用户名: 密码: 验证码:
辽西半干旱地区微集水种植技术优选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽西风沙半干旱区域常年干旱少雨,无效降雨较多,降水利用率和水分生产利用效率不高,耕作区风蚀沙化严重,导致作物粮食产量常年不稳。为了提高该地区农业对降水资源利用率,改善作物的生长环境,提高作物产量,本研究在2007-2009年,设计了垄上覆膜沟内种植(T1)、垄上覆膜沟内覆膜种植(T2)和垄上覆膜沟内覆盖秸秆种植(T3)3种微集水处理模式,并以传统平作种植模式(CK)作为对照试验进行优选研究;在2012-2013年对微集水种植技术进行了优化设计,又增设了全膜双垄覆盖种植(T4)处理模式。通过研究上述四种微集水种植技术对土壤水分与温度、作物生长发育和产量、以及土壤养分变化的影响,分析评价了上述四种微集水种植技术的优劣性,以期能够选出最适合辽西风沙半干旱农业区的微集水种植模式。
     为更加全面的评价微集水技术的种植效果,优选出最适合北方半干旱地区的微集水种植技术,本研究引入了农田实际蒸散量,作物需水量等参数,并利用FLUENT数据软件模拟了降水在土壤中的渗透情况,从而能更加全面的分析评价四种微集水技术的蓄水保墒效果,及其对作物生长发育的影响。研究结果如下:
     (1)相对于传统平作种植模式,微集水模式具有明显的蓄水保墒效果。作物生育期内,T3和T4处理在0-160cm土层的蓄水量最。
     (2)通过FLUENT软件绘制了各处理的流速等值云图,并利用流速等值云图的分析降水在土壤中下渗情况。相比CK处理,微集水种植模式下,降水在土壤中下渗速度更快且下渗速度变化缓慢,利用MATLAB软件拟合出最快的下渗渗流速度方程计算出各处理模式的水分下渗速度。T4处理降水下渗平均速度最快,更有利于降水储存到土层深处。
     (3)作物生育期内,微集水种植的农田实际蒸散量、农用作物需水量小于CK。其中T3和T4处理的农田实际蒸散量、农田作物需水量最小
     (4)微集水种植的覆膜处理可明显提高土壤表层温度,覆盖面积最大的T4处理增温效应最为明显。而T3处理由于蓄水带覆盖秸秆对土壤温度增加具有一定的负效应,土壤表层温度相对较低。
     (5)不同处理对玉米出苗率影响不大,而对玉米出苗时间有影响。相比CK处理,T1、T2和T4处理的出苗时间会提前,其中T4处理出苗时间最短;T3处理出苗时间会有一定延迟,出苗时间相对较长。
     (6)相对于CK处理,T4处理植株生长最好,各生育阶段玉米株高、叶面积、干物质积累量最大;T3处理植株在前期生长缓慢,导致各生育指标小于CK处理,到了生育后期,生长开始加速,超过CK处理。研究还发现,T3处理容易受低温气候影响,会使得作物生长始终迟缓,影响作物生长和发育。在生育前期,覆膜条件会使作物生长加快,T1、T2和T4叶绿素含量高于CK处理;但是到了生育后期,T1、T2和T4处理的植株会出现早衰现象,叶绿素含量在生育后期提前下降,而CK和T3处理没有出现这种现象。
     (7)微集水处理的植株根系平均直径、总根长、总根表面积、总根体积、根尖数、分叉数、根尖分叉数、根系干重较CK处理都有显著的增加,其中T4处理各参数最高。
     (8)总体上微集水种植模式中玉米的各项产量指标均优于传统模式,微集水处理的玉米穗长、穗粗、行粒数都高于CK处理。与传统种植相比,微集水种植都能不同程度增加玉米的作物产量,并达到显著水平。但T3处理的作物生长易受低温气候影响,在2012年,受早春低温气候影响,T3处理玉米产量显著低于其它微集水处理;而在2012-2013年,经过优化的T4处理作物产量最好,高于其它微集水处理,且水分利用效率提高最多。
     (9)在玉米生育期内,T4处理植株对土壤养分吸收最好,土壤速效养分含量要低于其它微集水处理。微集水种植条件下,玉米籽粒产量养分利用效率高于CK,其中T4处理表现最好。
     综上所述,四种微集水种植模式中,T4处理(全膜双垄覆盖种植模式)为本研究优选出的最佳模式。
The Sand and Wind Semi-Arid Zones in the western part of Liaoning Province has series of characteristics performing as droughts, lack of precipitation throughout the year, more ineffective rainfalls, low efficiencies of precipitation utilization and water productive, severed water and soil erosion in the farmland, which result in the disproportionate and unstable production of grain crops. For increasing the Water Utilization Efficiency (abbreviated as WUE as follows) of the proposed agricultural zone, enhancing the developing environment of the grain crop, consequently, raising the production of grain crops, this study was designed from2007to2009as three patterns:ridge film mulching and furrow seeding (T1); ridge and furrow film (T2); groove ridge mulch film and ridge ditch straw mulching cultivation (T3), which are subsidiary of Micro-Water Catchment Patterns. Simultaneously, convention planting pattern was employed to compare for the optimization study. In the duration of2012to2013,the Micro-Water Catchment Patterns were optimized and updated, which added another pattern-round film mulching double-ridge pattern (T4). This research is based upon abovementioned four subsidiary patterns of Micro-Water Catchment Patterns, to study the effects of Micro-Water Catchments Patterns on the soil moisture, temperature, plant growth, plant development, plant yield and soil nutrient variation, thereby to analyze the advantages and disadvantages of Micro-Water Catchment Patterns. Thus, discovering the most suitable and decent pattern in the sand and wind semi-arid agricultural zone, western Liaoning.
