用户名: 密码: 验证码:
光诱导的马铃薯试管薯形成相关基因转录组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum L.)作为世界第四大粮食作物,在世界粮食安全中发挥着重要作用。块茎是马铃薯植株的地下变态茎,由匍匐茎在条件适合时停止纵向伸长并在匍匐茎亚顶端膨大形成,是主要经济器官。同时,马铃薯块茎还是研究植物变态器官发育的模式体系。因此马铃薯块茎发育及其调控的分子机理不但具有重要的经济意义,还有突出的生物学意义。光照特别是光质和光周期是影响马铃薯块茎形成的重要因素。目前,光质对组织培养条件下块茎形成影响的研究还不系统;光周期调控马铃薯块茎形成是一个复杂的生物学过程,需要数量众多的基因以及各种通路共同协作才能完成,尽管相关研究已取得了一定进展,但其分子机理还没有系统证实。新的基因组学研究技术和工具的出现,特别是高通量测序技术的出现将对分离和鉴定参与块茎形成过程的关键基因产生极大的推动作用。
     本研究的主要目的是研究光质对组织培养条件下马铃薯试管薯形成的影响,进而为马铃薯试管薯生产中的光源选择提供理论支持;分离参与光周期调控马铃薯试管块茎形成的关键候选基因,为光周期调控马铃薯试管块茎形成分子机理的研究提供新的基因资源。获得的主要结果如下:
     1)系统研究了白、红、蓝三种光质对组培养条件下马铃薯试管薯形成的影响,通过对单株结薯数、单薯重等的观察,表明基础苗繁殖光质、试管薯诱导期光质以及基因型对试管薯形成有显著影响,且各因素间存在显著的交互作用。总体而言,组织培养条件下白光更利于马铃薯试管薯的形成。当完成试管块茎形态建成后,蓝光光源更利于试管薯的持续膨大。红光对组织培养下试管薯的形态建成及生长具有阻碍作用。
     2)评价鉴定了E26、E20、E109等来自于同一个杂交组合的马铃薯姊妹系在组织培养条件下试管薯形成的能力,其中E26对光周期敏感,仅能在8h/d光照条件下形成块茎;E109对光周期不敏感,在8h/d和16h/d条件下均能形成块茎;E20对光周期不敏感,但在任一光照条件下均不能形成块茎。结果反映这三个具有相同遗传背景的品系是研究光周期调控块茎形成的理想材料,适于本研究。
     3)采用Digital Gene Expression profiling (DGE)高通量测序技术分析光周期敏感型品系E26在诱导条件(短日照8h/d,SD)和非诱导条件(长日照16h/d, LD)下基因表达在转录水平上的差异,共分离得到了2218个差异表达基因(differentially expressed gene, DEG)。
     4)对DEGs进行了Gene ontology (GO)和KEGG pathway功能注释,发现差异表达基因涉及117个代谢通路和21个生物学过程,说明光周期调控马铃薯试管块茎形成是一个复杂的生理过程,需要各类基因、不同代谢途径的协同调节。
     5)根据GO和KEGG pathway注释,选择了56个涉及植物节律、信号传导、发育以及若干功能未知基因,通过比较其在三个来自于同一杂交组合但结薯习性对光周期响应不同的姊妹系中的表达模式,证明PGSC0003DMT400083080(DNAbinding with one finger domain class转录因子)、PGSC0003DMT400068851(蓝光受体)、PGSC0003DMT400034146(植物凝集素)、PGSC0003DMT400043211(syntaxin-like蛋白)以及一个未知功能基因(PGSC0003DMT400022042)可能参与了光周期对马铃薯试管薯形成的调控。
     本研究为马铃薯试管薯生产的光源选择提供了理论支持;分离得到的参与光周期调控马铃薯试管薯形成的候选基因,为研究光周期调控马铃薯试管薯形成的分子机理提供了新的策略。
Potato(Solarium tuberosum L.), a member of the Solanaceae, ranks the fourth most important food crop after rice, wheat, and maize (http://www.fao.org/)., and plays a crucial role in global food security. Potato tubers—the modified underground stems that are rich in starch, protein, antioxidants and vitamins—are the most important organ of the species. Tuber formation has thus attracted considerable attention, with a view to improve yields and provide a model system to look into the development of modified organs in plants. Potato tuberization is influenced by light quality and photoperiod. Effects of light quality on potato tuber formation in vitro is not well studied. Photoperiodic regulation of potato tuber formation is a very complex biological process that requires the interaction of diverse genes and the crosstalk of several pathways. Photoperiodic control of potato tuber formation is far from been fully elucidated. New genomics tools, especially high-throughput sequencing, should considerably facilitate the identification of candidate genes involved in the photoperiodic control of tuber formation in potato.
     The main purposes of present research are to investigate the effects of light quality on potato tuberization in vitro for efficient selection of light source for microtuber production, and to identify candidate genes involved in the photoperiodic tuberization approaching insight the mechanism of photoperiodic regulation of potato tuberization. The main results obtained are as below.
