用户名: 密码: 验证码:
“上膜下秸”调控河套灌区盐渍土水盐运移过程与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对内蒙古河套灌区地下水位浅,蒸降比大,土壤盐分运移以“上行”占优势,盐分表聚严重,作物产量低等突出问题,本研究提出了以隔断盐渍土壤水盐运移通路,创建淡化肥沃耕层为理论核心的盐渍土改良新技术——地膜覆盖结合秸秆隔层(简称上膜下秸)技术。2011~2013年以玉米秸秆为隔层材料,通过室内土柱模拟试验,对比研究了秸秆隔层及不同秸秆组分、长度与埋深对土壤水分入渗、蒸发、毛管水运动及土壤水盐运移的影响;同时结合3年微区定位试验,研究了“上膜下秸”以及不同秸秆用量与埋深对周年农田土壤水盐运移的影响;并通过2年大田验证试验,研究了“上膜下秸”对向日葵生长发育及产量的影响。旨在全面、系统的揭示“上膜下秸”技术对土壤水盐运移和作物生长发育及产量的调控机理。主要研究结果如下:
     1.土柱模拟试验结果表明,“上膜下秸”对土壤水盐运移的调控作用主要表现为:提高隔层上部土壤含水率,促进盐分淋洗,抑制土壤蒸发,阻隔盐分上行,减轻盐分表聚等。
     (1)在土壤水分入渗过程中,秸秆隔层降低了单位历时的累积入渗量和湿润锋移动速度,具有阻水减渗作用,从而可提高隔层上部土壤含水率,促进盐分淋洗。同时,还引发了湿润锋的不稳定性,即优先流现象的出现。秸秆隔层对水分入渗的阻碍作用具有阶段性,会随隔层与土层导水率差异的减小而减弱,入渗过程也会由非线性过程转变为线性过程,但其对隔层上部土壤水分的储蓄作用是较长期的。秸秆隔层的阻水性能主要与其内部结构有关,主要是孔隙度引起导水能力的差异。随秸秆隔层内部孔隙度增大,其阻水作用减弱。
     (2)在水分蒸发过程中,秸秆隔层具有抑制隔层下部土壤水分蒸发、控制盐分上行的作用。强烈蒸发作用下,土表形成的干燥层提高了土壤温度,加速了秸秆隔层内部汽态水运动,增大了气体比例,形成阻碍水盐上移的“阻隔层”,进而增大了其对隔层下部土壤水分蒸发的抑制作用,可将盐分控制在底层土壤中,有效地抑制了土表返盐。秸秆隔层对土壤水盐向上运移的阻碍作用与其内部孔隙度与埋深关系密切,随秸秆隔层内部孔隙度增大,其抑制作用呈先弱后强的趋势;随秸秆隔层埋深增加,其抑制作用呈减弱态势。
     (3)在毛管水运动过程中,秸秆隔层可抑制毛管水上升高度,且可降低毛管水在隔层下部土壤中的上移速度。当秸秆用量为5cm,距离地下水25cm时,毛管水无法越过隔层而上升,仅表现为隔层下缘不同程度浸润。随秸秆隔层内部孔隙度增大,其对毛管水上升高度的抑制作用增强,但对隔层下部土壤中毛管水上升速度的抑制作用减弱。
     (4)在浅层地下水埋深条件下,秸秆隔层可显著抑制潜水蒸发,结合地膜覆盖时尤为明显。连续蒸发30d内,秸秆隔层处理的累积蒸发量比对照降低了96.82%,其抑制作用明显优于地膜覆盖处理;而“上膜下秸”处理对潜水蒸发强度的抑制作用最大,其累积蒸发量比地膜覆盖处理降低了94.02%,同时还大幅度减弱了隔层上部土壤水分散失和盐分表聚,起到“保墒控盐”的双重作用。当地下水埋深为1m,秸秆隔层埋深小于或等于60cm时均可抑制潜水蒸发。不同秸秆隔层埋深处理对潜水蒸发的抑制作用差异较小,但处理间的储水抑盐效果差异明显。随秸秆隔层埋深增加,其储水作用增强,而对盐分表聚的抑制作用减弱。
     2.微区定位试验结果表明,在农田土壤环境下,“上膜下秸”可形成“上抑下隔”的水盐调控机制,为向日葵根系生长创造了“高水低盐”的微生态环境。
     (1)在向日葵播种前,秸秆隔层处理0~20cm和20~40cm土层平均含水率比对照处理分别提高了4.01%和3.10%,而平均含盐量分别降低了21.23%和29.60%。在向日葵生育期内,只埋设秸秆隔层处理对根层土壤的储水抑盐效果仅能维持至播种后30d左右,而“上膜下秸”处理能延续至播种后60d左右,在丰水年甚至更长。同时,“上膜下秸”处理能使根层土壤在整个生育阶段保持较低的盐分水平,显著降低了土壤溶液盐浓度,淡化根层作用明显,为向日葵根系生长提供了良好的土壤环境,从而促进了向日葵植株生长发育。
     (2)在地膜覆盖条件下,随秸秆用量增加,其对根层土壤的储水抑盐效果增强,且作用年限也随之延长。随秸秆隔层埋深增加,其对根层土壤的保水效果增强,而埋深为40cm时的控抑盐效果最为显著。综合保水、抑盐效果,建议农业生产中秸秆用量为12t/hm2,埋深为40cm。
     3.大田试验结果表明,“上膜下秸”明显可提升向日葵出苗和保苗能力,促进向日葵生长发育和增加产量。与传统耕翻处理相比,“上膜下秸”处理使向日葵苗期干物质日积累速率提高了35.30%;生育期提前了4~12d;净光合速率提高了4.87%~11.90%;成熟期株高、茎粗、叶面积和地上部干物质量分别提高了36.62%、16.44%、49.05%和42.60%;向日葵增产24.57%,达显著水平。
Soil salinization is the major causes of declining agriculture productivity in the Hetao IrrigationDistrict of Inner Mongolia, China. In the circumstances of local shallow groundwater table, highevaporation, low precipitation and coupled with main upward movement of soil salt and severe saltaccumulation in the surface soil in this area, how to control the salt accumulation is very practical andurgent. This paper has proposed a new technique to restrain soil evaporation, retain moisture and controlsalinization thus helping to improve the saline soils and increase sunflower (Helianthus annuus L.) yieldthrough burying a straw layer in the soil and combing with plastic film mulch. In order to reveal effectsof plastic film mulch and buried straw layer on soil water, salt transport and sunflower growth, threetrails were conducted from2011to2013with maize straw as the experimental material. With the help ofsoil columns, the impacts of different straw parts, lengths and burial depths on soil water infiltration,evaporation, upward movement of capillary water and phreatic water evaporation were comparativelystudied in laboratory, as well as the distribution and transportation of soil water and salt during theprocesses. Meanwhile, a three-year micro-plot experiment was conducted to evaluate the effects ofstraw layer and its thickness and burial depth on soil water and salt transportation under planting.Moreover, a two-year field experiment was conducted to investigate the effects of plastic film mulchand straw layer burial on sunflower growth and yield. The main results are as follows:
     1. Results from the soil column simulation experiment showed that the combined application ofplastic film mulch and straw layer burial treatment altered the distribution and transportation of soilwater and salt in soil profile, including retaining more moisture in the topsoil layer, enhancing saltleaching, reducing the soil water and phreatic water evaporation, preventing the upward movement ofsoil water and salt, reducing sal accumulation.