     For a complete and thorough evaluation of the result and effect from Micro-Water Catchment Patterns, discovering the most suitable and decent pattern in semi-arid zone of the North China, this study uses some advanced parameters such as evapotranspiration, water demand, and utilizes FLUENT software to simulate the infiltration of precipitation in the soil, in order to obtain the more comprehensive analyses and evaluations. The research results are summarized as follows:
     (1) The Micro-Water Catchment Patterns have significant effect on soil moisture conservation compared with the convention planting pattern. The experiment demonstrates that T3and T4perform the best under0-160cm soil layer.
     (2) By analyzing the convection velocity contours depicted by FLUENT, the infiltration of precipitation in the soil is more rapidly and the infiltration velocity is relatively low, which is based on the comparison with CK. By employing MATLAB for fitting the function versus the fastest velocity of infiltration, computing the velocity of each pattern, the result shows that T4has the fastest average infiltration velocity, meaning that T4is favorable for the storage of precipitation in the deep layer of soil.
     (3) In the duration of crop growth period, the evapotranspiration and water demand in the Micro-Water Catchment Pattern is much lower than CK pattern, T3and T4has the lowest value.
     (4) The soil surface temperature is apparently increased by adopting film mulching from Micro-Water Catchment Pattern. T4has the biggest covered area, which is accordingly has the most significant effect of temperature increase, whereas T3pattern has some certain of negative effect which is attributed to the use of straw. Thus, T3has the lowest temperature in the soil surface.
     (5) Different patterns have no obviously effect on emergency rate of maize, while work apparently on the emergency time. T1, T2and T4are ahead of the normal emergency time, and T4has the shortest time, T3has some certain delay, by comparing with CK pattern.
     (6) In contrast with CK pattern, T4grows with the best parameters(the plant height, leaf area, dry matter accumulation in different stages); T3grows slowly in the early stage, which results in the lower value of parameters versus CK, whilst in the anaphase, the pulse growth leads T3to overpass CK. Further study explores that T3is easily affected by low temperature, and then postpone the growth of crops. In the early stage, film mulching may accelerate the growth of crops; T1, T2and T4have higher chlorophyll content than CK. However, at the anaphase, T1, T2and T4perform as premature senility, the chlorophyll content decrease in the later period, while T3performs as normal.
     (7) The planting parameters (average diameter, general root length, general root volume, root tip, bifurcate, bifurcate of root tip, root dry weight and canopy dry weight) has significant increase by employing the Micro-Water Catchment Pattern compared with CK, T4has the highest values in all the parameters.
     (8) The Micro-Water Catchment Pattern has no significant effect in corncob row, bare tip and pachyrachis, while the value of ear length, ear width and row grains are higher than CK. Apart from2008which was the high flow year, the thousand seed weight of maize in Micro-Water Pattern in the other years were heavier than CK, T4was the heaviest. Micro-Water Catchment Patterns may increase the yield of maize in different extent, significantly, by comparing with convention planting pattern. From2007to2009, T2and T3had the highest increase yield, but T3was affected by the low temperature. In2012, T3maize yield was obviously lower than other patterns. During2012to2013, the optimized T4had the highest yield, much higher than other patterns, and had also the highest WUE.
     (9) In the durations of tasseling stage and mature stage of maize, the average readily available nutrient of soil in T4pattern is much lower than others. In Micro-Water Catchment Patterns, the maize grain yield's nutrient utilization efficiency is higher than CK, T4pattern perform as the best.
     The study illustrates that T4pattern (round film mulching double-ridge pattern of Micro-Water Catchment Patterns) is the most optimized and the best pattern in accordance with this Micro-Water Catchment Patterns study.
引文
1. 白全江,张庆平,张建平.2005.起垄栽培对河套蜜瓜产量、品质及病害的影响.内蒙古农业科技,(6):39-40.
    2. 白秀梅.2005.旱地起垄覆膜微集水种植玉米技术的集雨增产效应研究.山西农业大学硕士论文.
    3. 白秀梅,卫正新,郭汉清.2007.起垄覆膜微集水技术对玉米生长发育及产量的影响.山西水士保持科技,(2):12-15.
