用户名: 密码: 验证码:
甘蓝型油菜产量和品质相关性状关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是世界范围内广泛种植的油料作物,油菜产量和种子中含油量、脂肪酸成份等品质性状都越来越被人们重视和关注。前人已经有大量关于油菜产量和品质相关性状的QTL定位和生化代谢途径的研究,为其遗传基础的解析提供了理论依据。关联分析是一种高效,分辨率较高的QTL定位方法,已经在人类复杂遗传疾病和作物重要农艺性状研究中得到广泛应用。本研究通过构建一个来自于世界主要油菜种植国家的192份甘蓝型油菜品种和自交系的自然群体,利用451个SSR和740个AFLP标记对株高、分枝高度、主花序长度、角果长、每角果粒数和千粒重等6个产量相关性状和含油量、蛋白质、芥酸、硫苷、油酸、亚油酸、亚麻酸、二十碳烯酸、棕榈酸和硬脂酸等10个品质相关性状进行了初步全基因组关联分析。主要结果如下:
     1.甘蓝型油菜产量和品质相关性状的表型变异:在关联群体中,16个产量和品质相关性状都存在广泛的表型变异,表现出典型的数量性状,且大部分性状之间存在显著的遗传相关和表型相关。群体内所有性状的广义遗传力都在80%以上,表明这些性状的表型变异主要由基因型控制,遗传较稳定。这些结果意味着群体内的表型数据可以用于后续分析。
     2.群体结构对性状表型变异的效应和6种统计模型的比较分析:群体结构对表型的效应分析发现,群体结构对大部分性状表型变异的影响都达到了显著水平(P<0.01),且亚群之间表型均值的方差分析也发现,大部分性状在P1亚群和P2亚群之间的表型值也达到显著水平(P<0.01),证明群体内群体结构对表型变异具有显著的影响。因此我们利用6种统计模型进行比较分析,发现同时控制群体结构和亲缘关系的Q+K模型表现最佳,能有效控制不同性状关联分析的假阳性,以用于后续的关联检测。
     3.群体内各个产量相关性状的关联分析:在Q+K模型下,利用1109个SSR和AFLP标记对甘蓝型油菜6个产量相关性状三年的平均值进行全基因组关联扫描,共检测到37个显著关联的标记位点(P<0.001),对表型解释的效应值在3.51%-9.03%之间。其中检测到2个标记与主花序长度显著关联,14个标记与株高显著关联。有12个关联标记与前人定位的QTLs共定位。其中,分枝高度和株高检测到5个共同的显著关联标记(EA02MC04_7、EA14MC08_1、EA09MC11_5、EA14MC02_7和EA03MC04_10);角果长和千粒重也检测到1个共同的关联标记(EA05MC08_1)。
     4.群体内各个品质相关性状的关联分析:在Q+K模型下,利用1109个SSR和AFLP标记对甘蓝型油菜10个品质相关性状进行全基因组关联扫描,三年中共检测到177个显著关联的标记位点,对表型解释的效应值在0.11%-16.56%之间。其中有79个标记在两年或三年中被同时检测到(P<0.001)。前面的相关分析已经证实大部分性状之间存在显著相关,我们也发现有61个标记同时与两个或两个以上性状关联。含油量和蛋白质在2009和2011年分别检测到一个共同的关联标记(EA06MG06-8和EA09MC08-7)。二十碳烯酸与油酸检测到的共同标记数是最多的,三年中分别检测到32、30和31个标记位点。在三年10个表型性状中,我们发现有的标记与多年多个性状同时检测到关联。如标记EA06MG08_8,在三年中被检测到与芥酸、硫苷、二十碳烯酸、油酸和棕榈酸这5个性状显著关联;在2009和2010年被检测到与硬脂酸显著关联。
     5.品质相关性状主成分的关联分析:针对关联群体大部分品质性状之间存在显著相关,我们将10个品质相关性状通过主成分分析合成的前三个主成分轴(PC),在三年中分别总的解释了表型变异的86.47%、87.51%和87.53%。其中PC1主要与脂肪酸成份,芥酸,硫苷等性状相关;PC2主要与含油量和蛋白质相关;PC3主要与亚麻酸相关。并且我们对这三个主成分轴进行关联检测,发现剔除含油量,蛋白质和亚麻酸这三个性状,在7个性状中我们发现共有57个标记同时与两个或两个以上性状关联,PC1在至少两年中均检测到的30个关联标记和只在一年中检测到6个关联标记,均包含在这57个标记里面。PC2没有检测到与含油量和蛋白质共同的关联标记。PC3三年共检测到13个关联标记,其中有3个与控制亚麻酸性状的关联标记相同(BnEMS620、EA04MG04_3和EA09MC14_11)。
     6.共同关联标记的等位基因和单倍型效应分析:关联位点等位基因效应分析发现,针对在多个性状中同时检测到的关联标记,对所有正相关的表型性状来说,携带某一等位基因的材料在含量上都显著高于携带另一等位基因的材料;而与这些表型性状呈负相关的性状,则表现出相反的效应趋势。如标记EA06MG08_8携带等位基因Ao的材料在芥酸和二十碳烯酸含量上都显著高于携带等位基因A1的材料,但在油酸含量上都显著低于携带等位基因A1的材料。同时关联标记之间不同等位基因组合的单倍型效应分析发现,单倍型对表型解释的联合效应明显高于单个标记对表型解释的效应。对株高而言,标记EA02MC04_7和BrGMS2998不同等位基因的材料之间芥酸含量的最大平均差值分别为10.88和23.68cm,等位基因解释的表型变异分别为6.67%和7.33%。而这两个标记不同等位基因组成的单倍型的材料之间的最大平均差值达到35.20cm,单倍型解释的表型变异达到22.48%。同时我们在这192份甘蓝型油菜种质中也检测到很多对重要产量和品质性状具有正向贡献的优异等位基因和单倍型。这些结果显示出甘蓝型油菜重要性状微效优异等位基因的挖掘和聚合是一种改良油菜产量和品质的有效手段,为分子育种提供思路和前景。
