用户名: 密码: 验证码:
长期不同施肥对玉米叶片光合作用及光系统功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高玉米产量是我国解决粮食安全问题的主要途径,施肥是提高玉米单产最为有效的途径,研究施肥对玉米光合机理影响意义深远。玉米的长期定位肥料试验定向培育了土壤质量和生产功能特点显著不同的农田生态系统,为研究长期不同施肥模式对土壤养分、玉米生产能力、肥料作用机理以及选择科学施肥模式提供了最优的试验平台;光合速率和光合效率测定设备,以及光响应曲线、快速叶绿素荧光诱导动力学曲线等数据分析技术为探明作物的光合性能提供了技术基础。本研究以玉米长期定位试验为平台,利用光合性能测定、光合效率测定、OJIP曲线分析以及酶活性测定等技术手段,研究长期施用有机肥、氮肥、磷肥、钾肥对玉米穗位叶叶片气体交换性能、光响应特性、光系统功能、抗衰老酶活性等的影响,并结合土壤肥力、玉米产量、生育指标、叶片养分含量进行综合分析,探索长期施肥影响作物产量的光合与衰老机理,得出如下结论:
     (1)长期施用有机肥可以显著改善土壤养分状况,全面改善玉米植株生长及叶片营养状况,增产效果最显著;综合提高叶绿素含量和光合性能,提高玉米叶片对强光的利用能力,降低灌浆后期生理活性,提高PSⅠ反应中心的最大氧化还原能力,提高CAT活性。
     (2)长期施用氮肥可引起土壤酸化,提高土壤有机质、氮素、有效磷钾含量,显著改善玉米生长和叶片营养状况,提高玉米经济产量;提高叶绿素含量和光合性能,提高对强光的利用能力,改善叶片生理活性,改善PSⅡ整个电子传递链的性能和受体侧电子传递能力,提高SOD、POD活性。氮肥对光合性能以及产量的影响较磷、钾肥明显,主要因为氮肥提高叶绿素含量、增强对强光的利用效率;但施氮过量可以引起较严重的光合功能损伤,导致生育后期强光抑制,造成产量降低。
     (3)长期施用磷肥显著提高土壤全磷、有效磷含量,显著提高叶绿素含量,明显改善灌浆后期的光合性能,降低灌浆后期的光抑制,增强对弱光的利用能力,提高玉米的耐阴性,保持穗位叶生育后期较高的生理活性,延长有效光合持续期,提高PSⅡ电子传递链的性能,改善PSⅠ反应中心氧化还原能力,提高POD、CAT。磷肥增强对弱光的利用效率,降低叶片强光抑制,延长有效光合持续期是增产的主要原因。
     (4)长期施用钾肥显著提高土壤全钾、速效钾含量,改善叶片气孔调节能力,略提高强光利用效率,引起生育后期生理活性降低,出现较严重的光抑制,提高PSⅡ电子传递链的性能,引起SOD、CAT活性下降,导致作物早熟。在高量有机肥条件下,施用钾肥对光合的促进作用不显著,甚至对部分光合性能有抑制的作用。
     (5)7种模型对比研究表明,直角双曲线修正模型和二次回归模型在光饱和、非光饱和和光抑制下均能较好地对玉米灌浆期穗位叶光响应曲线进行拟合,拟合的光合参数与实测值相近,拟合的光合参数信息较多,光响应参数求解中可用两种模型求解的平均值作为最终光合参数值。
     (6)随土壤养分含量增加,叶片全磷、全钾含量提高,光和性能得到改善;玉米叶片全氮含量与PSⅡ功能关系密切,而全磷、全钾与PSⅠ功能关系密切;玉米叶片叶绿素含量与光响应参数、光系统功能关系密切,而光合气体交换性能与其他光合指标间无显著相关关系;PSⅡ电子传递性能与叶片POD活性关系密切,SOD活性提高有抑制PSⅠ的氧化还原活性的作用。
Improving corn production is the main way to solve the problem of food security in China. The long-term fertilizer experiment of corn directional cultivated the markedly different soil quality and production function of characteristics in the farmland ecosystem. Therefore it provides an optimal test platform, for the study of soil nutrients, corn production capacity, fertilizer effect mechanism and selection of scientific fertilization mode under long-term different fertilization pattern. Measurement equipment for photosynthetic rate and photosynthetic efficiency, and data analysis techniques for the light response curve, rapid chlorophyll fluorescence induction kinetics curve and PS I absorption curve of820nm light, provided technical basis of proving crop photosynthetic performance.