     (1) In infiltration process, straw layer treatments effectively retarded water-flow and had anobvious effect of retaining water and leaching salts which in the topsoil. In infiltration process, the strawlayer treatments not only reduced the water infiltration rate and advanced wetting velocity, but alsoinduced the instability of wetting front, i.e., appearance of preferential flow. However, the benefit effectdeclined significantly with the decrease difference in hydraulic conductivity between straw layer andsoil layer. Then, the relationship between cumulative infiltration and time was converted fromnon-linear process into linear infiltration process. Meanwhile, straw layer treatments displayedsignificant long-term effect of storing soil water in the upper soil layer thereby helping to leach soil salt.Primarily, its effectiveness relates to the structure of straw layers, and it has more to do with strawinternal porosity which will make a difference in water conductivity. The more the internal porosity instraw layers the less inhibiting effect on water infiltration.
     (2) In evaporation process, straw layer treatment had an obvious effect of reducing soil evaporationand preventing the upward movement of soil water and salt. During the early days of evaporation, thesurface soil layer easy to be dried under intensive evaporation. Then, it can improve the soil temperature thereby to speed up the vaporized water movement and increase the proportion of gas in the straw layers.Consequently, it increased the effect on preventing soil water evaporation, and retained more water inthe subsoil layers. In addition, the salt upward movement in the straw layer treatments was controlled,and thus more salts been blocked in deep soil layers. Neverthless, the effect of straw layer on preventingthe upward movement of soil water and salt related to its internal porosity and burial depth. On the onehand, with the increase of internal porosity in straw layers, the inhibitory effect on preventing soil waterevaporation decreased in the early days while increased in the later. On the other hand, with the increasein straw layers burial depth, the inhibitory effect on preventing soil water evaporation decreased.
     (3) Compared to non-straw layer control, the height of capillary water was decreased in the strawlayer treatments. Also the rate of capillary water upward movement in the soil layers below straws waslowed. Capillary water did not cross the straw layers if it with5cm thick, but their bottom side weresoaked wet. With the increase of internal porosity in straw layers, the inhibitory effect on capillary waterupward movement increased; in contrast, the rate of capillary water upward movement increased in thesoil layers below straws.
     (4) Aside from the aforementioned, straw layer treatments dramatically reduced the evaporationfrom phreatic water under shallow groundwater table. During the30days of experiment, the cumulativeevaporation from phreatic water in the straw layer treatment decreased by96.82%, compared to uniformsoil. Plastic film mulch also reduced the evaporation relative to non-mulch. However, the straw layertreatment had94.02%lower evaporation than plastic film mulch. Moreover, the combined applicationof straw layer and plastic film mulch treatment performed better to against water evaporation than eithernon-mulch, or the individual use of straw interlayer or plastic film mulch. Therefore, the straw layerburial and plastic film mulch treatment had more moisture and less salt in the infiltration process, andreduced the soil water and phreatic water evaporation in the evaporation process, compared to othertreatments. In our experiment, straw layer had obvious effect on preventing groundwater evaporation ifits burial depth was equal to or less than60cm under plastic film mulch when the groundwater tablewas below1m. No significant differences in evaporation inhibitory effect were observed among thedifferent burial depth treatments. Nervertheless, with the increase of straw layers burial depth, the waterstorage capacity enhanced while the salinization control effect decreased.
     2. Results from the micro-plot experiment showed that the combined application of plastic filmmulch and buried straw layer treatment not only significantly enhanced water storage capacity of the0~40cm soil layer, but also continuously controlled salt accumulation.
     (1) In our experiment, the soil water content of0-20and20-40cm soil layer was4.01%and3.10%higher while the soil salt content was21.23%and29.60%lower in the straw layer treatments than innon-straw layer treatments before sowing, respectively. During the sunflower growing seasons, thestraw layer treatments had a higher soil water content of0-40cm soil layer than that of control on30days after sowing. However, the water retention effect sustained to approximately60days after sowingin the combined application of plastic film mulcha and straw layer burial treatment, particularly in wetyear. On the other hand, the plastic film mulch and straw layer burial treatment had a consistently and significantly lower soil salt content and soluble salt concentration of0-40cm soil layer than that ofother treatments throughout the growing season. Thus, it provided a better edatope for plants andimproved the development of sunflower.