Rapeseed(Brassica napus L.) is a widely cultivated oil crop in the world. Yield and quality-related traits in rapeseed are increasingly taken great importance. QTL mapping and biological metabolic pathway analysis were done to dissect the genetic bases of yield and quality-related traits in Brassica napus. Association mapping (AM) with its high resolution is a powerful approach in quantitative trait loci mapping, and has been widely adopted in complex genetic diseases in human and important agronomic traits in crops. In the study, a panel of192inbred lines of Brassica napus from all over the world was genotyped using451single-locus microsatellite markers and740amplified fragment length polymorphism (AFLP) markers. Genome-wide association studies were conducted with six yield-related traits and ten quality-related traits in our association mapping, main results are as follows:
     1. Phenotypic analysis of yield and quality-related traits in Brassica napus:In our association mapping, extensive phenotypic variations were observed for all traits, and all traits had an H2higher than80%, suggesting that all these traits are stably inherited. Highly genetic and phenotypic correlations were observed between almost all the traits. The phenotypic analysis suggesting that the phenotypic traits can be applied to the following association mapping.
     2. Model comparison on controlling false associations:ANOVA results indicated that most of all measured traits showed a strong influence of population structure (P<0.01), and most of all traits were significantly different between subgroups (P<0.01). These results indicating that population structure had significant impacts on phenotypic variation for almost all traits. The comparision with six statistical models in association analyses indicating that the Q+K model could effectively control false positive associations and was chosen for association analyses between the SSR and AFLP markers and yield and quality-related traits.