    4. 白秀梅,卫正新,郭汉清等.2005.晋北旱地玉米微集水种植技术的土壤水分动态研究.山西农业大学学报,(3):289-308.
    5. 白秀梅,卫正新,郭汉清等.2006.旱地起垄覆膜微集水种植技术的生态效应研究.耕作与栽培,1:8-9.
    6. 陈军,戴俊英.1996.干旱对不同耐性玉米品种光合作用及产量的影响.作物学报,22(6):757-762.
    7. 陈奇恩,萧复兴,晋凡生等.1991.晋中旱地玉米耗水规律及农田水分平衡研究.华北农学报,6(4):94-99.
    8. 陈新林,马耀祖,孙育红.2009.中华红叶杨高垄覆膜扦插快繁殖技术.陕西林业科技,(4):121-123.
    9. 陈志雄.1985.农田水量平衡.土壤学进展,(1):1-5.
    10.程东娟,任振江.2005.高寒半干旱地区聚垄集肥覆膜对士壤速效钾含量和马铃薯产量影响.陕西农业科学,(5):7-8.
    11.程序,曾晓光,王尔大.1997.可持续农业导论.北京:中国农业出版社.
    12.丁瑞霞,贾志宽,韩清芳等.2006.宁南旱区微集水种植条件下谷子边际效应和生理特性的响应.中国农业科学,39(3):494-501.
    13.董合忠,李维江,唐薇等.2003.干旱和淹水对棉苗某些生理特性的影响.西北植物学报,23(10):1695-1699.
    14.董孟雄,周希志,孙来虎等.1993.黄土高原半干旱地区覆盖沟垄种植技术及增产机理探讨.山西农业科学,21(1):40-43.
    15.段喜明,吴普特,白秀梅等.2006.旱地玉米垄膜沟种微集水种植技术研究.水土保持学报,20(1):143-146.
    16.杜少平,马忠明,薛亮.2010.不同覆膜方式对早砂田西瓜产量品质及土壤水分利用的影响.干旱地区农业研究,28(6):122-128.
    17.樊廷录.2002.黄土高原旱作地区径流农业的研究.西北农林科技大学博士论文,84.
    18.方锋,黄占斌.2005.黄土丘陵区大垄沟优化措施对玉米生理特性的影响.干旱地区农业研究,23(2):32-35.
    19.冯良山,孙占祥,曹敏建等.2009.半干旱区坐水播种条件下玉米高产栽培措施研究.干旱地区农业研究,27(1):73-77.
    20.冯良山,孙占祥,郑家明等.2008.辽西风沙半干旱区旱作农田水资源研究.土壤通报,39(1):25-28.
    21.冯小明,樊贵盛.2006.引洪灌溉对土壤中速效钾的影响.太原理工大学学报,37(2):210-212.
    22.付士磊,周永斌,何兴元等.2006.干旱胁迫对杨树光合生理指标的影响.应用生态学报,17(11):2016-2019.
    23.高前兆,李小雁,俎瑞平.2004.干旱区供水集水保水技术.北京:化学工业出版社.
    24.高世铭.1995.早地作物水分亏缺补偿效应研究.兰州大学博士学位论文.
    25.龚元石,李子忠,李春友.1998.利用时域反射仪测定的土壤水分估算农田蒸发量.应用气象学报,9(1):72-78.
    26.谷茂.2001.中国半干旱区降水的农业高效利用.北京:中国农业科技出版社,1-101.
    27.郭相平,蔚毒绍患,索丽生.2001.苗期调亏处理对玉米根系生长影响的试验研究.灌溉排水,20(1):25-27.
    28.郭玉海,瞿志习,杨大新,王华磊,乔学义,王树安.2005.华北平原管花肉苁蓉起垄—覆膜栽培技术研究.《中国作物学会2005年学术年会论文集》
    29.韩娟,贾志宽,任小龙等.2008.模拟降雨量下微集水种植对玉米光合速率及水分利用效率的影响.干旱地区农业研究,26(1):81-85,101.
    30.韩清芳,李向拓,王俊鹏,蒋骏.2004.微集水种植技术的农田水分调控效果模拟研究.农业工程学报,20(2):78-82.
    31.何启明.1992.旱作淘垄地膜覆盖农田气候工程集水率的计算及效应评价.干旱地区农业研究,10(4):62-68.
    32.黄昌勇.1999.土壤学.北京:中国农业出版社,32-38.
    33.华孟,王坚.土壤物理学1993.北京:北京农业大学出版社,107-110.
    34.胡希远.1997.宁南平地沟垄种植技术研究.西北农林科技大学硕士论文,3-24.
    35.胡希远,陶士衍,王立祥.1997.半干旱偏旱区糜子沟垄径流栽培研究初报.干旱地区农业研究,15(1):45-47.