     1) By treating8potato genotyes with white, red and blue light in vitro, number of microtuber formed per plantlet and mean weight of the microtubers were investigated. The data showed that light quality for plant growth (LP), light quality for microtuberinitiation and growth (LM) and potato genotype impacted tuber formation dramatically. Generally, white light promoted microtuber formation while red light repressed the tuberization. Blue light was more suitable for tuber growth after tuber initiation.
     2) Phenotypic characterization of E26, E20and E109, the three sister lines derived from same cross, indicated thattuberization of E26is photoperiod-sensitive characterized by tuber formation only occurs at short day (8h/d). E109is phtoperiod-independent for tuberization since it can form tubers at either short day or long day (16h/d), whereas E20is not capable to produce tubers at either of the daylength which is also considered photoperiod-independent. These three clones are desirable for research on the photoperiodic regulation of potato tuberization in present research.
     3) Digital Gene Expression (DGE) Tag Profiling analysis of the short-day-sensitive clone E26identified2,218genes that were differentially regulated by day length.
     4) Gene ontology (GO) and KEGG pathway analyses of DEGs found that DEGs involved117pathways and21biological processes. These results indicated that the response of potato to photoperiod requires the interaction of diverse genes and the crosstalk of several pathways.
     5) According to GO and KEGG pathway annotation, we selected56genes associated with circadian rhythmicity, signal transduction, and development. Quantitative transcriptional analysis in the selected clones revealed five genes potentially associated with photoperiodic tuberization, which were predicted to encode a DOF protein (PGSC0003DMT400083080), a blue light receptor (PGSC0003DMT400068851), a lectin (PGSC0003DMT400034146), a syntaxin-like protein (PGSC0003DMT400043211), and a protein with unknown function (PGSC0003DMT400022042).
     Our research provide a theoretical base for light source selection in microtuber production. Identification of the key candidate genes involved in photoperiodic-regulated tuberization gains insight the novel gene resources for further dissecting photoperiodic regulation of potato tuber formation in vitro.
引文
1.常宏,王玉萍,王蒂,张峰.光质对马铃薯试管薯形成的影响.应用生态学报,2009,20:1891-1895.
    2.陈亮.马铃薯试管薯规模生产过程中生产与管理技术的优化集成.[硕士学位论文].武汉:华中农业大学图书馆,2009.
    3.陈琰,张洁,王冬梅.建立小麦洛夫林10悬浮系初探.河北农业大学学报2005,28:68-70.
    4.杜爽,高志奎,薛占军,高玉.红蓝单色光质下茄子叶片的光吸收与光合响应特性.河北农业大学学报,2009,32:1-4.
    5.黄嘉,陈献华,徐平.核内不均一核糖核蛋白在前体mRNA加工中的功能.细胞生物学杂志,2004,26:377-380.
    6.李竟才.二倍体马铃薯遗传图谱构建及晚疫病抗性QTL定位.[博士学位论文].武汉:华中农业大学图书馆,2012.
    7.李韶山,潘瑞炽.植物的蓝光效应.植物生理学通讯,1993,29:248-252.
    8.李亚军.马铃薯晚疫病水平抗性与p-氨基丁酸诱导抗性防卫系统基因表达的差异.[博士学位论文].武汉:华中农业大学图书馆,2009.
    9.李宗霆,周燮.植物激素及其免疫检测技术.南京:江苏科学技术出版社,1996.
    10.柳俊.马铃薯试管块茎的形成机理及块茎形成调控.[博士学位论文].武汉:华中农业大学图书馆,2001.
    11.柳俊,聂碧华,蔡兴奎,陈亮,谢从华.马铃薯二年制脱毒种薯体系建设及其关键技术改良.中国马铃薯,2006,20:321-325.
    12.柳俊,谢从华.马铃薯块茎发育机理及其基因表达.植物学通报,2001,18:531-539.
    13.秦忠群.外源激素对雾化栽培马铃薯结薯的影响研究.重庆.西南大学2006.
    14.司怀军.马铃薯class Ⅰ patatin基因功能研究.[博士学位论文].武汉:华中农业大学图书馆,2003.
    15.司怀军,谢从华,柳俊.农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义class I patatin基因的导入(英文).作物学报,2003,29:801-805.
    16.童哲.光质纯度对幼苗光形态建成的影响.植物生理学通讯,1989,2:28-31.
    17.王大勇,连勇,朱德蔚.马铃薯离体块茎发育过程中的关键因子及其与蛋白质组分的关系.中国农业科学,2001,34:19-26.
    18.王艺,韦小丽.不同光照对植物生长,生理生化和形态结构影响的研究进展.山地农业生物学报,2010,29:353-359.
    19.谢从华.马铃薯产业的现状与发展.华中农业大学学报(社会科学版)2012,97:1-4.
    20.张微慧,张光伦.光质对果树形态建成及果实品质的生理生态效应.中国农学通报,2007,23:78-83.
    21.周云龙.植物生物学.北京:高等教育出版社,1999.