     3. Association mapping of six yield-related traits:Using the optimal Q+K model, association analyses were carried out for the six yield-related traits using the means across three years in Brassica napus. A total of37associated loci were detected, with two to fourteen markers associated with individual traits. The effects of phenotypic variance explained by associated markers were relatively small, ranged from3.51%to9.03%. And 12markers were located within or close to QTLs identified in previous studies. Among these, five markers (EA02MC04_7, EA14MC08J, EA09MC11)5, EA14MC02_7and EA03MC04_10) were repeatedly associated with first branch height and plant height, and one common marker was detected association with silique length and seed weight.
     4. Association mapping of ten quality-related traits:Using the optimal Q+K model, association analyses were carried out with the369SSR and740AFLP markers for ten quality-related traits in Brassica napus. A total of177associated loci were detected in three years (P<0.001), the effects of phenotypic variance explained by associated markers were ranged from0.11%to16.56%. Of these,79markers were repeatedly detected in two or three years. The correlation analysis demonstrated that highly genetic and phenotypic correlations were observed between almost all the traits. We found that61common markers were associated with correlated traits in our association mapping. Among these, two markers (EA06MG06-8and EA09MC08-7) were repeatedly associated with both oil content and protein content.32,30,31common markers were detected association with eicosenoic acid and oleic acid in three years, respectively, which was the most common markers associated with correlated traits. For ten quality-related traits in three years, some markers were repeatedly detected association with multiple traits in multiple years. For the marker EA06MG08_8, was significantly associated with erucic acid, seed glucosinolate, eicosenoic acid, oleic acid and palmitic acid in all three years, and was significantly associated with stearic acid in2009,2010.
     5. Association mapping of the principal components axis for ten quality-related traits: Using the PCA analysis, ten quality-related traits were synthesized into the first three principal components axes which totally accounting for86.47%,87.51%,87.53%of phenotypic variance in three years, respectively. The first PC axis accounted for erucic acid, seed glucosinolate and fatty acid composition; the second PC axis accounted for oil content and protein content; the third PC axis accounted for linolenic acids. And we conducted association analysis with these three PC axes.30associated markers detected with the first PC axis in two or three years and6associated markers detected in one year, were included in57common associated markers which detected with more than two traits in ten quality-related traits but oil content, protein content and linolenic acids. No common associated marker was detected with the second PC axis and oil content, protein content.3common associated markers detected with the third PC axis and linolenic acids (BnEMS620, EA04MG04_3and EA09MC14_11).
     6. Allele effects of common associated markers on yield and quality-related traits: We found that for each associated marker detected with correlated traits, the lines contained one allele was preferentially shared higher content than that contained the other allele for positively correlated traits, and was shared lower content than that contained the other allele for the traits, which were nagetively correlated with positively correlated traits. For the marker EA06MG088, the lines contained the allele A0were preferentially shared higher content than that contained the allele A1with erucic acid and eicosenoic acid, and were shared lower content than that contained the allele A1with oleic acid. And the combination effects of haplotypes of associated markers were preferentially higher than the effects explained by the individual markers. EA02MC04_7and BrGMS2998explained6.67%and7.33%of phenotypic variance of plant height, respectively, while they jointly explained22.48%of phenotypic variance. These results suggested that the pyramiding of favorable alleles with minor effects is an effective way to enhance trait performance of rapeseed variety for yield and quality-related traits, which depict us the perspective of application in molecular breeding.
引文
1.傅廷栋.油菜杂种优势研究利用的现状与思考.中国油料作物学报,2008,30(增刊):1-5.
    2.甘莉,孙秀丽,金良等.NIRS定量分析油菜种子含油量、蛋白质含量数学模型的创建.中国农业科学,2003,36(12):1609-161
    3.韩锦峰,董钻.作物生物化学.北京:中国农业出版社,1995.198-203,243-247.
    4.胡中立.甘蓝型油菜几个品质性状的遗传分析.中国油料,1987,(1):19-22.
    5.金梦阳,李加纳,付福友,张正圣,张学昆,刘列钊.甘蓝型油菜含油量及皮壳率的QTL分析.中国农业科学,2007,40(4):677-684.