     With long-term trial corn as the platform, this study using methods such as photosynthetic performance measurement, analysis technology and enzyme activity measurement technology, researched the effect of the long-term application of organic fertilizer, nitrogen fertilizer, phosphate fertilizer, potash fertilizer, on the gas exchange parameters, light response curve, the chlorophyll fluorescence induction kinetics curve, anti-ageing enzyme activity in corn ear leaves. And made a comprehensive analysis of soil fertility and fertilizer rates, maize yield, growth indexes, and leaf nutrient content, to explore the mechanism of photosynthesis and aging for changing crop yield under long-term fertilization. The conclusions is following:
     (1) Long-term application of organic fertilizer could significantly improve the soil nutrient status, improve plant growth status and leaf nutritional status of maize, and the effect of production is the most significant. It could increase the chlorophyll content and photosynthetic performance, improve the highlight utilization in maize leaf, reduce physiological activity in late grouting, improve the biggest REDOX ability in PS I reaction center, improve the activity of CAT.
     (2) Long-term application of nitrogen fertilizer could cause soil acidification, increase soil organic matter, nitrogen, phosphorus, potassium content, improve maize growth and leaf nutrition significantly, improve the corn output, increase the chlorophyll content and photosynthetic performance, improve their ability to the use of highlight, and improve the leaf physiological activity, improve the performance of the electron transport chain in PS II, improve the activity of SOD and POD. The effect of Nitrogen fertilizer on photosynthetic characteristics and yield was more obvious than p and k fertilizers, it was mainly because of nitrogenous fertilizer can increase chlorophyll content and the utilization efficiency of highlight. But excessive nitrogen could cause serious injure of photosynthetic function, cause strong inhibition in late grouting, reduce the production.
     (3) Long-term use of phosphate fertilizer could improve the soil total phosphorus and available phosphorus content significantly, increase the chlorophyll content, improve the photosynthetic performance obviously in late grouting, reduce the photoinhibition in late grouting, increase the use of weak light, improve Shade-endurance of corn to negative, keep the ear leaf higher physiological activity, extend the effective photosynthetic duration, improve the performance of the electron transport chain in PS II, improve the REDOX ability of PS I reaction center, improve the activity of POD, CAT. The main reason for the increase production of phosphate was that it could strengthen the utilization efficiency of weak light, reduce strong light inhibition, extend the effective photosynthetic duration.
     (4) Long-term use of K fertilizer could increase soil total potassium, available potassium content significantly, improve the Pn, reduce the Gs, Ci, Tr, improve the stomata adjustment ability, improve the utilization efficiency of highlight, due to physiological activity decreased in late grouting, appear serious photoinhibition, improve the performance of the electron transfer chain in PS II and the electron transfer ability on the receptor side, decline the activity of SOD, CAT, lead to crops premature aging (precocity). Under the condition of high amount of organic fertilizer, the effect of K fertilizer on promoting photosynthetic was not significant, even K fertilizer could inhibit part of photosynthetic performance.
     (5) The comparative study on seven kinds of model contrast research showed that the right Angle hyperbolic correction model and quadratic regression model could fit corn light response curve preferably in the light saturation, light unsaturation and light inhibition. The fitting photosynthetic parameters were more, and the photosynthetic parameters of fitting were close to the measured values. And using the average of the two kinds of models as the final solution of photosynthesis parameter values.