    22. Abelenda JA, Navarro C, Prat S. From the model to the crop:genes controlling tuber formation in potato. Curr Opin Biotech,2011,22:287-292.
    23. Aksenova NP, Konstantinova TN, Golyanovskaya SA, Sergeeva LI, Romanov GA. Hormonal regulation of tuber formation in potato plants. Russ J Plant Physl,2012,59: 451-466.
    24. Aksenova NP, Konstantinova TN, Lozhnikova VN, Golyanovskaya SA, Gukasyan IA, Gatz C, Romanov GA. Photoperiodic and hormonal control of tuberization in potato plants transformed with the PHYB gene from Arabidopsis. Russ J Plant Physl,2005, 52:623-628.
    25. Aksenova NP, Konstantinova TN, Lozhnikova VN, Golyanovskaya SA, Sergeeva LI. Interaction between day length and phytohormones in the control of potato tuberization in the in vitro culture. Russ J Plant Physl,2009,56:454-461.
    26. Aksenova NP, Konstantinova TN, Sergeeva LI, Machackova I, Golyanovskaya SA. Morphogenesis of potato plants in vitro. I. Effect of light quality and hormones. J Plant Growth Regul,1994,13:143-146.
    27. Ando K, Carr KM, Grumet R. Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics,2012,13.
    28. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res,1997,7:986-995.
    29. Banerjee AK, Chatterjee M, Yu Y, Suh SG, Miller WA, Hannapel DJ. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Sci Signal, 2006,18:3443.
    30. Barker L, K"'hn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB. SUT2, a putative sucrose sensor in sieve elements. Plant Cell,12:1153.
    31. Batutis EJ, Ewing EE. Far-red reversal of red light effect during long-night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol,1982,69:672-674.
    32. Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM. F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell,2010,22:606-622.
    33. Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM, Kay SA, Imaizumi T. F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control Arabidopsis Clock Progression. Plant Cell,2010, 22:606-622.
    34. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res,2001,125:279-284.
    35. Bou-Torrent J, Martinez-Garcia JF, Luis Garcia-Martinez J, Prat S. Gibberellin A(1) Metabolism Contributes to the control of photoperiod-mediated tuberization in potato. Plos One,2011,6.
    36. Cenzano A, Cantoro R, Racagni G, De Los Santos-Briones C, Hernandez-Sotomayor T, Abdala G Phospholipid and phospholipase changes by jasmonic acid during stolon to tuber transition of potato. Plant Growth Regul,2008,56:307-316.
    37. Cenzano A, Vigliocco A, Kraus T, Abdala G Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Ann Bot,2003,91: 915-919.
    38. Chapman H. Tuberization in the potato plant. Physiolplantarum,1958,11:215-224.
    39. Charles G, Rossignol L, Rossignol M. A synchronous model of development and tuberization in potato plants cultured in vitro without adding any growth regulators. Acta Bot Gallica,1995,142:289-300.
    40. Charles G, Rossignol M. Environmental effects on potato plants in vitro. J plant physiol,1992,139:708-713.
    41. Chatterjee M, Banerjee AK, Hannapel DJ. A BELL1-like gene of potato is light activated and wound inducible (1 C OA). Plant Physiol,2007,145:1435-1443.
    42. Chen H, Banerjee AK, Hannapel DJ. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20oxl. Plant J,2004,38: 276-284.
    43. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Sci Signal,2004,303:2022.
    44. Chen Y, Peumans WJ, Hause B, Bras J, Kumar M, Proost P, Barre A, Rouge P, Van Damme EJM. Jasmonate methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide-binding lectin in tobacco leaves. Faseb J,2002,16:905.
    45. Christie JM. Phototropin blue-light receptors. In Ann Rev Plant Biolo,2007,21-45.
    46. Coleman WK, Donnelly DJ, Coleman SE. Potato microtubers as research tools. A review. Am J Potato Res,2001,78:47-55.
    47. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO. a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21:3674-3676.
    48. De Paolis A, Sabatini S, De Pascalis L, Costantino P, Capone I. A rolB regulatory factor belongs to a new class of single zinc finger plant proteins. Plant J,1996,10: 215-223.
    49. Demarsy E, Fankhauser C. Higher plants use LOV to perceive blue light. Curr Opin Plant Biol,2009,12:69-74.
    50. Deryabin AN, Yur'eva NO. Synchronization of Tuber Formation in Potato Grown In Vitro by Cell Division Synchronization in Axillary Meristems of Stem Explants. Russ J Plant Physl,2008,55:829-833.
    51. Dinant S, Clark AM, Zhu YM, Vilaine F, Palauqui JC, Kusiak C, Thompson GA. Diversity of the superfamily of phloem lectins (Phloem protein 2) in angiosperms. Plant physiol,2003,131:114-128.
    52. Dinesen IG Technical Guideline on Seed Potato Micro-Propagation and Multiplication. Food & Agriculture Org,1986.
    53. Donnelly DJ, Coleman WK, Coleman SE. Potato microtuber production and performance. A review. Am J Potato Res,2003,80:103-115.