    6.刘后利.油菜的遗传和育种.上海:上海科学技术出版社,1985.
    7.刘列钊,林呐,谌利,唐章林,张学昆,李加纳.甘蓝型油菜5个重要性状QTL分析.农业生物技术学报,2006,14(5):747-751.
    8.梅德圣,张垚,李云昌,胡琼,李英德,徐育松.油菜油分、蛋白质和硫苷含量相关性分析及QTL定位.植物学报,2009,44(5):536-545.
    9.钦洁.甘蓝型油菜种子油酸和亚麻酸含量的遗传及其基因定位.武汉:华中农业大学,2009.
    10.涂金星,张冬晓,张毅,傅廷栋.我国油菜育种目标及品种审定问题的商榷.中国油料作物学报,2007,29(3):350-352.
    11.万建民.作物分子设计育种.作物学报,2006,32(3):455-462.
    12.王丰,邱厥.甘蓝型油菜蛋白质含量的遗传及与其他几个性状相关的研究.中国农业科学,1990,23(6):42-47.
    13.王辉.白菜类作物硫甙合成基因的鉴定及控制硫甙的QTL定位与分析中国农业科学院博士论文.2011.
    14.王瑞,徐新福,李加纳等.甘蓝型油菜硫苷组分的胚、细胞质和母体遗传效应分析.作物学报,2007,33(12):2001-2006.
    15.王益军,孙萍,邓德祥,卞云龙.玉米关联分析与品种分子设计.玉米科学,2010,18(5):9-13,18.
    16.闰世江.不同来源甘蓝型黄籽油菜品质性状的遗传分析.西南农业大学硕士毕业论文.2001.
    17.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33(4):523-530.
    18.张海珍,石春海,吴建国等.油菜籽硫代葡萄糖苷含量的胚、细胞质、母体遗传效应分析.作物学报,2004,30(1):31-35.
    19.张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜含油量的遗传与QTL定位.作物学报,2007,33(9):1495-1501.
    20.张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜主要脂肪酸组成的QTL定位.作物学报,2008,34(1):54-60.
    21.张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜芥酸含量的遗传与QTL定位.江苏农业学报,2008,24(1):22-28.
    22.张书芬,文雁成,王建平,朱建成,赵磊,刘建明,任乐建.河南省油菜品质育种和杂种优势利用研究进展.中国油料作物学报,2008,30:27-29.
    23. Andersen JR, Lubberstedt T. Functional markers in plant. Trends Plant Sci,2003,8: 554-560.
    24. Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T. Validation of Dwar/8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea maysL.). Theor Appl Genet,2005,111:206-217.
    25. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature,2010,465:627-631
    26. Bao JS, Corke H, Sun M. Nucleotide diversity in starch synthase II a and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor Appl Genet,2006,113: 1171-1183.
    27. Bai X, Wu B, Xing Y. Yield-related QTLs and their applications in rice genetic improvement. Journal of Integrative Plant Biol,2012,54:300-311.
    28. Barker GC, Larson TR, Graham IA, Lynn JR, King GJ. Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C genome. Plant Physiol,2007,144(4):1827-1842.
    29. Baurle I, Dean C. The timing of developmental transitions in plants. Cell,2006,125: 655-664.
    30. Belo AP, Zheng S, Luck B, Shen DJ, Meyer B, Li S, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad.2 associated with increased oleic acid levels in maize. Mol Genet and Genomics,2008,279:1-10.
    31. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
    32. Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ. QTL analysis of an intervarietal set of substitution lines in Brassica napus:(i) Seed oil content and fatty acid composition. Heredity,2003,90(1):39-48.
    33. Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A. Maize adaptation to temperate climate:Relationship between population structure and polymorphism in the Dwar/8 gene. Genetics,2006,172:2449-2463.
