, Chen Y, Chen Y. Volt/Var control in a distribution system by a fuzzyoptimization approach. International Journal of Electrical Power&Energy Systems,2011,33(2):278-287.
    [186]陈海焱,陈金富,段献忠.含风电机组的配网无功优化.中国电机工程学报,2008,28(07):40-45.
    [187]何禹清,彭建春,毛丽林,等.含多个风电机组的配电网无功优化.电力系统自动化,2010,34(19):37-41.
    [188] Niknam T, Zare M, Aghaei J. Scenario-Based Multiobjective Volt/Var Control inDistribution Networks Including Renewable Energy Sources. Power Delivery, IEEETransactions on,2012,27(4):2004-2019.
    [189] Zhihuan L, Yinhong L, Xianzhong D. Non-dominated sorting genetic algorithm-IIfor robust multi-objective optimal reactive power dispatch. Generation, TransmissionDistribution, IET,2010,4(9):1000-1008.
    [190] Lim J, Jiang J N. Bibliography review on applications of correlation analysis inpower system operation and planning. European Transactions on Electrical Power,2010,20(2):114-122.
    [191]蔡德福,陈金富,石东源,等.风速相关性对配电网运行特性的影响.电网技术,2013,37(01):150-155.
    [192] Morales J M, Baringo L, Conejo A J, et al. Probabilistic power flow with correlatedwind sources. Generation, Transmission Distribution, IET,2010,4(5):641-651.
    [193]于晗,钟志勇,黄杰波,等.采用拉丁超立方采样的电力系统概率潮流计算方法.电力系统自动化,2009,33(21):32-35.
    [194]石东源,蔡德福,陈金富,等.计及输入变量相关性的半不变量法概率潮流计算.中国电机工程学报,2012,32(28):104-113.
    [195] Xie K, Billinton R. Considering wind speed correlation of WECS in reliabilityevaluation using the time-shifting technique. Electric Power Systems Research,2009,79(4):687-693.
    [196] Qin Z, Li W, Xiong X. Generation System Reliability Evaluation IncorporatingCorrelations of Wind Speeds With Different Distributions. Power Systems, IEEETransactions on,2013,28(1):551-558.
    [197] Bu S Q, Du W, Wang H F, et al. Probabilistic Analysis of Small-Signal Stability ofLarge-Scale Power Systems as Affected by Penetration of Wind Generation. PowerSystems, IEEE Transactions on,2012,27(2):762-770.
    [198] Villanueva D, Feijoo A, Pazos J L. Simulation of Correlated Wind Speed Data forEconomic Dispatch Evaluation. Sustainable Energy, IEEE Transactions on,2012,3(1):142-149.
    [199]吴娟. Copula理论与相关性分析[博士学位论文].华中科技大学,2009.
    [200] Papaefthymiou G, Kurowicka D. Using Copulas for Modeling StochasticDependence in Power System Uncertainty Analysis. Power Systems, IEEETransactions on,2009,24(1):40-49.
    [201] Liu P, Der Kiureghian A. Multivariate distribution models with prescribed marginalsand covariances. Probabilistic Engineering Mechanics,1986,1(2):105-112.
    [202] Hongshuang L, Zhenzhou L, Xiukai Y. Nataf transformation based point estimatemethod. Chinese Science Bulletin,2008,53(17):2586-2592.
    [203] Morales J M, Conejo A J, X P, et al. Simulating the Impact of Wind Production onLocational Marginal Prices. Power Systems, IEEE Transactions on,2011,26(2):820-828.
    [204] Der Kiureghian A, Liu P. Structural Reliability under Incomplete ProbabilityInformation. Journal of Engineering Mechanics,1986,112(1):85-104.
    [205] Cao G Y, Hill D J. Power system voltage small-disturbance stability studies based onthe power flow equation. Generation, Transmission Distribution, IET,2010,4(7):873-882.
    [206] Avalos R J, Canizares C A, Milano F, et al. Equivalency of Continuation andOptimization Methods to Determine Saddle-Node and Limit-Induced Bifurcations inPower Systems. Circuits and Systems I: Regular Papers, IEEE Transactions on,2009,56(1):210-223.
    [207] Falaghi H, Ramezani M, Singh C, et al. Probabilistic Assessment of TTC in PowerSystems Including Wind Power Generation. Systems Journal, IEEE,2012,6(1):181-190.
    [208] Available online: http://www.vestas.com/en/wind-power-plants/procurement/turbine-overview/v90-1.8/2.0-mw.aspx#/vestas-univers.
    [209] Usaola J. Probabilistic load flow in systems with wind generation. Generation,Transmission Distribution, IET,2009,3(12):1031-1041.
    [210] Mckay M D, Beckman R J, Conover W J. A Comparison of Three Methods forSelecting Values of Input Variables in the Analysis of Output From a ComputerCode. Technometrics,1979,21(2):239-245.
    [211] Yu H, Chung C Y, Wong K P, et al. Probabilistic Load Flow Evaluation With HybridLatin Hypercube Sampling and Cholesky Decomposition. Power Systems, IEEETransactions on,2009,24(2):661-667.
    [212]李俊芳,张步涵.基于进化算法改进拉丁超立方抽样的概率潮流计算.中国电机工程学报,2011,31(25):90-96.
    [213]陈雁,文劲宇,程时杰.考虑输入变量相关性的概率潮流计算方法.中国电机工程学报,2011,31(22):80-87.