    54. Drobyazina PE, Khavkin EE. Differential expression of two CONSTANS-LIKE1 genes in potato. Russ J Plant Physl,2009,56:264-267.
    55. Ebine K, Uemura T, Nakano A, Ueda T. Flowering Time Modulation by a Vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana. Plos One,2012,7.
    56. Eschen-Lippold L, Lubken T, Smolka U, Rosahl S. Characterization of potato plants with reduced StSYRl expression. Plant signal behav,2012,7:559-562.
    57. Ewing E, Struik P. Tuber formation in potato, induction, initiation, and growth. Hortic Rev,1992,14:89-197.
    58. Ewing EE. Shoot, Stolon, and Tuber Formation on Potato (Solanum tuberosum L.) Cuttings in Response to Photoperiod. Plantphysiol,1978,61:348-353.
    59. Feng L, Liu H, Liu Y, Lu Z, Guo G, Guo S, Zheng H, Gao Y, Cheng S, Wang J, Zhang K, Zhang Y. Power of Deep Sequencing and Agilent Microarray for Gene Expression Profiling Study. Mol Biotechnol,2010,45:101-110.
    60. Fernie AR, Willmitzer L. Molecular and Biochemical Triggers of Potato Tuber Development. Plant physiol,2001,127:1459-1465.
    61. Fixen KR, Thomas SC, Tong CBS. Blue Light Inhibition of Tuberization in a Day-Neutral Potato. J Plant Growth Regul,2012,31:342-350.
    62. Fornara F, Panigrahi K, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev cell,2009, 17:75-86.
    63. Fujiwara K, Kozai T.15. Physical microenvironment and its effects. Automation and Environmental Control in Plant Tissue Culture,1995.319.
    64. Garner N, Blake J. The induction and development of potato microtubers in vitroon media free of growth regulating substances. Ann Bot,1989,63:663-674.
    65. Gaur VS, Singh US, Kumar A. Transcriptional profiling and in silico analysis of Dof transcription factor gene family for understanding their regulation during seed development of rice Oryza sativa L. Mol Biol Rep,2011,38:2827-2848.
    66. Giakountis A, Coupland G Phloem transport of flowering signals. Curr Opin Plant Biol,2008,11:687-694.
    67. Giordanengo P, Song B, Guo X, Liu J, Xie C. Potato industry in China. Cah Agrics, 2008,17:343-348.
    68. Gomez G, Pallas V. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J Virol,2004, 78:10104-10110.
    69. Gomez G, Torres H, Pallas V. Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J,2005,41:107-116.
    70. Gonzalez-Schain ND, Diaz-Mendoza M, Zurczak M, Suarez-Lopez P. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J,2012.
    71. Gonzalez-Schain ND, Diaz-Mendoza M, Zurczak M, Suarez-Lopez P. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J,2012,70:678-690.
    72. Gregory L. Physiology of tuberization in plants. Handbuch Pflanzenphysiologie, 1965.1328-1354.
    73. Gregory LE. Some factors for tuberization in the potato plant. Am J Bot,1956: 281-288.
    74. Guo Y, Qin G, Gu H, Qu L-J. Dof5.6/HCA2, a Dof Transcription Factor Gene, Regulates Interfascicular Cambium Formation and Vascular Tissue Development in Arabidopsis. Plant Cell,2009,21:3518-3534.
    75. Hadjittofi C, Coran AG, Mogilner JG, Pollak Y, Matter I, Sukhotnik I. Dietary supplementation with vitamin D stimulates intestinal epithelial cell turnover after massive small bowel resection in rats. Pediatr Surg Int,2013,29:41-50.
    76. Hannapel DJ. A Model System of Development Regulated by the Long-distance Transport of mRNA. JIntegr Plant Biol,2010,52:40-52.
    77. Hart JW. Light and plant growth. Unwin Hyman Ltd.; 1988.
    78. Heins R, Wilkins H. The influence of node number, light source, and time of irradiation during darkness on lateral branching and cutting production in'Bright Golden Anne'chrysanthemum. JAm Soc Hortic Sci,1979,104.
    79. Heyer AG, Mozley D, Landschutze V, Thomas B, Gatz C. Function of phytochrome A in potato plants as revealed through the study of transgenic plants. Plant physiol, 1995,109:53-61.
    80. Higuchi Y, Sumitomo K, Oda A, Shimizu H, Hisamatsu T. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. J Plant physiol,2012, 169:1789-1796.
    81. Imaizumi T. Arabidopsis circadian clock and photoperiodism:time to think about location. Curr Opin Plant Biol,2010,13:83-89.
    82. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Sci Signal,2005, 309:293.
    83. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science,2005,309: 293-297.
    84. Inui H, Ogura Y, Kiyosue T. Overexpression of Arabidopsis thaliana LOV KELCH REPEAT PROTEIN 2 promotes tuberization in potato (Solanum tuberosum cv. May Queen). FEBS Lett,2010,584:2393-2396.