    36.贾炜珑,翁惠玉,高兰华等.1996.旱地玉米双相覆盖技术在太原地区的增产效果与机理.华北农学报,1(3):82-86.
    37.晋小军,黄高宝.2005.陇中半干旱地区不同耕作措施对土壤水分及利用效率的影响.水土保持学报,19(5):109-112.
    38.康绍忠,刘晓明,熊运章.1994.土壤—植物—大气连续体水分运输理论及其应用.北京:水利电力出版社,43-44.
    39.李风民.2000.半干旱黄土高原地区以集水技术为基础的农牧混合型生态农业.生态农业研究,8(4):1-5.
    40.李锋瑞.1998.干旱农业生态系统研究.西安:陕西科学技术出版社.
    41.李国军,胡梅芳,何增国.2012.玉米马铃薯全膜垄作—膜两年用栽培技术.甘肃农业科技2012,61-62
    42.李军,王龙昌,孙小文.1997.宁南半干旱偏旱区旱作农田沟垄径流集水蓄墒效果与增产效应研究.干旱地区农业研究,15(1):8-13.
    43.李军,王龙昌,孙小文等.1999.宁南半干旱偏旱区沟垄径流集蓄保墒效果与增产效应研究.干旱区域农业研究,17(2):89-93.
    44.李全起,陈雨海,于舜章等.2006.灌溉与秸秆覆盖条件下冬小麦农田小气候特征.作物学报,32(2):306-309.
    45.李荣,张睿,贾志宽.2009.不同覆盖材料对耕层土壤温度及玉米出苗的影响.干旱地区农业研究,27(3):13-16,26.
    46.李爽,孙占祥,杨宁等.2009.垄膜沟种技术对辽西旱地春玉米士壤水分及产量的影响.玉米科学,17(5):121-123.
    47.李小雁,张瑞玲.2005.旱作农田沟垄微型集雨结合覆盖玉米种植试验研究.水土保持学报,19(2):45-52.
    48.李永平,贾志宽,刘世新等.2006.早作农田微集水种植产流蓄墒扩渗特征研究.干旱地区农业研究,24(2):86-90.
    49.李永平,贾志宽,刘世新,上官周平.2008.起垄覆膜集水技术对苜蓿土壤水分状况的影响.西北农业学报,17(6):237-241.
    50.李永平,秦爱红,穆兰海等.1997.旱坡地截留蓄水种植沟耕作技术及其水肥效果研究.水土保持通报,17(5):1-6.
    51.李永平,杨改河,冯永忠,康建宏,吴宏亮.2009.黄土高原土壤风蚀区玉米起垄覆盖集水效应.农业工程学报,25(4):59-65.
    52.李玉霖,崔建垣,张铜会.2003.奈曼地区灌溉麦田蒸散量及作物系数的确定.应用生态学报,14(6):930-934.
    53.李韵珠,王凤仙,黄元仿.2000.士壤水分和养分利用效率几种定义的比较.土壤通报,31(4):150-155.
    54.李育中,程延年.1999.抑蒸集水抗旱技术.北京:气象山版社,0-87.
    55.李宗新,董树亭,王空军等.2008.不同施肥条件下玉米田土壤养分淋溶规律的原位研究.应用生态学报,19(1):65-70.
    56.粱运江,依艳丽,许广渡等.2006.水肥耦合效应的研究进展与展望,湖北农业科学,45(3):385-388.
    57.林金科,赖志明.2000.影响茶树叶片净光合速率的生态生理因子的初步分析.作物学报,26(1):45-50.
    58.刘国良,祝臣.2009.提高玉米种子发芽率的措施.农业科技与装备,(3):120-121.
    59.刘和斌.1998.旱坡地聚流沟种植技术效应研究初报.甘肃农业科技,(3).
    60.刘正辉.2001.半干旱区农田微集水种植带型优化设计研究.甘肃农业大学硕士论文,6-23.
    61.马灵玲,占车生,唐伶俐等.2005.作物需水量研究进展的回顾与展望.干旱区地理,28(4):531-537.
    62.马天恩,高世铭.1997.集水高效农业.兰州:甘肃科学技术山版社.
    63.马新明,熊淑萍,李琳等.2005.土壤水分对不同专用小麦后期光台特性及产量的影响.应用生态学报,16(1):83-87.
    64.马耀光,张保军,罗志成等.2004.早地农业节水技术.北京:化学工业出版社,1-51,157.
    65.苗培玲,张惠芳,张玉翠.2010.西芹遮阳网覆盖起垄覆膜栽培技术..甘肃农业,282(1):91-92.
    66.彭致功,杨培岭,王舅等.2006.再生水灌溉对草坪土壤速效养分及盐碱化的效应.水土保持学报,20(6):84-88.
    67.綦伟,谭牿,翟衡.2006.干早胁迫对不同葡萄砧术光台特性和荧光参数的影响.应用生态学报,17(5):835-838.
    68.秦胜金,刘景双,王国平.2006.影响土壤磷有效性变化作用机理.土壤通报,37(5):1012-1016.