    34. Chan EKF, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis Thaliana. PLoS Biol,2011,8:e1001125.
    35. Chen G, Geng JF, Rahman M, Liu XP, Tu JX, Fu TD, Li GY, McVetty PBE, Tahir M. Identification of QTL for oil content, seed yield, and flowering time in oilseed rape {Brassica napus). Euphytica,2010,175(2):161-174
    36. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    37. Chintamanani S, Hulbert SH, Johal GS, Balint-Kurti PJ. Identification of a maize locus that modulates the hypersensitive defense response, using mutant-assisted gene identifi cation and characterization. Genetics,2010,184:813-825.
    38. Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C. Modeling QTL for complex traits:detection and context for plant breeding. Curr Opin in plant Biol,2009, 12:231-240.
    39. Davies KM. Genetic modification of plant metabolism for human health benefits. Mutat Res,2007,622(1-2):122-37
    40. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content in oilseed rape(Brassica napus L.) Theor Appl Genet,2006,113(7):1331-1345.
    41. Devlin B, Roeder K. Genomic control for association studies. Biometrics,1999,55: 997-1004.
    42. Ecke W, Uzunova M, Weibleder K. Mapping the genome of rapeseed(Brassica napus) II:Localization of genes controlling erucic acid synthesis and seed oil content Theor Appl Genet,1995,91:972-977.
    43. Engel E, Baty C, le Corre D, Souchon I, Martin N. Flavor-active compounds potentially implicated in cooked cauliflower acceptance. Journal of agricultural and food chemistry. 2002,50:6459-6467.
    44. Fan CC, Yu SB, Wang CR. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet, 2009,118:465-472.
    45. Fan CC, Cai GQ, Qin J, Li QY, Yang MG, Wu JZ, Fu TD, Liu KD, Zhou YM. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica Napus. Theor Appl Genet,2010,121:1289-1301.
    46. Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol,2003,54:357-374.
    47. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES. Maize association population:a high-resolution platform for quantitative trait locus disseetion. Plant J,2005, 44:1054-1060.
    48. Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, AIPert KB, Tanksley SD.fw2.2, a quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88.
    49. Gardner KM, Latta RG. Shared quantitative trait loci underlying the genetic correlation between continuous traits. Mol Ecology,2007,20:4195-4209.
    50. Garris AJ, McCouch SR, Kresovich S. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice(Oryza sativa L.) Genetics,2003,165:759-769.
    51. Gaut BS, Long AD. The lowdown on linkage disequilibrium. The Plant Cell,2003,15: 1502-1506.
    52. Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants:present status and future prospects. Plant Mol Biol,2005,57:461-485.
    53. Hardy OJ, Vekemans X. SPAGeDi:a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes,2002,2:618-620
    54. Hasan M, Friedt W, Pons-Kuhnemann J, Freitag NM, Link K, Snowdon RJ. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape(Brassica napus ssp. napus). Theor Appl Genet,2008,116:1035-1049.
    55. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science,2008,319:330-333.
    56. Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattore C, Werner P, Bancroft I. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotech,2012,30:798-802.
    57. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet,2000,100:1121-1128.
    58. Hobbs DH, Flintham JE, Hills MJ. Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiology,2004,136(2):3341-3349.
    59. Hoehe MR. Haplotypes and the systematic analysis of genetic variation in genes and genomes. Pharmacogenomics,2003,4 (5):547-570.
    60. Holland JB. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci, 2006,46:642-654
    61. Hoist B, Williamson G. A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep,2004,21:425-447.
    62. Honsdorf N, Becker HC, Ecke W. Association mapping for pheno logical, morphological, and quality traits in canola quality winter rapeseed(Brassica napus L.). Genome,2010, 53:899-907.
    63. Howell PM, Sharpe AG, Lydiate DJ. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape(Brassica napus). Genome,2003,46(3):454-460.
    64. Hu J, Quiros C, Arus P, Struss D, Robbelen G. Mapping of a gene detemining linolenic acid concentration in rapeseed with DNA-based markers. Theor Appl Genet,1995,90(2): 258-262.