    85. Ishida BK, Snyder Jr GW, Belknap WR. The use of in vitro-grown microtuber discs inAgrobacterium-mediated transformation of Russet Burbank and Lemhi Russet potatoes. Plant Cell Rep,1989,8:325-328.
    86. Jackson SD. Plant responses to photoperiod. New Phytol,2009,181:517-531.
    87. Jackson SD, Heyer A, Dietze J, Prat S. Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J,1996,9:159-166.
    88. Jackson SD, James P, Prat S, Thomas B. Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant physiol,1998,117:29.
    89. Jackson SD, James PE, Carrera E, Prat S, Thomas B. Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B. Plant physiol, 2000,124:423-430.
    90. Jackson SD, Sonnewald U, Willmitzer L. Characterisation of a gene that is expressed in leaves at higher levels upon tuberisation in potato and upon flowering in tobacco. Planta,1993,189:593-596.
    91. Jarillo JA, Capel J, Tang R-H, Yang H-Q, Alonso JM, Ecker JR, Cashmore AR. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 2001,410:487-490.
    92. Johnson E, Bradley M, Harberd NP, Whitelam GC. Photoresponses of light-grown phyA mutants of Arabidopsis (phytochrome A is required for the perception of daylength extensions). Plant physiol,1994,105:141-149.
    93. Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell,2007,19:2736-2748.
    94. Kang HG, Foley RC, Onate-Sanchez L, Lin CGT, Singh KB. Target genes for OBP3, a Dof transcription factor, include novel basic helix-loop-helix domain proteins inducible by salicylic acid. Plant J,2003,35:362-372.
    95. Kasahara M, Torii M, Fujita A, Tainaka K. FMN Binding and Photochemical Properties of Plant Putative Photoreceptors Containing Two LOV Domains, LOV/LOV Proteins. JBiol Chem,2010,285:34765-34772.
    96. Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato Y, Imaizumi T, Kadota A, Wada M. Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature,2003,421:287-290.
    97. Kazan K, Manners JM. The interplay between light and jasmonate signalling during defence and development. J Exp Bot,2011,62:4087-4100.
    98. Kim HS, Kim SJ, Abbasi N, Bressan RA, Yun DJ, Yoo SD, Kwon SY, Choi SB. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis. Plant J,2010,64:524-535.
    99. Kim S-J, Brandizzi F. News and Views into the SNARE Complexity in Arabidopsis. Front Plant Sci,2012,3:28-28.
    100.Kim W-Y, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature,2007,449:356-360.
    lOl.Kloosterman B, Abelenda JA, Gomez MdMC, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S, Visser RGF, Bachem CWB. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature,2013,495:246-250.
    102.Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Prat S, Visser RGF, Bachem CWB. StGA2oxl is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J,2007,52:362-373.
    103.Kloosterman B, Vorst O, Hall RD, Visser RGF, Bachem CW. Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol J, 2005,3:505-519.
    104.Kobayashi Y, Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev,2007,21:2371-2384.
    105.Koda Y, Kikuta Y, Tazaki H, Tsujino Y, Sakamura S, Yoshihara T. Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry, 1991,30:1435-1438.
    106.Konishi M, Yanagisawa S. Sequential activation of two Dof transcription factor gene promoters during vascular development in Arabidopsis thaliana. Plant physiol Biochem,2007,45:623-629.
    107.Kozai T, Koyama Y, Watanabe I. Multiplication of potato plantlets in vitro with sugar free medium under high photosynthetic photon flux. Acta Hort (ISHS),1988,230: 121-128.
    108.Kuhn C. The Sucrose Transporter StSUT1 Localizes to Sieve Elements in Potato Tuber Phloem and Influences Tuber Physiology and Development. Plant physiol, 2003,131:102-113.
    109.Kumimoto RW, Zhang Y, Siefers N, Holt BF. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J,2010,63:379-391.
    110.Lacape J-M, Claverie M, Vidal RO, Carazzolle MF, Guimaraes Pereira GA, Ruiz M, Pre M, Llewellyn D, Al-Ghazi Y, Jacobs J, Dereeper A, Huguet S, Giband M, Lanaud C. Deep Sequencing Reveals Differences in the Transcriptional Landscapes of Fibers from Two Cultivated Species of Cotton. Plos One,2012,7.
    111.Lannoo N, Peumans WJ, Van Pamel E, Alvarez R, Xiong T-C, Hause G, Mazars C, Van Damme EJM. Localization and in vitro binding studies suggest that the cytoplasmic/nuclear tobacco lectin can interact in situ with high-mannose and complex N-glycans. FEBS Lett,2006,580:6329-6337.
    112.Lauter N, Kampani A, Carlson S, Goebel M, Moose SP. microRNA172 down-regulates glossy 15 to promote vegetative phase change in maize. Proc Natio Acad Sci,2005,102:9412-9417.
    113.Leon AJ, Banner D, Xu L, Ran L, Peng Z, Yi K, Chen C, Xu F, Huang J, Zhao Z, Lin Z, Huang SHS, Fang Y, Kelvin AA, Ross TM, Farooqui A, Kelvin DJ. Sequencing, Annotation, and Characterization of the Influenza Ferret Infectome. J Virol,2013,87: 1957-1966.