    69.任广鑫,杨改河,聂俊锋.2002.早地起垄覆膜沟播小麦氮氮钾施肥模型研究.甘肃农业大学学报,37(3):316-322.
    70.任小龙,贾志宽,陈小莉等.2007.模拟降雨量条件下啕垄集雨种植对土壤养分分布及夏玉米根系生长的影响.农业工程学报,23(12):94-99.
    71.任小龙,贾志宽,陈小莉等.2008.模拟降雨量下沟垄微型集雨种植玉米的水温效应.中国农业科学,41(1):70-77.
    72.任小龙,贾志宽,韩清芳等.2007.半干旱区模拟降雨下沟垄集雨种植对夏玉米生产影响.农业工程学报,23(10):45-50.
    73.沈荣开,王康,张瑜芳等.2001.水肥耦合条件下作物产量、水分利用和根系吸氯的试验研究.农业工程学报,17(5):35-38.
    74.盛建东,肖华,武红旗等.2005.不同取样尺度农田土壤速效养分空间变异特征初步研究.干旱地区农业研究,23(2):64-67.
    75.史观义,卫志兴,张云等.1993.丰产沟覆盖效应及其最佳覆盖技术研究初报.中国水土保持,(10):27-31.
    76.史金丽,王立刚,邱建军等.2009.SIMETAW模型在辽西北地区的验证与应用.中国农业科学,42(10):3726-3733.
    77.孙莅瑶.1997.旱地两熟周年覆盖栽培技术.甘肃农业科技,(2):11-12.
    78.孙占祥.2008.风沙半干旱区农业综合发展研究.北京:中国农业出版社,1-33.
    79.孙占祥,冯良山,杜桂娟等.2010.玉米灌溉田土壤水分变化及其耗水规律研究.玉米科学,18(1):99-102,107.
    80.唐克丽.2004.中国水土保持.北京:科学出版社,471-488,504.
    81.田晓峰,高成芳,张二喜等.1998.天水山旱地冬小麦覆膜沟穴播技术生产示范初报,甘肃农业科技,(1):18-19.
    82.王彩绒,田霄鸿,李生秀.2004.覆膜集雨栽培对冬小麦产量及养分吸收的影响.干旱地区农业研究,22(2):108-111.
    83.王晨阳.1992.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报,7(4):1-8.
    84.王恩姮,陈祥伟.2007.大机械作业对黑土区耕地土壤三相比与速效养分的影响.水土保持学报,21(4):99-102.
    85.王怀珠,胡玉录,郭红英.2006.不同起垄覆膜方式对士壤水分及烟株前期生长的影响.水土保持学报,20(1):190-192.
    86.王俊鹏,韩清芳,王龙昌,贾志宽.2000.宁南半干旱区农田微集水种植技术效果研究.西北农业大学学报,28(4):16-20.
    87.王俊鹏,蒋骏,韩清芳等.1999.宁南半千早地区春小麦农田微集水种植技术研究.干旱地区农业研究,17(2):8-13.
    88.王俊鹏,马林,蒋骏等.1999.宁南半干旱地区农田微集水种植技术研究.西北农业大学学报,(3):8-13.
    89.王俊鹏,马林,蒋骏等.2000.宁南半干旱地区谷子微集水种植技术研究.水士保持通报,20(3):4143.
    90.王琦,张恩和,车风民.2004.半干旱地区膜垄和土垄的集雨效率和不同集雨时期土壤水分比较.生态学报,24(8):1821-1823.
    91.王大华,郑勤,邢国.1997.半干旱雨养农业区沟穴播抗旱丰产栽培技术.甘薯农业科技,(11).23-24.
    92.王延平,杨荣惠,张海,白光明.2008.黄土高原杏、枣幼树塑膜微集水促渗技术.林业科学,44(2):85-92.
    93.王晓凌.2002.半干旱农田生态系统马铃薯田间微域集水的理论与实践.西北农林科技大学硕十论文.
    94.魏以昕,吴玉福,温重阳等.2000.陇中贫水富集抗旱高产栽培试验研究.中国水土保持,2:23-25.
    95.卫正新,贺志坚,郭玉记,薛丽平,赵芹珍.2001.梯田起垄覆膜微集流形式效益研究.山西水土保持科技,(1).
    96.翁晓燕,将德安,陆庆等.1998.影喃水稻叶片光台日变化因素的分析.中国水稻科学,12(2):105-108.
    97.温晓霞,韩思明,赵风霞等.2003.旱作小麦地膜覆盖生态效应研究.中国生态农业学报,11(2):93-95.
    98.吴文荣,丁培峰,忻龙祚等.2008.我国节水灌溉技术的现状及发展趋势.节水灌溉,(4):50-54.
    99.武玉叶,李德全,赵世燕等.1999.土壤水分胁追下小麦叶片渗透调节与光合作用.作物学报,25(6):752-758.