     (6) With the soil nutrient content increasing, the maize growth and yield improved, total phosphorus, total potassium content increased. The corn leaf total nitrogen content is closely associated with PSⅡ function, and the relationship between total phosphorus, potassium and PS I function close. The relationship among the corn leaf chlorophyll content and optical response parameters, photosystem function and decay resistance, but has no obvious relation with photosynthetic gas exchange parameters. There was no significant correlation between the photosystem function, anti-aging performance and apparent photosynthesis. The electron transfer performance in PS II was close to leaf POD activity, and the improving of SOD activity could inhibit the action of the PS I activity.
引文
1. 白向历,齐华,刘明,等.2007.玉米抗旱性与生理生化指标关系的研究[J].玉米科学,15(5):79-83.
    2. 鲍士旦.1981.土壤农化分析[M].北京:中国农业出版社.
    3. 曹翠玲,李生秀.2004.氮素形态对作物生理特性及生长的影响[J].华中农业大学学报,05:581-586.
    4. 陈苗.2010.缺钾对山核桃幼苗生理生化特性的影响[D].浙江农林大学.
    5. 陈霞,唐运来,周璐璐,等.2012.铀在小麦幼苗中的积累分布及其对叶片光系统活性的影响[J].西北植物学报,12:2457-2463.
    6. 陈晓璐,李耕,刘鹏,等.2013.6-苄氨基嘌呤(6-BA)对不同氮素水平下玉米叶片衰老过程中光系统II性能的调控效应[J].作物学报,06:1111-1118.
    7. 陈展宇.2008.早稻抗旱解剖结构及其生理特性的研究[D].吉林农业大学.
    8. 东先旺,刘树堂.1999.夏玉米超高产群体光合特性的研究[J].华北农学报,02:36-41.
    9. 董树亭,高荣岐,胡昌浩,等.1997.玉米花粒期群体光合性能与高产潜力研究[J].作物学报,03:318-325.
    10.董志新.2007.不同苜蓿品种光合特性研究[D].西北农林科技大学.
    11.杜伟莉,高杰,胡富亮.2013.玉米叶片光合作用和渗透调节对干旱胁迫的响应[J].作物学报,39(3):530-536.
    12.方保停,邵运辉,岳俊芹,等.2011.冬小麦灌浆后期光响应曲线特征参数及其对施氮量响应[J].西北农业学报,03:52-56.
    13.高晓宁,韩晓日,战秀梅等.2009.长期不同施肥处理对棕壤氮储量的影响[J].植物营养与肥料学报,15(3):567-572.
    14.关义新,林葆,凌碧莹.2000.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报,6(2):152-158.
    15.郭江,郭新宇,王纪华.2005.不同株型玉米光响应曲线的特征参数研究[J].西北植物学报,25(8):1612-1617.
    16.郭胜利,周印东,张文菊,等.2003.长期施用化肥对粮食生产和土壤质量性状的影响,水土保持研究,10(1):16-22.
    17.韩晓日,姜琳琳,王帅,等.2009.不同施肥处理对春玉米穗位叶光合指标的影响[J].沈阳农业大学学报,04:444-448.
    18.韩晓日,马玲玲,王晔青,等.2007.长期定位施肥对棕壤无机磷形态及剖面分布的影响[J].水土保持学报,04:51-55+144.
    19.韩晓日,邹德乙,郭鹏程,等.1996.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用[J].植物营养与肥料学报,01:16-22.
    20.何萍,金继运,林葆等.1998.不同氮、磷、钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,4(2):123-130.
    21.胡昌浩,董树亭,岳寿松,等.1993.高产夏玉米群体光合速率与产量关系的研究[J].作物学报,01:63-69.
    22.户桂敏,王文天,彭少麟.2009.不同氮磷比下入侵种五爪金龙和本地种鸭脚木的竞争表现[J].生态环境学报,18(4):1449-1454.