     (2) In the fields, the desalinization effect increased significantly and service year also extendedremarkable with the thickness of straw layer when combined with plastic film mulch. It also observedthat the deeper the straw layer burial, the more water retention. However, the preferable burial depth forstraw layer to control salinization was40cm, which was in conformity with the actual agriculturalproduction.
     3. Results from the field experiment showed that the straw layer burial and plastic film mulchtreatment significantly improved emergence rate and sand establishment, promoted the growth ofsunflower and increased seed yield. Compared to neither straw layer nor mulch control, the straw layerburial and plastic film mulch treatment increased dry matter accumulation rate by35.30%at seedlingstage, shorted growth phases by4-12d and increased net photosynthetic rate by4.87%-11.90%,respectively. Moreover, the straw layer burial and plastic film mulch treatment increased plant height,stem diameter, leaf area and dry matter by36.62%,16.44%,49.05%and42.60%at maturity stage,respectively; it significantly increased seed yield by24.57%.
引文
1.白广明,富刚,周宙.深松促进农作物丰产机理综述[J].黑龙江水专学报,2001,28(1):14-15.
    2.陈世平,李毅,高金芳.覆膜开孔入渗-蒸发条件下夹砂层土壤水,盐,热变化规律[J].中国农村水利水电,2011,11:47-51.
    3.程冬兵,张平仓,李亚龙,等.紫色土典型三角形层状剖面入渗模拟[J].水科学进展,2010,21(3):315-320.
    4.池宝亮,庞金梅,焦晓燕.秸秆不同覆盖方式在控制根层盐化中的作用[J].山西农业大学学报,1994,14(4):440-443.
    5.崔心红,朱义,张群,等.棉花秸秆隔离层对滨海滩涂土壤及绿化植物的影响[J].园林科技,2010(004):26-30.
    6.杜军,杨培岭,李云开,等.灌溉、施肥和浅水埋深对小麦产量和硝态氮淋溶损失的影响[J].农业工程学报,2011,27(2):57-64.
    7.段登选,杨立邦,刘树云,等.低洼盐碱地薄膜隔盐碱效果的研究[J].土壤,2000,5:274-277.
    8.樊修武,池宝亮.盐碱地秸秆覆盖改土增产措施的研究[J].干旱地区农业研究,1993,11(4):13-18.
    9.范富,徐寿军,宋桂云,等.玉米秸秆造夹层处理对西辽河地区盐碱地改良效应研究[J].土壤通报,2012,43(3):696-701.
    10.方日尧,赵惠青,同延安.渭北旱原冬小麦深施肥沟播综合效应研究[J].农业工程学报,2000,16(1):49-52.
    11.冯永军,陈为峰,张蕾娜,等.滨海盐渍土水盐运动室内实验研究及治理对策[J].农业工程学报,2000,16(3):38-42.
    12.冯永军,张红.滨海盐渍土水盐运动室内实验研究及治疗对策[J].农业工程学报,2000,16(3):38-42.
    13.冯兆忠,王效科,冯宗炜,等.河套灌区秋浇对不同类型农田土壤氮素淋失的影响[J].生态学报,2003,23(10):2027-2032.
    14.高金方.松辽(嫩)平原苏打盐土的发生与改良[J].土壤通报,1987,3:100-102.
    15.郭继勋,马文明.东北盐碱化羊草草地生物治理的研究[J].植物生态学报,1996,20(5):478-484.
    16.郝芳华,孙铭泽,张璇,等.河套灌区土壤水和地下水动态变化及水平衡研究[J].环境科学学报,2013,33(3):771-779.
    17.胡顺军,康绍忠,宋郁东,等.塔里木盆地潜水蒸发规律与计算方法研究[J].农业工程学报,2004,20(2):49-53.
    18.胡田田,康绍忠,李志军,等.局部供应水氮条件下玉米不同根区的耗水特点[J].农业工程学报,2005,21(5):34-37.
    19.虎胆·吐马尔白,吴旭春,迪力达.不同位置秸秆覆盖条件下土壤水盐运动实验研究[J].灌溉排水学报,2006,25(1):34-37.
    20.黄领梅,沈冰.水盐运动研究述评[J].西北水资源与水工程,2000,11(1):6-12.
    21.黄仕泉,王翠芳.土壤盐碱对向日葵生长发育影响的研究[J].中国油料作物学报,1982,4:52-57.
    22.贾秀苹,岳云,陈炳东.盐胁迫对油葵生育时期和农艺性状的影响分析[J].作物杂志,2009,6:45-48.
    23.焦晓燕,池宝亮,李东旺,等.盐碱地秸秆覆盖效应的研究[J].山西农业科学,1992,8:1-4.
    24.解文艳,樊贵盛.土壤结构对土壤入渗能力的影响[J].太原理工大学学报,2004,35(4):381-384.
    25.孔东,史海滨,陈亚新,等.水盐胁迫对向日葵幼苗生长发育的影响[J].灌溉排水学报,2004,23(5):32-35.
    26.孔东,史海滨,霍再林,等.河套灌区不同盐分含量土壤对向日葵生长的影响[J].沈阳农业大学学报,2005,35(5):414-416.
    27.冷寒冰,马利静,秦俊.滨海盐碱地隔盐改良对两种草本地被的光合特性影响[J].农业环境科学学报,2012,31(11):2136-2141.
    28.李朝欣.河套平原临河区高砷地下水分布及水化学特征[D].北京:首都师范大学,2008.
    29.李凤霞,马力文.甜菜地膜覆盖栽培的土壤盐分变化及其对产质量的影响[J].中国农业气象,1996,17(2):33-35.