    100.肖国举,王静.2003.黄土高原集水农业研究进展.生态学报,23(5):1003-1011.
    101.肖继兵,杨久廷,辛宗绪等.2009.风沙半干旱区旱地玉米提高降水生产效率的栽培技术研究.玉米科学,17(5):116-120.
    102.肖继兵,孙占祥,杨久廷等.2008.旱作农田高粱垄膜沟种高产栽培技术研究.辽宁农业科学,(3):30-32.
    103.信乃诠,王立样.1998.中国北方旱区农业.南京:江苏科学技术出版社.
    104.许大垒.2002.光合作用效率.上海:上海科学技术出版社.
    105.徐福利,梁银丽,汪有科等.2006.秸杆覆盖保护耕作法土壤水分和温度变化及玉米产量效应.土壤通报,37(4):648-650.
    106.杨封科.2002.半干旱区集水农业高效用水模式研究.甘肃农业大学博士学位论文.
    107.杨封科.2004.旱作春小麦起垄覆膜微集水种植技术研究.灌溉排水学吧,23(4):48-49.
    108.杨凯,冯永忠,李永平等.2009.黄土高原坡耕地不同耕作措施对土壤温度和水分的作用效应.干旱地区农业研究,27(4):190-195.
    109.姚健,王丁,张显松等.2009.不同地表覆盖方式对土壤水分、温度及幼苗生长的影响.南京林业大学学报(自然科学版),33(5):7-11.
    110.姚仁文,董凤英,牛洲红,巩世强,魏斌,李月卫.2012.起垄覆膜方式对人工栽培甘草产量的影响.甘肃农业科技,(5).
    111.殷海善,姚建民,杨瑞平.2000.渗水地膜覆盖玉米试验研究综述.水土保持研究,7(4):47-49.
    112.员学锋,吴普特,汪有科等.2006.免耕条件下秸秆覆盖保墒灌溉的土壤水、热及作物效应研究.农业工程学报,22(7):22-26.
    113.张初龙,邓伟.2008.农业水资源可持续利用评价指标体系构建与应用.北京:化学工业出版社,1-2.
    114.张德奇.2005.宁南旱区谷子地膜覆盖与化学制剂效应研究.西北农林科技大学学报,5-10.
    115.张德奇,廖允成,贾志宽等.2006.宁南旱区谷子集水保水技术效应研究.中国生态农业学报,14(4):51-53.
    116.张景会,杨久廷,肖继兵等.2009.辽西半干早区早地玉米微集水栽培技术研究.安徽农学通报,15(3):106-107.
    117.张坤,王发林,刘小勇,尹晓宁.旱地果园起垄覆膜集雨措施对树体水分利用的影响.灌溉排水学报,30(3):68-71.
    118.张雷,牛建彪,赵凡.2006.旱作玉米提高降水利用率的覆膜模式研究.干旱地区农业研究,24(2):8-11.
    119.张旭东,杨兴国,杨启国.2006.半干旱区旱作春小麦耗水规律研究.干旱地区农业研究,22(2):63-66.
    120.张忠玲,马祝峰.2008.农业节水的重要性与措施.现代农业科技,(11):306-307.
    121.赵聚宝,钟兆站,薛军红等.1996.旱地春玉米田微集水保墒技术研究.农业工程学报,12(2):28-33.
    122.郑勤,王天华,邢国.1997.春小麦地膜覆盖穴播抗旱丰产栽培技术.甘肃农业科技,(11):9.
    123.中国农业工程学会农业水土工程委员会.2000.农业高效用水与水土环境保护.西安:陕西科学技术出版社.
    124.朱国庆,史学贵,李巧珍.2001.定西半干旱地区春小麦农田微集水种植技术研究.中国农业气象,22(3):7-9.
    125. Baligar V C, Duncan R R, Fageria N K.1990. Soil-plant interaction on nutrient use efficiency, In: Baligar V C, Duncan R R.Crops as Enhancers of Nutrient Use. New York:Academic Press.351-373.
    126. Barry A L.2005. Chlorophyll a fluorescence:a signature of photosynthesis. Torrey Botanical Society, 132(4):650.
    127. Ben-Asher J, Oron G, Button B J.1985. Estimation of runoff volume for agriculture in arid lands. Jacob Blaustein Institute for Desert Research. Ben Gurion University of the Negev.
    128. Ben-Asher J, Warrick A W.1987. Effect of variations in soil properties and precipitation on microcatchment water balance. Agric Water Manage,12 (3):177-194.
    129. Bierhuizen J F, Slatyer R O.1995. Effect of atmospheric concent ration of water vapor and CO2 in detertning transpiration of cotton leaves. Agric Meteorol,2:259-270.
    130. Boers T M, Ben-Asher J.1982. A review of rainwater harvesting. Agric Water Manage,5:145-158.
    131. Boers T M, De Groaf M, Feddes R A et al.1986a. A linear regression model combined with a soil water balance model to design micro-catchments for water harvesting in arid zones.Agric Water Manage,11:187-206.