    [214] Stein M. Large Sample Properties of Simulations Using Latin Hypercube Sampling.Technometrics,1987,29(2):143-151.
    [215]冯士刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用.电工技术学报,2007,22(12):146-151.
    [216] Abido M A, Bakhashwain J M. Optimal VAR dispatch using a multiobjectiveevolutionary algorithm. International Journal of Electrical Power&Energy Systems,2005,27(1):13-20.
    [217] Fonseca C M, Fleming P J. Multiobjective optimization and multiple constrainthandling with evolutionary algorithms-Part I: A unified formulation. Systems, Manand Cybernetics, Part A: Systems and Humans, IEEE Transactions on,1998,28(1):26-37.
    [218] Coello Coello C A. Evolutionary multi-objective optimization: some current researchtrends and topics that remain to be explored. Frontiers of Computer Science in China,2009,3(1):18-30.
    [219] Das S, Suganthan P N. Differential Evolution: A Survey of the State-of-the-Art.Evolutionary Computation, IEEE Transactions on,2011,15(1):4-31.
    [220] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particleswarm optimization. Evolutionary Computation, IEEE Transactions on,2004,8(3):256-279.
    [221] Knowles J D, Corne D W. Approximating the Nondominated Front Using the ParetoArchived Evolution Strategy. Evolutionary Computation,2000,8(2):149-172.
    [222] Huang V L, Suganthan P N, Liang J J. Comprehensive learning particle swarmoptimizer for solving multiobjective optimization problems. International Journal ofIntelligent Systems,2006,21(2):209-226.
    [223] Robic T, Filipic B. DEMO: Differential evolution for multiobjective optimization.3rd International Conference on Evolutionary Multi-Criterion Optimization (EMO2005), Guanajuato,Mexico,2005.
    [224] Ali M, Siarry P, Pant M. An efficient Differential Evolution based algorithm forsolving multi-objective optimization problems. European Journal of OperationalResearch,2012,217(2):404-416.
    [225] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II. Evolutionary Computation, IEEE Transactions on,2002,6(2):182-197.
    [226] Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms:Empirical Results. Evolutionary Computation,2000,8(2):173-195.
    [227]雷德明,严新平.多目标智能优化算法及其应用.北京:科学出版社,2009.
    [228] Tsai S, Sun T, Liu C, et al. An improved multi-objective particle swarm optimizerfor multi-objective problems. Expert Systems with Applications,2010,37(8):5872-5886.
    [229]张伯明,陈寿孙,严正.高等电力网络分析.北京:清华大学出版社,2007.
    [230] Liang C H, Chung C Y, Wong K P, et al. Study of differential evolution for optimalreactive power flow. Generation, Transmission Distribution, IET,2007,1(2):253-260.
    [231] Vrugt J A, Robinson B A, Hyman J M. Self-Adaptive Multimethod Search forGlobal Optimization in Real-Parameter Spaces. Evolutionary Computation, IEEETransactions on,2009,13(2):243-259.
    [232] Service T C. A No Free Lunch theorem for multi-objective optimization. InformationProcessing Letters,2010,110(21):917-923.
    [233] Muelas S, Latorre A, Pena J. A new methodology for the automatic creation ofadaptive hybrid algorithms. Intelligent Data Analysis,2012,16(1):3-23.
    [234] Vrugt J A, Robinson B A. Improved evolutionary optimization from geneticallyadaptive multimethod search. Proceedings of the National Academy of Sciences ofthe United States of America,2007,104(3):708-711.
    [235] Dasgupta S, Das S, Biswas A, et al. On stability and convergence of thepopulation-dynamics in differential evolution. AI Communications,2009,22(1):1-20.
    [236] Haario H, Saksman E, Tamminen J. An adaptive Metropolis algorithm. Bernoulli,2001,7(2):223-242.
    [237] Qin A K, Huang V L, Suganthan P N. Differential Evolution Algorithm WithStrategy Adaptation for Global Numerical Optimization. Evolutionary Computation,IEEE Transactions on,2009,13(2):398-417.
    [238] Jin Y, Branke J. Evolutionary optimization in uncertain environments-a survey.Evolutionary Computation, IEEE Transactions on,2005,9(3):303-317.
    [239] Deb K, Gupta H. Introducing Robustness in Multi-Objective Optimization.Evolutionary Computation,2006,14(4):463-494.
    [240] Goh C K, Tan K C. An Investigation on Noisy Environments in EvolutionaryMultiobjective Optimization. Evolutionary Computation, IEEE Transactions on,2007,11(3):354-381.
    [241] Tsutsui S, Ghosh A. Genetic algorithms with a robust solution searching scheme.Evolutionary Computation, IEEE Transactions on,1997,1(3):201-208.
    [242] Wiesmann D, Hammel U, Back T. Robust design of multilayer optical coatings bymeans of evolutionary algorithms. Evolutionary Computation, IEEE Transactions on,1998,2(4):162-167.
    [243] Ramesh S, Kannan S, Baskar S. An improved generalized differential evolutionalgorithm for multi-objective reactive power dispatch. Engineering Optimization,2012,44(4):391-405.
    [244] Xie K, Li Y, Li W. Modelling wind speed dependence in system reliabilityassessment using copulas. Renewable Power Generation, IET,2012,6(6):392-399.
    [245] Regis R G, Shoemaker C A. Local function approximation in evolutionaryalgorithms for the optimization of costly functions. Evolutionary Computation, IEEETransactions on,2004,8(5):490-505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700