    30.李慧琴,王胜利,郭美霞,等.不同秸秆隔层材料对河套灌区土壤水盐运移及玉米产量的影响[J].灌溉排水学报,2012,31(004):91-94.
    31.李久生,杨凤艳,刘玉春,等.土壤层状质地对小流量地下滴灌灌水器特性的影响[J].农业工程学报,2009,(4):1-6.
    32.李亮,史海滨,贾锦凤,等.内蒙古河套灌区荒地水盐运移规律模拟[J].农业工程学报,2010(1):31-35.
    33.李伟强,雷玉平,张秀梅,等.硬壳覆盖条件下土壤冻融期水盐运动规律研究[J].冰川冻土,2001,23(3):251-257.
    34.李新举,张志国,李贻学,等.秸秆覆盖对盐渍土水分状况的影响[J].山东农业大学学报:自然科学版,1999a,30(4):398-403.
    35.李新举,张志国,李永昌.秸秆覆盖对盐渍土水分状况影响的模拟研究[J].土壤通报,1999,30(4):176-177.
    36.李新举.秸秆覆盖对盐渍土水分状况影响的模拟研究[J].土壤通报,1999b,30(4):176-177.
    37.李毅,邵明安,王文焰,等.有限深土体中再分布的土壤水盐运移试验研究[J].农业工程学报,2004,20(3):40-43.
    38.李韵珠,胡克林.蒸发条件下粘土层对土壤水和溶质运移影响的模拟[J].土壤学报,2004,41(4):493-502.
    39.李韵珠,陆锦文,黄坚,等.蒸发条件下粘土层与土壤水盐运移[C].盐渍土的水盐运动[A].北京:北京农业大学出版社,1986,174:161-174.
    40.李韵珠,王凤仙,刘来华.土壤水氮资源的利用与管理Ⅰ:土壤水氮条件与根系生长[J].植物营养与肥料学报,1999,5(3):206-213.
    41.李卓,吴普特,冯浩,等.容重对土壤水分入渗能力影响模拟试验[J].农业工程学报,2009(6):40-45.
    42.梁银丽.黄土地区地面覆盖的主要类型及其保水效应[J].水土保持通报,1997,(1):27-31.
    43.林义成,丁能飞,傅庆林,等.土壤溶液电导率的测定及其相关因素的分析[J].浙江农业学报,2005,17(2):83-86.
    44.刘长江,李取生,李秀军.不同耕作方法对松嫩平原苏打盐碱化旱田改良利用效果试验[J].干旱地区农业研究,2005,23(5):13-16.
    45.刘福汉,王遵亲.潜水蒸发条件下不同质地剖面的土壤水盐运动[J].土壤学报,1993,30(2):173-181.
    46.刘广明,杨劲松,李冬顺.地下水蒸发规律及其与土壤盐分的关系[J].土壤学报,2002,39(3):384-389.
    47.刘金荣,孙吉雄,谢晓蓉,等.干旱荒漠绿洲区重盐碱地底层衬膜隔盐效果与优质草坪建植研究[J].草地学报,2008,16(2):202-207.
    48.刘思义,魏由庆,梁国庆,等.粘土夹层土体构型水盐运动的实验研究[J].土壤学报,1992,29(1):109-112.
    49.刘思义,魏由庆.马颊河流域影响土壤盐渍化的几个因素的研究[J].土壤学报,1988,25(2):110-118.
    50.刘霞,王丽萍,张圣微,等.内蒙古河套灌区灌排水离子组成及淋洗盐分用水量评价[J].中国生态农业学报,2011,19(3):500-505.
    51.刘有昌.鲁北平原地下水临界深度的探讨[J].土壤通报,1962,2(4):13-22.
    52.刘玉涛,董智,李红丽,等.不同隔盐措施对滨海盐碱地白蜡光合作用日变化的影响[J].水土保持研究,2011,18(3):126-130.
    53.刘裕春,李钢铁,郭丽珍,等.国内外保护性农业耕作技术研究[J].内蒙古林学院学报,1999,21(3):83-85.
    54.刘战东,高阳,刘祖贵,等.降雨特性和覆盖方式对麦田土壤水分的影响[J].农业工程学报,2012,28(13):113-120.
    55.刘子英,刘保明,孟艳玲,等.地膜覆盖对耕层土壤盐分影响的研究[J].安徽农业科学,2005,33(6):995-1019.
    56.卢修元,魏新平,邱明.粉粘土夹层对砂的减渗规律试验分析[J].水资源与水工程学报,2009,20(2):22-25.
    57.罗焕炎,严蔼芬,谢驹华.层状土中毛管水上升的实验研究[J].土壤学报,1965,13(3):312-324.
    58.罗家雄.新疆垦区盐碱地改良[M].北京:水力电力出版社,1985,80.
    59.马晨,马履一,刘太祥,等.盐碱土改良利用技术研究进展[J].世界林业研究,2010,23(2):28-32.
    60.马德海,张新民,吴婕,等.粘土夹层盐碱地土壤竖孔排盐改良技术试验研究[J].灌溉排水学报,2007,26(5):51-54.
    61.马金慧.内蒙古河套灌区不同引水水平对地下水环境变化的预测研究[D].呼和浩特:内蒙古农业大学,2010.
    62.马惠绒,张沛琪,冯婷,等.灌溉条件下秸秆深层覆盖对盐碱地改良的效果[J].内蒙古水利,2013,(3):93-94.
    63.马其东,许鹏.沟垄作种植牧草改良重盐渍草地的效果及其水盐动态[J].草地学报,1997,5(2):85-92.
    64.毛晓敏,尚松浩.计算层状土稳定入渗率的饱和层最小通量法[J].水利学报,2010,41(7):810-817.
    65.毛学森.硬覆盖对盐溃土水盐运动及作物生长发育影响的研究[J].土壤通报,1998,(6):264-266.