    23.黄玉茜,韩晓日,杨劲峰,等.2013.连作胁迫对花生叶片防御酶活性及丙二醛含量的影响[J].吉林农业大学学报,06:638-645.
    24.黄玉茜.2011.花生连作障碍的效应及其作用机理研究[D].沈阳农业大学.
    25.姜琳琳,韩晓日,杨劲峰,等.2010.施肥对不同密度型高产玉米品种光合生理特性的影响[J].沈阳农业大学学报,03:265-269.
    26.蒋高明,何维明.1999.一种在野外自然光照条件下快速测定光合作用—光响应曲线的新方法[J].植物学通报,(6):712-718.
    27.焦念元,赵春,宁堂原,等.2008.玉米-花生间作对作物产量和光合作用光响应的影响[J].应用生态学报,19(5):981-985.
    28.柯世省,金则新,李钧敏,等.2002.七子花苗期光合生理生态特性研究[J].武汉植物学研究,20(2):125-130.
    29.李潮海,刘奎,周苏玫,等.2002.不同施肥条件下夏玉米光合对生理生态因子的响应[J].作物学报,02:265-269.
    30.李耕,高辉远,刘鹏,等.2010.氮素对玉米灌浆期叶片光合性能的影响[J].植物营养与肥料学报,16(3):536-542.
    31.李耕,高辉远,赵斌,等.2009.灌浆期干旱胁迫对玉米叶片光系统活性的影响[J].作物学报,35(10):1916-1922.
    32.李耕,张善平,刘鹏,等.2011.镉对玉米叶片光系统活性的影响[J].中国农业科学,44(15):3118-3126.
    33.李耕.2009.保绿型玉米自交系叶片衰老的生理生化差异及氮素调控[D].山东农业大学.
    34.李伟波,张效朴.1998.吉林中部玉米高产施肥与提高化肥利用率研究[J].玉米科学,02:65-68.
    35.李燕宏.2006.蚕豆萎蔫病毒侵染寄主植物的光合生理抑制和细胞病理学研究[D].浙江大学.
    36.林利红,韩晓日,刘小虎,等.2006.长期轮作施肥对棕壤磷素形态及转化的影响[J].土壤通报,01:80-83.
    37.刘恩科,赵秉强,胡昌浩,等.2007.长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响[J].植物营养与肥料学报,05:789-794.
    38.刘红霞,王月,吴正超,等.2006.长期轮作施肥对棕壤钾素动态变化的影响[J].中国农学通报,03:229-233.
    39.刘建栋,于强,金之庆等.2003.冬小麦叶片光合作用农业气象数学模型研究[J].中国农业气象,24(1):22-25.
    40.刘铁东.2012.不同种植方式对玉米光截获及光合特性的影响[D].中国科学院研究生院(东北地理与农业生态研究所).
    41.刘小虎,贾庆宇,安婷婷,等.2005.不同施肥处理对棕壤腐殖酸组成和性质的影响[J].土壤通报,03:328-332.
    42.刘宇锋,萧浪涛,童建华,等.2005.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报,(8):76-79.
    43.吕双庆.2012.滴灌施肥条件下玉米(Zea mays L.)氮素运筹效应研究[D].中国农业科学院.
    44.米国华,陈范骏,春亮,等.2007.玉米氮高效品种的生物学特征[J].植物营养与肥料学报,13(1):155-159.
    45.聂军,郑圣先,戴平安,等.2005.控释氮肥调控水稻光合功能和叶片衰老的生理基础[J].中国水稻科学,19(3):255-261.
    46.潘瑞炽.2001.植物生理学[M].第4版.北京:高等教育出版社:55-57.
    47.彭海欢,翁晓燕,徐红霞,等.2006.缺钾胁迫对水稻光合特性及光合防御机制的影响[J].中国 水稻科学,06:621-625.