    132. Boers T M, Zondervan K, Ben-Asher J.1986b. Micro-catchments water harvesting (MCWH) for arid zone development. Agric Water Manage,12:21-39.
    133. Bradbury M, Baker N R.1984.A quantitative determination of photochemical and non-photochemical quenching during the slow phase of chlorophyll fluorescence induction curve of bean leaves. Biochen Biophys Acta,765:695-698.
    134. Bruce W B, Edmeades G O, Barker T C.2002. Molecular and physiological app roaches to maize improvement for draught to lerance. J Exp Bot,53 (366):13-25.
    135. Chaves M M, Maroco J P, Pereira J S.2003. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology,30:239-264.
    136. Clarkson D T, Carvajal M, Henzler T et al.2000. Root hydraulic conductance:diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot,51:61-90.
    137. Critchley W, Siegert K.1991.Water Harvesting. Rome:FAO.133.
    138. Davies W J,Wilkinson S, Loveys B.2002. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytologist,153:449-460.
    139. Davies W J, Tardieu F, Trejo C I.1994. How do chemical signals work in plants that grown in drying soil. Plant Physiol,104:309-314.
    140. Davies W J, Zhang J.1987. Increased synthesis of ABA impartially dehydrated root tips and ABA transport from root to leaves. J Exp Bot,38:2015-2023.
    141. Davies W J, Zhang J.1991. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol,42:55-76.
    142. Earl H J,Tollenaar M.1999.Using chlorophyll fluorometry to compare photosynthetic performance of commercialmaize (Zea mays L.)hybrids in the field. Field Crop Research,61:201-210.
    143. Evenari M, Shanan L, Tadmor N.1968."Runoff Farming" in the desert I.experimental layout. Agronomy Journal,60:29-32.
    144. Forde B, Lorenzo H.2001.The nutritional control of root development. Plant and Soil,232:51-68.
    145. Frasier G W, Cooley K R, Griggs J R.1979.Performance evaluation of water harvesting catchments. J Range Mange,36:453-456.
    146. Frasier G W.1975.Water harvesting:a source of livestock water. J Range Manage,28:429-434.
    147. Geddes H J.1963. Water harvesting. Proc ASCE Irrig Drain Div,104:43-58.
    148. Uenty B E, Briantais M J, Baker N R,1989.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemical Biophysical Acta,990:87-92.
    149. Gong Q Z, Li J Y, Xu B C et al.2006.Effect of water stress on chlorophyll fluorescence garameters and WUE of wheat under different planting models. Jour of Northwest Sci-Tech Unit of Agri and For (Nat Sci Ed),34 (5):83-86.
    150. Gourley J P, Allan D L, Russell M P.1994.Plant and nutrient efficiency:A comparison of definitions and suggested improvement. Plant and Soil,158:29-37.
    151. Hasure R R, Umrani N K.1995. Effects of irrigation water saving methods (mulches) on uptake of nutrients in summer sunflower. Journal of Maharashtra Agricultural Universities,20:485.
    152. Herppich W B, Packman K.1997.Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia cordifolia to short-term drought and rewatering. Journal of Plant Physiology,150:467-474.
    153. Hillel D.1967.Runoff inducement in arid lands. Final Tech.Rep.USDA Project A,10-SWC-36, Israel.
    154. Hirakata T, Hsiao T C.1999. Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crop Research, Hollick M.1982.Water harvesting in (62):53-62.
    155. Hollick M.1982. Water harvesting in arid lands. Scientific Reviews on Arid Zone Research,1: 173-247.
    156. Jia Y, Li F M, Wang X L et al.2006.Soil water and alfalfa yields as affected by alternating ridges and furrows in rainfall harvest in a semiarid environment. Field Crop Res,97:167-175.
    157. Kevin O.2004. Imaging of chlorophyll a fluorescence:theoretical and practical aspect s of an emerging technique for the monitoring of photosynthetic performance. Experimental Botany,55 (4):1195-1205.
    158. Krause G H, Weis E.1991.Chlorophyll fluorescence and photosynthesis. Ann Rew Plant Physiol Plant Mol Biol,42:313-349.
    159. Li X Y, Shi P J, Sun Y L et al.2006. Influence of various in situ rainwater harvesting methods on soil moisture and growth of Tamarix ramosissima in the semiarid loess region of China. Forest Ecology Management,233:143-148.
    160. LI Feng-min, GUO An-hong, WEI Hong.1999.Effects of clear plastic film mulch on yield of spring whea.Field crops res,63,79-86.
    161. Li F M, Wang J, Zhao S L.1999.The rainwater harvesting technology approach for dryland agriculture in semi-arid loess plateau of China. Acta Ecological Sinica,19(2):152-157.
    162. Li X Y, Gong J D, Gao Q Z et al.2001. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions. Agricultural Water Management,50 (3):173-183.