    66.牛健植,余新晓,张志强.优先流研究现状及发展趋势[J].生态学报,2006,26(1):231-243.
    67.牛健植,余新晓.优先流问题研究及其科学意义[J].中国水土保持科学,2005,3(3):110-116.
    68.彭世彰,张玉英,李寿声.内蒙古河套灌区渠井优化调度水盐动态研究[J].人民黄河,1995,8:27-30.
    69.彭振阳,伍靖伟,黄介生.间歇入渗对土壤溶质淋洗效率的影响[J].农业工程学报,2012,28(20):128-134.
    70.乔海龙,刘小京,李伟强,等.秸秆深层覆盖对水分入渗及蒸发的影响[J].中国水土保持科学,2006a,4(2):34-38.
    71.乔海龙,刘小京,李伟强,等.秸秆深层覆盖对土壤水盐运移及小麦生长的影响[J].土壤通报,2006b,37(5):885-889.
    72.秦嘉海.免耕留茬秸秆覆盖对河西走廊荒漠化土壤改土培肥效应的研究[J].土壤,2005,37(4):447-450.
    73.秦耀东,任理,王济.土壤中大孔隙流研究进展与现状[J].水科学进展,2000,11(2):203-207.
    74.邱胜彬,张江辉,刘诚明.浅析土壤质地及结构对潜水蒸发的影响[J].水土保持研究,1996,3(3):30-34.
    75.邱玥,魏新平,廖华胜,等.夹砂层土壤水分入渗试验研究[J].水资源与水工程学报,2009,20(1):120-123.
    76.曲晨晓,王炜.土壤剖面中砂质夹层的储水作用及机理研究[J].华中农业大学学报,1997,16(5):349-356.
    77.曲善功.不同农艺措施对保护地土壤次生盐渍化的防治效果[J].土壤肥料,2005,5:43-45.
    78.全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998,1092-1110.
    79.任理,王济,秦耀东.非均质土壤饱和稳定流中盐分迁移的传递函数模拟[J].水科学进展,2000,11(4):392-400.
    80.任理,李春友,李韵珠.层状粘性土壤水分动态新模型的应用[J].中国农业大学学报,1998,3(1):57-62.
    81.桑以琳.内蒙古河套灌区碱化土壤的发生原因和特性[J].土壤学报,1996,33(4):398-404.
    82.沈晓霞,姚金富,王志安,等.施肥和覆草方式对西红花生长及其产量的影响[J].时珍国医国药,2005,16(12):1329-1330.
    83.沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45-50.
    84.石玉林《.中国1:100万土地资源图》土地资源数据集[M].北京:中国人民大学出版社,1991,3-7.
    85.石元春.区域水盐运动监测预报[M].河北科学技术出版社,1991.
    86.时丽冉,刘志华,白丽荣.不同pH值对旱稻幼苗生长的影响[J].作物杂志,2007,4:28-29.
    87.史文娟,沈冰,汪志荣,等.层状土壤中砂层层位对潜水蒸发的影响[J].干旱区地理,2006a,29(2):282-286.
    88.史文娟,沈冰,汪志荣,等.蒸发条件下浅层地下水埋深夹砂层土壤水盐运移特性研究[J].农业工程学报,2006b,21(9):23-26.
    89.史文娟,沈冰,汪志荣.层状土壤水盐动态研究与分析[J].干旱地区农业研究,2005,23(5):250-254.
    90.史文娟.蒸发条件下夹砂层土壤水盐运移实验研究[D].西安:西安理工大学,2005.
    91.司振江,张忠学,李芳花,等.松嫩平原盐碱土集成治理技术的研究[J].灌溉排水学报,2010,29(3):80-84.
    92.宋日,吴春胜,牟金明,等.深松土对玉米根系生长发育的影响[J].吉林农业大学学报,2000,22(4):73-75.
    93.宋日权,褚贵新,冶军,等.掺砂对土壤水分入渗和蒸发影响的室内试验[J].农业工程学报,2010,26(13):109-114.
    94.宋日权,褚贵新,张瑞喜,等.覆砂对土壤入渗,蒸发和盐分迁移的影响[J].土壤学报,2012,49(002):282-288.
    95.孙博,解建仓,汪妮,等.秸秆覆盖对盐渍化土壤水盐动态的影响[J].干旱地区农业研究,2011,29(4):180-184.
    96.孙博,解建仓,汪妮,等.芦苇对盐碱地盐分富集及改良效应的影响[J].水土保持学报,2012,26(3):92-96.
    97.孙菽芬,姚德良,冀伟.在蒸发条件下土壤水盐运动的数值模拟[J].力学学报,1989,21(6):688-696.
    98.唐奇志,刘兆普,陈铭达,等.海水处理对向日葵幼苗生长及叶片一些生理特性的影响[J].植物学通报,2004,21(6):667-672.
    99.田昌玉,李志杰,林治安,等.影响盐碱土持续利用主要环境因子演变[J].农业环境与发展,1998,15(2):34-35.
    100.汪志荣,王文焰.砂土夹层的阻水减渗机制及合理埋深[J].西安理工大学学报,2000,16(2):170-174.
    101.王春颖,毛晓敏,赵兵.层状夹砂土柱室内积水入渗试验及模拟[J].农业工程学报,2010,26(11):61-67.
    102.王桂芬.地膜覆盖条件下土壤水及溶质运移规律的室内试验研究[J].水利水电技术,1996,(3):43-47.
    103.王海,刘万军,王斌.黄河上中游盐碱区保护性耕作技术模式及其实施效益分析——以宁夏平罗县保护性耕作示范项目区为例[J].江西农业学报,2011,12:044.
    104.王金平.蒸发条件下层状土壤水分运动的数值模拟[J].水利学报,1989,5:49-54.