    114.Li H, Tang C, Xu Z. The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Sci Hortic,2013,150:17-124.
    115.Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J. SOAP2. an improved ultrafast tool for short read alignment. Bioinformatics 2009,25:1966-1967.
    116.Liu J, Xie C. The Mechanism of Potato(Solanum tuberosum L.) Tuber Development and Related Gene Expression. CHINESE BULLETIN OF BOTANY,2001,18: 531-539.
    117.Luna R, Gaillard H, Gonzalez-Aguilera C, Aguilera A. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma,2008,117: 319-331.
    118.Martinez-Garcia JF, Garcia-Martinez JL, Bou J, Prat S. The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Regul,2001,20:377-386.
    119.Martinez-Garcia JF, Virgos-Soler A, Prat S. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natio Acad Sci,2002,99:15211-15216.
    120.Martin A, Adam H, Diaz-Mendoza M, Zurczak M, Gonzalez-Schain ND, Suarez-Lopez P. Graft-transmissible induction of potato tuberization by the micro RNA miR172. Development,2009,136:2873-2881.
    121.Michaels SD. Flowering time regulation produces much fruit. Curr Opin Plant Biol, 2009,12:75-80.
    122.Mockler T, Yang H, Yu X, Parikh D, Cheng Y-c, Dolan S, Lin C. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natio Acad Sci,2003, 100:2140-2145.
    123.Moreno-Risueno MA, Martinez M, Vicente-Carbajosa J, Carbonero P. The family of DOF transcription factors:from green unicellular algae to vascular plants. Mol Genet Genomics,2007,277:379-390.
    124.Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA. Next-generation tag sequencing for cancer gene expression profiling. Genome Res,2009,19:1825-1835.
    125.Mouille B, Charrondiere UR, Burlingame B, Lutaladio N. Nutrient composition of the potato.2008.
    126.Nam K-H, Kong F, Matsuura H, Takahashi K, Nabeta K, Yoshihara T. Temperature regulates tuber-inducing lipoxygenase-derived metabolites in potato(Solanum tuberosum). J Plant physiol,2008,165:233-238.
    127.Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature,2011.
    128.Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature,2011,478:119-132.
    129.Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell,2000,101: 331-340.
    130.Nitsch J. Existence d'un stimulus photoperiodique non-specifique capable de provoquer la tuberisation chez Helianthus tuberosus L. Bull Soc Bot Fr,1965,112: 333-340.
    131.Niu G, Hayashi M, Kozai T. Simulation of the Time Courses of CO2 Concentration in the Culture Vessel and Net Photosynthetic Rates of Potato Plantlets Cultured Photoautotrophically and Photomixotrophically in Vitro under Different Lighting Cycles. HortScience,1997,32:515-515.
    132.Ohtomo I, Ueda H, Shimada T, Nishiyama C, Komoto Y, Hara-Nishimura I, Takahashi T. Identification of an allele of VAM3/SYP22 that confers a semi-dwarf phenotype in Arabidopsis thaliana. Plant cellphysiol,2005,46:1358-1365.
    133.Osmond C. Photorespiration and photoinhibition. some implications for the energetics of photosynthesis. BBA-Rev Bioenergetics,1981,639:77-98.
    134.Park DH, Lim PO, Kim JS, Cho DS, Hong SH, Nam HG. The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. Plant J,2003,34:161-171.
    135.Perl A, Aviv D, Willmitzer L, Galun E. In vitro tuberization in transgenic potatoes harboring B-glucoronidase linked to a patatin promoter, effects of sucrose levels and photoperiods. Plant Sci,1991,73:87-95.
    136.Plesch G, Ehrhardt T, Mueller-Roeber B. Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J, 2001,28:455-464.
    137.Pruski K, Astatkie T, Mirza M, Nowak J. Photoautotrophic micropropagation of Russet Burbank potato. Plant Cell Tiss Org,2002,69:197-200.
    138.Reed JW, Foster KR, Morgan PW, Chory J. Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plantphysiol,1996,112:337-342.
    139.Rodriguez-Falc6n M, Bou J, Prat S. Seasonal control of tuberization in potato. conserved elements with the flowering response. Annu Rev Plant Biol,2006,57: 151-180.
    140.Rodriguez-Falcon M, Bou J, Prat S. Seasonal control of tuberization in potato. Conserved elements with the flowering response. Annplant biolo,2006:151-180.
    141.Ronning CM, Stegalkina SS, Ascenzi RA, Bougri O, Hart AL, Utterbach TR, Vanaken SE, Riedmuller SB, White JA, Cho J, Pertea GM, Lee Y, Karamycheva S, Sultana R, Tsai J, Quackenbush J, Griffiths HM, Restrepo S, Smart CD, Fry WE, et al.. Comparative analyses of potato expressed sequence tag libraries. Plant physiol, 2003,131:419-429.