    65. Hu J, Li G, Struss D, Quiros CF. SCAR and RAPD markers associated, with 18-carbon fatty acids in rapeseed, Brassica napus. Plant Breeding.1999,118(2):145-150.
    66. Hu XY, Sullivan-Gilbern M, Gupta M, Thompon SA. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola(Brassica napus L.). Theor Appl Genet,2006,113(3):497-507.
    67. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet,2010,42: 961-967.
    68. Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics,1993,135: 205-211.
    69. Javidfar F, Ripley VL, Roslinsky V, Zeinali H, Abdmishani C. Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape *Brassica napus). Plant Breeding,2006,125(1):65-71.
    70. Jia L, Yan W, Zhu C, Agrama HA, Jackson A, Yeater K, Li X, Huang B, Hu B, McClung A, Wu D. Allelic analysis of sheath blight resistance with association mapping in rice. PLoS ONE,2012,7:e32703
    71. Jia GQ, Huang XH, Zhi H, Zhao Y, Zhao Q, Huang T, Zhang L, Lu TT, Feng Q, Hao HF, Liu HK, Lu P, Zhang N, Li YH, Guo EH, Wang SY, Wang SJ, Liu JR, Zhang WF, Chen GQ, Zhang BJ, Li W, Wang YF, Li HQ, Zhao BH, Li JY, Diao XM, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genet,2013, doi:10.1038/ng.2673
    72. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet, 2009,5:e1000551.
    73. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet,2011,43:163-168.
    74. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199.
    75. Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175:361-374.
    76. Li Q, Yu K. Improved correction for population stratification in genome-wide association studies by identifying hidden population structures. Genet Epidemiol,2008,32:215-226.
    77. Li HT, Chen X, Yang Y, Xu JS, Gu JX, Fu J, Qian XJ, Zhang SC, Wu JS, Liu KD. Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breed,2011a,28:585-596
    78. Li L, Li H, Li Q, Yang XH, Zheng DB, Warburton M, Chai YC, Zhang P, Guo YQ, Yan JB, Li JS. An 11-bp insertion in Zea maysfatb reduces the palmitic acid content of fatty acids in maize grain. PLoS ONE,2011b,6(9):e24699.
    79. Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R, Ochatt S. Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassicajuncea). Genome,2002,45(6):1203-1215.
    80. Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits:challenges and prospects. Nature Reviews Genetics,2009,10:565-577.
    81. Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR. RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor Appl Genet,2003,107(2):283-290.
    82. McClung AM, Marchetti MA, Webb BD, Bollich CN. Registration of'Jefferson'rice. Crop Sci,1997,37:629-630.
    83. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H. Genetic properties of the maize nested association mapping population. Science,2009,325:737-740.
    84. Mithen R, Campos H. Genetic variation of aliphatic glucosinolates in Arabidopsis thaliana and prospects for map based gene cloning. Entomologia Experimentalis et Applicata,1996,80:202-205.
    85. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES. Association mapping:critical considerations shift from genotyping to experimental design. Plant Cell, 2009,21:2194-2202.
    86. Negrao S, Cecilia Almadanim M, Pires IS, Abreu IA, Maroco J, Courtois B, Gregorio GB, McNally KL, Oliveira MM. New allelic variants found in key rice salt-tolerance genes:an association study. Plant Biotech J,2013,11:87-100.
    87. Olsen KM, Caicedo AL, Polato N, McClung A,MeCouch S, Purugganan D. Selection under domestication:evidence for a sweep in the rice Waxy genomic region. Genetics, 2006,173:975-983.
    88. Oezer H, Oral E, Dogru U. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turkish Journal of Agriculture and Forestry, 1999,23:603-608.
    89. Palaisa KA, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell, 2003,15:1795-1806.
    90. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature, 1988,335:721-726.
    91. Peleman JD, Voort JR. Breeding by design. Trends Plant Sci,2003,8:330-334.
    92. Price AH. Believe it or not, QTLs are accurate! Trends in plant science,2006,11: 213-216.
    93. Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet,1999,65:220-228.