    105.王久志,巫东堂.沥青乳剂改良盐碱地的效果[J].山西农业科学,1986,5:13-14.
    106.王全九,邵明安,汪志荣,等. Green-Ampt公式在层状土入渗模拟计算中的应用[J].土壤侵蚀与水土保持学报,1999,5(4):66-70.
    107.王水献,董新光,吴彬,等.干旱盐渍土区土壤水盐运动数值模拟及调控模式[J].农业工程学报,2012,28(13):142-148.
    108.王文焰,张建丰.砂层在黄土中的阻水性及减渗性的研究[J].农业工程学报,1995,11(1):104-110.
    109.王云慧,张璇,欧阳威,等.夏灌对内蒙古河套灌区土壤中磷元素迁移的影响[J].农业工程学报,2010,(004):93-99.
    110.王在敏,何雨江,靳孟贵,等.运用土壤水盐运移模型优化棉花微咸水膜下滴灌制度[J].农业工程学报,2012,28(17):63-70.
    111.王遵亲.中国盐渍土[M].北京:科学出版社,1993,400-515.
    112.魏俊梅,阿腾格.巴盟河套灌区盐碱地的综合治理[J].内蒙古林业科技,2001(1):32-35.
    113.温永刚,陈青云,王树忠,等.土壤隔离栽培对日光温室黄瓜产量和水分利用的影响[J].上海交通大学学报:农业科学版,2008,26(5):483-486.
    114.吴长银,王玺珍,赵守仁.粘土夹层对土壤水分下渗运动的影响[J].江苏农业科学,1983,8:32-38.
    115.武海霞,贾国鹏,刘靖然.秸秆层施深度对土壤水分入渗特性的影响[J].水利水电技术,2013,44(2):141-143.
    116.肖国举,张强,李裕,等.气候变暖对宁夏引黄灌区土壤盐分及其灌水量的影响[J].农业工程学报,2010(6):7-13.
    117.邢述彦,郑秀清,陈军锋.秸秆覆盖对冻融期土壤墒情影响试验[J].农业工程学报,2012,28(2):90-94.
    118.徐力刚,杨劲松,张妙仙,等.微区作物种植条件下不同调控措施对土壤水盐动态的影响特征[J].土壤,2003,35(3):227-231.
    119.徐璐,王志春,赵长巍,等.东北地区盐碱土及耕作改良研究进展[J].中国农学通报,2011,27(27):23-31.
    120.许慰睽,陆炳章.应用免耕覆盖法改良新垦盐荒地的效果[J].土壤,1990,22(1):17-19.
    121.闫浩芳,史海滨,薛铸,等.内蒙古河套灌区ET0不同计算方法的对比研究[J].农业工程学报,2008,24(4):103-106.
    122.杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-844.
    123.杨培岭,罗远培,石元春.土壤—植物根系统的水分传输(综述)[J].中国农业大学学报,1993,2(2):25-30.
    124.杨鹏年,吴彬,王水献.内陆干旱灌区地下水位调控研究[J].节水灌溉,2010,7:57-62.
    125.姚荣江,杨劲松,刘广明.东北地区盐碱土特征及其农业生物治理[J].土壤,2006,38(3):256-262.
    126.依艳丽.土壤物理研究法[M].北京:北京大学出版社,2009,158-160.
    127.殷小琳,丁国栋,张维城.降雨及隔盐层对滨海盐碱地水盐运动的影响[J].中国水土保持科学,2011,9(3):40-44.
    128.余世鹏,杨劲松,刘广明.不同水肥盐调控措施对盐碱耕地综合质量的影响[J].土壤通报,2011,42(4):942-947.
    129.员学锋,吴普特,汪有科,等.免耕条件下秸秆覆盖保墒灌溉的土壤水,热及作物效应研究[J].农业工程学报,2006,22(7):22-26.
    130.袁建平,张素丽,张春燕,等.黄土丘陵区小流域土壤稳定入渗速率空间变异[J].土壤学报,2001,38(4):579-583.
    131.袁剑舫,周月华.粘土夹层对地下水上升运行的影响[J].土壤学报,1980,17(1):94-100.
    132.岳强.盐碱地改良方法研究[J].山西水利,2010,26(12):32-34.
    133.翟鹏辉,李素艳,孙向阳,等.隔盐层对滨海地区盐分动态及国槐生长的影响[J].中国水土保持科学,2012,4:80-83.
    134.曾木祥,王蓉芳.我国主要农区秸秆还田试验总结[J].土壤通报,2002,33(5):336-339.
    135.张德奇,廖允成,贾志宽.旱区地膜覆盖技术的研究进展及发展前景[J].干旱地区农业研究,2005,23(1):208-213.
    136.张凤荣,黄勤,张迪.黄淮海平原粘土层在土系划分中的意义,分类指标和土系初建[J].土壤通报,2001,32(5):197-200.
    137.张富仓.温度对土壤水分运动和保持的影响[D].杨凌:西北农业大学,1993.
    138.张建兵,杨劲松,姚荣江,等.有机肥与覆盖方式对滩涂围垦农田水盐与作物产量的影响[J].农业工程学报,2013,29(15):116-125.
    139.张建丰,王文焰,贾中华.具有砂质夹层的土壤连续函数入渗模型[J].水土保持学报,2007,21(4):94-97.
    140.张建丰,王文焰,杨志威,等.西北黄土窑洞减渗防塌措施的研究[J].中国农业大学学报,1997,(增刊):88-91.
    141.张金珠,虎胆·吐马尔白,王振华,等.不同深度秸秆覆盖对滴灌棉田土壤水盐运移的影响[J].灌溉排水学报,2012,31(3):37-41.
    142.张金珠.干旱区秸秆覆盖对滴灌土壤水盐分布及棉花生长的调控效应[D].乌鲁木齐:新疆农业大学,2013.