    142.Roumeliotis E, Visser RGF, Bachem CWB. A crosstalk of auxin and GA during tuber development. Plant Signal Behav,2012,7:1360-1363.
    143.Rubio-Somoza I, Martinez M, Diaz I, Carbonero P. HvMCB1, a R1MYB transcription factor from barley with antagonistic regulatory functions during seed development and germination. Plant J,2006,45:17-30.
    144.Saebo A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tiss Org,1995,41:177-185.
    145.Sakatani M, Bonilla L, Dobbs KB, Block J, Ozawa M, Shanker S, Yao J, Hansen PJ. Changes in the transcriptome of morula-stage bovine embryos caused by heat shock. relationship to developmental acquisition of thermotolerance. Reprod Biol Endocrin, 2013,11.
    146.Sarkar D. The signal transduction pathways controlling in planta tuberization in potato, an emerging synthesis. Plant Cell Rep,2007,27:1-8.
    147.Sarkar D. Photoperiodic inhibition of potato tuberization:an update. Plant Growth Regul,2010,62:117-125.
    148.Sawa M, Nusinow DA, Kay SA, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Sci Signal,2007, 318:261.
    149.Schouppe D, Ghesquiere B, Menschaert G, De Vos WH, Bourque S, Trooskens G, Proost P, Gevaert K, Van Damme EJM. Interaction of the Tobacco Lectin with Histone Proteins. Plant physiol,2011,155:1091-1102.
    150.Seabrook JE, Coleman S, Levy D. Effect of photoperiod on in vitro tuberization of potato (Solanum tuberosum L.). Plant Cell Bss Org,1993,34:43-51.
    151.Seabrook JE, Douglass LK. Prevention of stem growth inhibition and alleviation of intumescence formation in potato plantletsin vitro by yellow filters. Am J Potato Res, 1998,75:219-224.
    152.Seabrook JEA. Light effects on the growth and morphogenesis of potato(Solarium tuberosum) in vitro. A review. Am J Potato Res,2005,82:353-367.
    153.Sergeeva LI, Machackova I, Konstantinova TN, Golyanovskaya SA, Eder J, Zaltsman 00, Hanus J, Aksenova NP. Morphogenesis of potato plants in vitro.Ⅱ. Endogenous levels, distribution, and metabolism of IAA and cytokinins. J Plant Growth Regul,1994,13:147-152.
    154.Shaw LM, McIntyre CL, Gresshoff PM, Xue G-P. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomic,2009,9:485-498.
    155.Sheerman S, Bevan M. A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors. Plant Cell Rep,1988,7:13-16.
    156.Shirakawa M, Ueda H, Shimada T, Koumoto Y, Shimada TL, Kondo M, Takahashi T, Okuyama Y, Nishimura M, Hara-Nishimura I. Arabidopsis Qa-SNARE SYP2 proteins localized to different subcellular regions function redundantly in vacuolar protein sorting and plant development. Plant J,2010,64:924-935.
    157.Shirakawa M, Ueda H, Shimada T, Nishiyama C, Hara-Nishimura I. Vacuolar SNAREs Function in the Formation of the Leaf Vascular Network by Regulating Auxin Distribution. Plant cell physiol,2009,50:1319-1328.
    158.Skirycz A, Radziejwoski A, Busch W, Hannah MA, Czeszejko J, Kwasniewski M, Zanor M-I, Lohmann JU, De Veylder L, Witt I, Mueller-Roeber B. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. Plant J,2008,56:779-792.
    159.Sohn HB, Lee HY, Seo JS, Jung C, Jeon JH, Kim J-H, Lee YW, Lee JS, Cheong J-J, Do Choi Y. Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato. Plant Biotechnol Rep,2011,5:27-34.
    160.Somers DE, Schultz TF, Milnamow M, Kay SA. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell,2000,101:319-329.
    161.Steffen KL, Palta JP. Growth and development temperature influences level of tolerance to high light stress. Plant physiol,1989,91:1558-1561.
    162.Svyatyna K, Riemann M. Light-dependent regulation of the jasmonate pathway. Protoplasma,2012,249 Suppl 2:S137-145.
    163.t Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, de Menezes RX, Boer JM, van Ommen G-JB, den Dunnen JT. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res,2008,36.
    164.Takase T, Nishiyama Y, Tanihigashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J,2011,67:608-621.
    165.Tanaka M, Takahata Y, Nakatani M. Analysis of genes developmentally regulated during storage root formation of sweet potato. J Plant physiol,2005,162:91-102.
    166.Tanaka M, Takahata Y, Nakayama H, Nakatani M, Tahara M. Altered carbohydrate metabolism in the storage roots of sweetpotato plants overexpressing the SRF1 gene, which encodes a Dof zinc finger transcription factor. Planta,2009,230:737-746.
    167.Tantau H. Technical and energetic aspects of artificial lighting. Acta Horticulturae, 418; 1994.177-188.
    168.Tibbitts TW, Bennett SM, Cao W. Control of continuous irradiation injury on potatoes with daily temperature cycling. Plant physiol,1990,93:409-411.