    94. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Mailer J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK:a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet,2007,81:559-575.
    95. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng JL, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006,114:67-80.
    96. Quijada PA, Udall JA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.):1. Identification of genomic regions from winter germplasm. Theor Appl Genet,2006,113:549-561.
    97. Radoev M, Becker HC, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed(Brassica napus L.) by quantitative trait locus mapping. Genetics,2008,3:1547-1558.
    98. Rafalski A. Applications of single nucleotide polymorphisms in crop genetics and breeding. Curr Opin Plant Biol,2002,5:94-100.
    99. Raman R, Raman H, Kadkol G, Coombes N, Taylor B, Luckett D. Genome-wide association analyses of loci for shatter resistance in Brassicas. In:Australian Research Assembly on Brassicas:Wagga Wagga NSW Australia.2011, pp.36-41.
    100.Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends in Genetics,2012, 28(7):323-332.
    101.Salvi S, Tuberosa R. To clone or not to clone plant QTLs, present and future challenges. Trends Plant Sci,2005,10:297-304.
    102.Shi WW, Yang Y, Chen SH, Xu ML. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breeding,2008,22:185-192.
    103.Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL. Unraveling the complex trait of crop yield with QTL mapping in Brassica napus. Genetics,2009,109:101642.
    104.Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet,2001,102: 1011-1015.
    105.Slafer GA. Genetic basis of yield as viewed from a crop physiologist's perspective. Ann Appl Biol,2003,142:117-128.
    106.Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet,2011,122(6):1075-1090.
    107.Sonderby IE, Geu-Flores F, Halkier BA. Biosynthesis of glucosinolate gene discovery and beyond. Trends in Plant Science,2010,15:283-296.
    108.Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus. Am J Hum Genet,1993, 52:506-516.
    109.Stich B, Melchinger AE. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics,2009, 1:94.
    110.Szalma SJ, Buckler ES, Snook ME, McMullen MD. Association analysis of candidate genes for maysin and chlorogenie acid accumulation in maize silks. Theor Appl Genet, 2005,110:1324-1333.
    111.Tanhuanpaa PK, Vilkki P, Villkkil HJ. Maping of a QTL for oleic acid concentration in spring turnip rape(Brassica rapa ssp. oleiferd). Theor Appl Genet,1996,92(8):952-956.
    112.The SAS Institute (1999) SAS/STAT User's Guide, Version 8. SAS Institute, Cary, NC.
    113.Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. DwarfS polymorphisms associate with variation in flowering time. Nat Genet,2001, 28:286-289
    114.Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. PNAS,2009,106:21760-21765.
    115.Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet,2011, 43:159-162.
    116.Udall JA, Quijada PA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed(Brassica napus L.):2. Identification of alleles from unadapted germplasm. Theor Appl Genet,2006,113:597-609.
    117.Ungerer MC, Halldorsdottir SS, Purugganan MA, Mackay TFC. Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics,2003,165:353-365.
    118.Uzunova M, Ecke W, Weissleder K, Robbelen G. Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet,1995,90:194-204.
    119.Vaughn SF, Isbell TA, Weisleder D, Berhow MA. Biofumigant compounds released by field pennycress (Thlaspi arvense) seedmeal. J Chem Ecol,2005,31:167-177.
    12O.Visscher PM. Sizing up human height variation. Nat Genet,2008,40:489-490.
    121.Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407-4414
    122.Wang F, Wang XF, Chen X, Xiao YJ, Li HT, Zhang SC, Xu JS, Fu J, Huang L, Wu JS, Liu KD. Abundance, marker development and genetic mapping of microsatellites from unigenes in Brassica napus. Mol Breed,2011,30:731-744
    123.Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nature Reviews Genetics,2010,11(12):843-854.
    124.Wang XF, Liu GH, Yang Q, Hua W, Liu J, Wang HZ. Genetic analysis on oil content in rapeseed (Brassica napus L.). Euphytica,2010,173:17-24.