    143.张俊莲,张国斌,王蒂.向日葵耐盐性比较及耐盐生理指标选择[J].中国油料作物学报,2006,28(2):176-179.
    144.张坤,苗长春,徐圆圆,等.麦秸强化石油烃污染耕地水浸洗盐过程及场地试验[J].环境科学,2009,30(1):217-222.
    145.张蕾娜,张红.滨海盐渍土水盐运移影响因素研究[J].山东农业大学学报:自然科学版,2001,32(1):55-58.
    146.张莉,丁国栋,王翔宇,等.隔沙层对盐碱地土壤水盐运动的影响[J].干旱地区农业研究,2010(002):197-200.
    147.张帅,孔德刚,常晓慧,等.秸秆深施对土壤蓄水能力的影响[J].东北农业大学学报,2010,41(6):127-129.
    148.张微,娄金勇,程维新,等.内蒙古河套灌区水利工程对土壤盐渍化的影响[J].环境科学研究,2003,16(3):12-14.
    149.张薇,李素艳,孙向阳,等.隔盐层对滨海盐土理化性质的影响[J].河南农业科学,2013,42(10):51-54.
    150.张维成.滨海盐碱地造林模式及土壤水盐运动规律研究[D].北京:北京林业大学,2008.
    151.张新民.上土下砂双层结构土壤的洗盐定额[J].西北水资源与水工程,1997,8(1):48-51.
    152.张璇,郝芳华,王晓,等.河套灌区不同耕作方式下土壤磷素的流失评价[J].农业工程学报,2011,27(6):59-65.
    153.张义强,白巧燕.内蒙古河套灌区水盐运移状况分析研究——中日合作项目最新研究成果[A].中国水利学会2006年学术年会论文集(农村水利与社会主义新农村建设)[C],2006,210-214.
    154.张志杰,杨树青,史海滨,等.内蒙古河套灌区灌溉入渗对地下水的补给规律及补给系数[J].农业工程学报,2011,27(3):61-66.
    155.章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143.
    156.赵成义,胡顺军,刘国庆,等.潜水蒸发经验公式分段拟合研究[J].水土保持学报,201014(增刊):122-126.
    157.赵风岩.土层排列组合与作物产量差异[J].土壤通报,1997,28(3):105-106.
    158.赵秀娟,韩雅楠,蔡禄.盐胁迫对植物生理生化特性的影响[J].湖北农业科学,2011,50(19):3897-3899.
    159.郑九华,冯永军,于开芹.秸秆覆盖条件下微成水灌溉水盐运移数值模拟[A].第二届国际计算机及计算技术在农业中的应用研讨会暨第二届中国农村信息发展论坛论文集[C].2008,104-108.
    160.周凑云,周刘宗.农田秸秆覆盖节水效应砰究[J].生态农业研究,1996,4(3):49-52.
    161.周维博.降雨入渗和蒸发条件下野外层状土壤水分运动的数值模拟[J].水利学报,1991,9:32-36.
    162.朱凤武,王景利,潘世强,等.土壤深松技术研究进展[J].吉林农业大学学报,2003,25(4):457-461.
    163.朱和明.新疆盐碱土的治理[J].石河子大学学报:自然科学版,1999,3(增刊):78-82.
    164.祝寿泉,王遵亲.盐渍土分类原则及其分类系统[J].土壤,1989,2:106-109.
    165.邹桂梅.微域种植条件下植物生长状况及土壤水盐运移规律研究[D].北京:北京林业大学,2010.
    166. Abbott L K, Murphy D V. What is soil biological fertility?[M]//Soil Biological Fertility. SpringerNetherlands,2007:1-15.
    167. Ashraf M, Zafar R, Ashraf M Y. Time-course changes in the inorganic and organic components ofgerminating sunflower achenes under salt (NaCl) stress[J]. Flora-Morphology, Distribution,Functional Ecology of Plants,2003,198(1):26-36.
    168. Baker R S, Hillel D. Laboratory tests of a theory of fingering during infiltration into layeredsoils[J]. Soil Science Society of America Journal,1990,54(1):20-30.
    169. Bezborodov G A, Shadmanov D K, Mirhashimov R T, et al. Mulching and water quality effects onsoil salinity and sodicity dynamics and cotton productivity in Central Asia[J]. Agriculture,ecosystems&environment,2010,138(1):95-102.
    170. Bezdicek D F. Subsoil ridge tillage and lime effects on soil microbial activity, soil pH, erosion, andwheat and pea yield in the Pacific Northwest, USA[J]. Soil and Tillage Research,2003,74(1):55-63
    171. Bodman G B, Colman E A. Moisture and energy conditions during downward entry of water intosoils[J]. Soil Science Society of America Journal,1944,8(C):116-122.
    172. Cao J, Liu C, Zhang W, et al. Effect of integrating straw into agricultural soils on soil infiltrationand evaporation[J]. Water Science&Technology,2012,65(12):2213-2218.
    173. Chen C, Wagenet R J. Simulation of water and chemicals in macropore soils Part1. Representationof the equivalent macropore influence and its effect on soilwater flow[J]. Journal of Hydrology,1992,130(1):105-126.
    174. Dalal R C. Long-term effects of no-tillage, crop residue, and nitrogen application on properties of aVertisol[J]. Soil Science Society of America Journal,1989,53(5):1511-1515.
    175. Day P R, Luthin J N. Pressure distribution in layered soils during continuous water flow[J]. SoilScience Society of America Journal,1953,17(2):87-91.
    176. Delgado I C, Sánchez‐Raya A J. Effects of sodium chloride and mineral nutrients on initial stagesof development of sunflower life[J]. Communications in soil science and plant analysis,2007,38(15-16):2013-2027.