    169.Tibbitts TW, Bennett SM, Cao W. Control of continuous irradiation injury on potatoes with daily temperature cycling. Plant physiol,1990,93:409-411.
    170.Turck F, Fornara F, Coupland G Regulation and identity of florigen. FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol,2008,59:573-594.
    171.Van Damme EJM, Barre A, Rouge P, Peumans WJ. Cytoplasmic/nuclear plant lectins. a new story. Trends in Plant Sci,2004,9:484-489.
    172.van den Berg JH, Ewing EE. Jasmonates and their role in plant growth and development, with special reference to the control of potato tuberization:A review. Am J Potato Res,1991,68:781-794.
    173.Veitch NJ, Johnson PCD, Trivedi U, Terry S, Wildridge D, MacLeod A. Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genomics,2010,11:124.
    174.Vince-Prue D. Photomorphogenesis and plant development. In Physiology, growth and development of plants in culture. Springer; 1994.19-30.
    175.Visser RG, Vreugdenhil D, Hendriks T, Jacobsen E. Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solarium tuberosum). Physiolplant,1994,90:285-292.
    176.Wang PJ, Hu CY. In vitro mass tuberization and virus-free seed-potato production in Taiwan. J Am Potato,1982,59.33-37.
    177.Wang P-j, Hu C-y, Li P. Potato tissue culture and its applications in agriculture. Potato physiol,1985:503-577.
    178.Wang XL, Bao YX, Liu JS, Shen JY, Wang SQ. Effects of photoperiod on energy metabolism and thermogenesis in the Melano-bellied oriental vole (Eothenomys melanogaster). Afr JBiotechnol,2010,9:8998-9006.
    179.Wang Z, Dong D, Ru B, Young RL, Han N, Guo T, Zhang S. Digital gene expression tag profiling of bat digits provides robust candidates contributing to wing formation. BMC Genomics,2010,11:619.
    180.Ward JM, Cufr CA, Denzel MA, Neff MM. The dof transcription factor OBP3 modulates phytochrome and cryptochroome signaling in Arabidopsis. Plant Cell, 2005,17.475-485.
    181. Wei M, Song M, Fan S, Yu S. Transcriptomic analysis of differentially expressed genes during anther development in genetic male sterile and wild type cotton by digital gene-expression profiling. BMC Genomics,2013,14.
    182.Wei PC, Tan F, Gao XQ, Zhang XQ, Wang GQ, Xu H, Li LJ, Chen J, Wang XC. Overexpression of AtDOF4.7, an Arabidopsis DOF Family Transcription Factor, Induces Floral Organ Abscission Deficiency in Arabidopsis. Plant physiol,2010, 153.1031-1045.
    183.Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, et al.. Genome sequence and analysis of the tuber crop potato. Nature,2011,475.189-U194.
    184.Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant physiol,1998,117:575-584.
    185.Yanagisawa S. Dofl and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J,2000,21:281-288.
    186.Yanagisawa S. Dof domain proteins. Plant-specific transcription factors associated with diverse phenomena unique to plants. Plant cell physiol 2004,45:386-391.
    187.Yang J, Yang MF, Zhang WP, Chen F, Shen SH. A putative flowering-time-related Dof transcription factor gene, JcDof3, is controlled by the circadian clock in Jatropha curcas. Plant Sci,2011,181:667-674.
    188. Yang J, Yang MF, Wang D, Chen F, Shen SH. JcDofl, a Dof transcription factor gene, is associated with the light-mediated circadian clock in Jatropha curcas. Physiol plant,2010,139:324-334.
    189.Yanovsky MJ, Izaguirre M, Wagmaister JA, Gatz C, Jackson SD, Thomas B, Casal JJ. Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J,2000,23:223-232.
    190.Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J. WEGO:a web tool for plotting GO annotations. Nucleic Acids Res,2006,34: W293-W297.
    191.Yu JW, Choi J-S, Upadhyaya CP, Kwon SO, Gururani MA, Nookaraju A, Nam J-H, Choi CW, Kim SI, Ajappala H, Kim HS, Jeon JH, Park SW. Dynamic proteomic profile of potato tuber during its in vitro development Plant Sci,2012,195:1-9.
    192.Yu Y, Lashbrook CC, Hannapel DJ. Tissue integrity and RNA quality of laser microdissected phloem of potato. Planta,2007,226:797-803.
    193.Zeevaart JA. Leaf-produced floral signals. Curr Opin Plant Biol,2008,11:541-547.
    194.Zhang X, Hao L, Meng L, Liu M, Zhao L, Hu F, Ding C, Wang Y, He B, Pan Y, Fang W, Chen J, Hu S, Jia M. Digital Gene Expression Tag Profiling Analysis of the Gene Expression Patterns Regulating the Early Stage of Mouse Spermatogenesis. Plos One, 2013,8.
    195.Zhou H-X, Rivas G, Minton AP. Macromolecular crowding and confinement. Biochemical, biophysical, and potential physiological consequences. Ann Rev Bioph, 2008:375-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700