    163. Li X Y, Gong J D, Wei X H.2000a. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China. Journal of Arid Environments,46:371-382.
    164. Li X Y, Gong J D.2002.Effects of different ridge/furrow rations and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agricultural Water Management,54(3):243-254.
    165. Li X Y,Gong J D, Gao Q Z.2000b. Rainfall harvesting and sustainable agriculture development in the Loess Plateau of China. J Desert Res,20 (2):150-153.
    166. Liang B M, Sharp R E, Baskin T 1.1997. Regulation of growth anisotropy in well-watered and water-stressed maize roots, I. Spatial distribution of longitudinal, radial, and tangential expansion rates. Plant Physiol,115:101-111.
    167. Lynch J.1995.Root architecture and plant productivity. Plant Physiology,109:7-13.
    168. Mashingsidze, A., Chiciuge, O.A.1996.Seedling emergence, growth and yield of tomatoes of applied sci.Southern Aftica,2:6-14.
    169. Maxwell K, Johnson G N.2000. Chlorophyll fluorescence -A practical guide. Journal of Experiment Botany,51:659-668.
    170. Mcintyre D S.1958. Permeability measurements on soil crusts formed by raindrop impact. Soil Sci, 85:85-91,185-189.
    171. Myers L E,1967. Recent advance in water harvesting. J Soil Water Conserv,22:95-97.
    172. Myers L E.1964. Harvesting precipitation. Internal Assoc for Sci Hydro Pub,65:343-351.
    173. Oweis T, Hachum A, Kijne J.1999. Water Harvesting and Supplementary Irrigation for Improved Water Use Efficiency in Dry Areas. Colombo, Sri Lanka:International Water Management Institute.
    174. Pacey A, Cullis A.1986. Rainwater Harvesting:the Collection of Rainfall and Runoff in Rural Areas. London:IT Publication.
    175. Peng S, Garcia F V, Laza R C.1993.Adjustments for specific leaf weight improve chlorophyll meter's estimate of rice leaf nitrogen concentration, Agron J,85:987-990.
    176. Prinz D, Wolfer S, Siegert K.2000.Water Harvesting for Crop Production. Rome:FAO Training Corse.
    177. Ravi, V., Lourduraj, A.C.1996.Coparative performance of plastic mulching on soil moisture content, soil temperature and yield of rained cotton. Madras Agric.K.83:70-71.
    178. Reij C, Mulder P, Begeman L.1988.Water harvesting for plant production. Washington D C, USA: World Bank Technical Paper.91.
    179. Rogers R D, Scum S A.1991. The effect of sparse vegetation covers on erosion sediment yield. Journal of Hydrology,123:19-24.
    180. Romero-Diaz A, Cammeraat L H, Vacca A et al.1999.Soil erosion at three experimental sites in the Mediterranean. Earth Surf Process Landforms,24:1243-1256.
    181. Sharma K D, Pareek O P, Singh H P.1982. Effect of runoff concentration on growth and yield of Jojoba. Agric Water Manage,5:73-85.
    182. Sharma P K, Parmar D K.-1998.The effect of phosphorus and mulching on the efficiency of phosphorus use and productivity of wheat grown on a mountain Alfisol in the Western Himalayas. Soil Lisa Manages,14:25-29.
    183. Siddiqi M Y, Glass A D.1981.Utilization index:a modified approach to the estimation and comparison of nutrient utilization efficiency in plants.1 Plant Nutr,4:289-302.
    184. Simmons S R, Jones R J.1985.Contributions of pre-silking assimilates to grain yield on Maize. Crop Science,1985,25:1004-1006.
    185. Tabor J A.1995.Improving crop yield in the shell by means of water harvesting. Journal of Arid Environment,30:83-106.
    186. Van Kooten O, Snel J F H.1990. The use of chlorophyll nomenclature in plant stress physiology. Photosynthesis Research,25:147-150.
    187. Vashistha R N, Pandita M L, Batra R R.1980.Water harvesting studies under rainfall condition in relation to growth and yield of okra. Hargana J Hort Sci,9(314):188-191.
    188. Viets F G.1972.Water deficits and nutrient availability. In:Kozlowski T. Water Deficits and Plant Growth. New York:Academic Press,217-247.
    189. Wang X F, Xu F, Shani U.1996.Evaporation from bare soil in extremely arid environment in southern Israel. Pedosphere,6(2):139-146.
    190. Wang X L, Li F M, Yu J et al.2005. Increasing potato yields with additional water and increased soil temperature. Agricultural Water Management,78:181-194.
    191. Wilkinson S, Davies W J.2002. ABA-based chemical signaling:the coordination of responses to stress in plants. Plant Cell and Environment,25:195-210.
    192. Wiyo K A, Kasomekera Z M, Feyen 1.1999.Variability in ridge and furrow size and shape and maize population density on small subsistence farms in Malawi. Soil&Tillage Research,51:113-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700