    177. Feng Z Z, Wang X K, Feng Z W. Soil N and salinity leaching after the autumn irrigation and itsimpact on groundwater in Hetao Irrigation District, China[J]. Agricultural Water Management,2005,71(2):131-143.
    178. Franzluebbers A J. Water infiltration and soil structure related to organic matter and itsstratification with depth[J]. Soil and Tillage Research,2002,66(2):197-205.
    179. Guo G, Araya K, Jia H, et al. Improvement of salt-affected soils, part1: interception ofcapillarity[J]. Biosystems engineering,2006,94(1):139-150.
    180. Helalia A M. The relation between soft infiltration and effective porosity in different soils[J].Agricultural Water Management,1993,24(8):39-47.
    181. Hillel D, Baker R S. A descriptive theory of fingering during infiltration into layered soils[J]. SoilScience,1988,146(1):51-56.
    182. Hussain N, Hassan G, Ghafoor A, et al. Biomelioration of sandy clay loam saline-sodic soil[J].Proc.6th Int. Micro. Irrigation Cong,1998:293-300.
    183. Jia H, Zhang H, Araya K, et al. Improvement of salt-affected soils, part2: interception ofcapillarity by soil sintering[J]. Biosystems engineering,2006,94(2):263-273.
    184. K mpf M, Holfelder T, Montenegro H. Identification and parameterization of flow processes inartificial capillary barriers[J]. Water resources research,2003,39(10).
    185. Laboski C A M, Dowdy R H, Allmaras R R, et al. Soil strength and water content influences oncorn root distribution in a sandy soil[J]. Plant and Soil,1998,203(2):239-247.
    186. Lapidus L, Amundson N R. Mathematics of adsorption in beds. VI. The effect of longitudinaldiffusion in ion exchange and chromatographic columns[J]. The Journal of Physical Chemistry,1952,56(8):984-988.
    187. Lemon E R. The potentialities for decreasing soil moisture evaporation loss[J]. Soil ScienceSociety of America Journal,1956,20(1):120-125.
    188. Licht M A, Al-Kaisi M. Strip-tillage effect on seedbed soil temperature and other soil physicalproperties[J]. Soil and Tillage Research,2005,80(1/2):233-249.
    189. Meiri A, Plaut Z. Crop production and management under saline conditions[M]//Biosalinity inAction: Bioproduction with Saline Water. Springer Netherlands,1985:253-271.
    190. Miller D E, Gardner W H. Water infiltration into stratified soil[J]. Soil Science Society of AmericaJournal,1962,26(2):115-119.
    191. Nassar I N, Horton R, Globus A M. Thermally induced water transfer in salinized, unsaturatedsoil[J]. Soil Science Society of America Journal,1997,61(5):1293-1299.
    192. Pang H C, Li Y Y, Yang J S, et al. Effect of brackish water irrigation and straw mulching on soilsalinity and crop yields under monsoonal climatic conditions[J]. Agricultural water management,2010,97(12):1971-1977.
    193. Qadir M, Ghafoor A, Murtaza G. Amelioration strategies for saline soils: a review[J]. LandDegradation&Development,2000,11(6):501-521.
    194. Qadir M, Schubert S. Degradation processes and nutrient constraints in sodic soils[J]. LandDegradation and Development,2002,13(4):275-294.
    195. Rhoades J D, Kandiah A, Mashali A M. The use of saline waters for crop production[J]. FAOIrrigation and Drainage Paper (FAO),1992.
    196. Rooney D J, Brown K W, Thomas J C. The effectiveness of capillary barriers to hydraulicallyisolate salt contaminated soils[J]. Water, Air, and Soil Pollution,1998,104(3-4):403-411.
    197. Sarkar S, Paramanick M, Goswami S B. Soil temperature, water use and yield of yellow sarson(Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfedlowland ecosystem in eastern India[J]. Soil and Tillage Research,2007,93(1):94-101.
    198. Sembiring H, Raun W R, Johnson G V, et al. Effect of wheat straw inversion on soil waterconservation[J]. Soil science,1995,159(2):81-89.
    199. Sheng F, Xiuling C. Using shallow saline groundwater for irrigation and regulating for soilsalt-water regime[J]. Irrigation and Drainage Systems,1997,11(1):1-14.
    200. Sheng Z, Yinli L, Xiusheng Z, et al. Effects of soil mulching on cucumber quality, water useefficiency and soil environment in greenhouse[J]. Transactions of the Chinese Society ofAgricultural Engineering,2008,24(3):65-71.
    201. Starr J L, DeRoo H C, Frink C R, et al. Leaching characteristics of a layered field soil[J]. SoilScience Society of America Journal,1978,42(3):386-391.
    202. Walter M T, Kim J S, Steenhuis T S, et al. Funneled flow mechanisms in a sloping layered soil:Laboratory investigation[J]. Water Resources Research,2000,36(4):841-849.
    203. Willis W O. Evaporation from layered soils in the presence of a water table[J]. Soil ScienceSociety of America Journal,1960,24(4):239-242.
    204. Yamanaka T, Takeda A, Sugita F. A modified surface‐resistance approach for representing bare‐soil evaporation: Wind tunnel experiments under various atmospheric conditions[J]. Waterresources research,1997,33(9):2117-2128.
    205. Yanful E K, Morteza Mousavi S, Yang M. Modeling and measurement of evaporation inmoisture-retaining soil covers[J]. Advances in Environmental Research,2003,7(4):783-801.
    206. Yang M, K Yanful E. Water balance during evaporation and drainage in cover soils under differentwater table conditions[J]. Advances in Environmental Research,2002,6(4):505-521.
    207. Zhang G S, Chan K Y, Oates A, et al. Relationship between soil structure and runoff/soil loss after24years of conservation tillage[J]. Soil and tillage research,2007,92(1):122-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700