    125.Wang D, Zhu J, Li Z, Paterson A. Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor Appl Genet,1999,99: 1255-1264.
    126.Wang CR, Chen S, Yu SB. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet,2011, 122:905-913.
    127.Weber AL, Briggs WH, Rucker J, Baltazar BM, de Jesus Sanchez-Gonzalez J, Feng P, Buckler ES, Doebley J. The genetic architecture of complex traits in Teosinte (Zea mays ssp. parviglumis):new evidence from association mapping. Genetics,2008,180: 1221-1232
    128.Wurschum T, Liu WX, Maurer HP, Abel S, Reif JC. Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet,2012,124:153-161.
    129.Xiao YJ, Cai DF, Yang W, Ye W, Younas M, Wu JS, Liu KD. Genetic structure and linkage disequilibrium pattern of a rapeseed (Brassica napus L.) association mapping panel revealed by microsatellites. Theor Appl Genet,2012,125:437-447
    130.Xu JS, Qian XJ, Wang XF, Li RY, Cheng XM, Yang Y, Fu J, Zhang SC, King G, Wu JS, Liu KD. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics, 2010,11:594
    131.Yan XY, Li JN, Fu FY, Jin MY, Chen L, Liu LZ. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica,2009,170(3):355-364.
    132.Yan J, Kandianis CB, Harjes CE, Bai L, Kim E-H, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, DellaPenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T. Rare genetic variation at Zea mays crtRBl increases β-carotene in maize grain. Nat Genet,2010,42:322-327.
    133. Yang P, Shu C, Chen L, Xu JS, Wu JS, Liu KD. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet,2012,125: 285-296.
    134.Ye XD, Al-Babili S, KlOti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science,2000,287:303-305
    135.Yu JM, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin in Biotech,2006,17:1-6.
    136.Yu BY, Gruber M, Khachatourians GG, Hegedus DD, Hannoufa A. Gene expression profiling of developing Brassica napus seed in relation to changes in major storage compounds. Plant Science,2010,178:381-389.
    137.Zeng ZB. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468.
    138.Zhang JF, Qi CK, Pu HM, Chen S, Chen F, Gao JQ, Chen XJ, Gu H, Fu SZ. QTL identification for fatty acid content in rapeseed(Brassica napus L.). Acta Agronomica Sinica,2008,34(1):54-60.
    139.Zhang LW, Yang GS, Liu PW, Hong DF, Li SP, He QB. Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet,2011,122:21-31.
    140.Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with sclerotinia resistance in Brassica napus. Plant Breeding,2003, 122:19-23.
    141.Zhao KY, Aranzana MJ, Kim S, Lister C, Shindo C, Tang CL, Toomajian C, Zheng HG, Dean C, Marjoram P, Nordborg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet,2007,3:e4
    142.Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet,2006,113(1):33-38.
    143.Zhao JY, Dimov Z, Becker HC, Ecke W, Mollers C. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breeding,2008,21(1):115-125.
    144.Zheng P, Allen W, Roesler K, Williams M, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature Genet,2008,40:367-372.
    145.Zhou YM, Liu HL. The heredity of the total glucosinolate content in rapeseed (B.napus). Oil Crop of China,1987,9:15-18.
    146.Zhu C,Gore M,Buckler ES,Yu J. Status and prospects of association mapping in plants. The Plant Genome,2008,1:5-20.
    147.Zhu C, Yu J. Nonmetric multidimensional scaling corrects for population structure in whole genome association studies. Genetics,2009,182:875-888.
    148.Zoric M, Dodig D, Kobiljski B, Quarrie S, Barnes J. Population structure in a wheat core collection and genomic loci associated with yield under contrasting environments. Genetica,2012,140:259-275
    149.Zou J, Jiang C, Cao Z, Li R, Long Y, Chen S, Meng JL. Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genome,2010,53:908-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700