    48.彭海欢.2006.缺钾对水稻叶片光合特性、抗氧化酶的影响及其诱导早衰机制的研究[D].浙江大学.
    49.邵瑞鑫,杨青华,毛建昌,等.2012.氮素水平对旱作不同玉米品种光合性能的影响[J].玉米科学,05:131-134+138.
    50.沈善敏.1984.国外的长期肥料试验(二)[J].土壤通报,03:134-138.
    51.沈善敏.1984.国外的长期肥料试验(一)[J].土壤通报,02:85-91.
    52.沈善敏.1995.长期土壤肥力试验的科学价值[J].植物营养与肥料学报,01:1-9.
    53.史吉平,张夫道,林葆.2002.长期定位施肥对土壤腐殖质理化性质的影响[J].中国农业科学,02:174-180.
    54.孙红春,李存东,周彦珍.2005.不同氮素水平对棉花功能叶生理特性、植株性状及产量构成的影响[J].河北农业大学学报,06:9-14.
    55.孙骏威,杨勇,蒋德安.2004.水分亏缺下水稻的光化学和抗氧化应答[J].浙江大学学报(农业与生命科学版),03:44-50.
    56.孙骏威.2004.水稻根系、光合和抗氧化酶对干旱胁迫的反应[D].浙江大学.
    57.孙丽君.2011.不同环境条件下罗布麻和白麻光合特性研究[D].新疆大学.
    58.孙瑞莲,赵秉强,朱鲁生,等.2003.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,9(4):406-410.
    59.谭凤梧.1989.玉米叶片生长发育规律及其功能的研究[J].沈阳农业大学学报,01:30-34.
    60.王成己.2009.施肥和耕作长期试验下农田土壤有机碳及作物生产力变化的统计研究[D].南京农业大学.
    61.王冬梅,韩晓日,王春枝,等.2005.长期施肥对棕壤主要养分生物有效性的影响[J].沈阳农业大学学报,05:575-579.
    62.王玲莉,娄翼来,石元亮,等.2008.长期施肥对土壤活性有机碳指标的影响[J].土壤通报,04:752-755.
    63.王帅,杨劲峰,韩晓日等.2008.不同施肥处理对旱作春玉米光合特性的影响[J].中国土壤与肥料,(6):23-27.
    64.王伟.2010.中山杉无性系幼苗耐盐特性及机理研究[D].南京林业大学.
    65.王晓磊.2012.低钾下不同耐性玉米钾素积累及其延缓衰老的生理特性[D].沈阳农业大学.
    66.王秀伟,毛子军.2009.7个光响应曲线模型对不同植物种的实用性[J].植物研究,01:43-48.
    67.王旭东,张一平,姚永斌.1997.长期不同施肥对土壤腐殖质性质及存在形态的影响[J].陕西农业科学,02:9-11.
    68.王晔青,韩晓日,周崇俊,等.2007.长期施肥棕壤微生物量磷状况及其影响因素[J].安徽农业科学,18:5496-5497+5501.
    69.夏江宝.2007.北方主要木质藤本植物光合效率及其对水分与光照的响应[D].山东农业大学.
    70.谢芳,韩晓日,杨劲峰,等.2008.长期施肥对棕壤微生物量碳和水溶性有机碳的影响[J].农业科技与装备,03:10-13.
    71.许大全.2002.光合作用效率[M].上海:上海科技出版社.
    72.徐玲玲,张宪洲,石培礼,等.2004.青藏高原高寒草甸生态系统表观量子产额和表观最大光合速率的确定[J].中国科学D辑,34:125-130.
    73.徐明岗,于荣,孙小凤,等.2006.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,12(4):459-465.
    74.闫小红,尹建华,段世华,等.2013.四种水稻品种的光合光响应曲线及其模型拟合[J].生态学杂志,03:604-610.
    75.杨玉画,褚清河,杜慧玲.2004.施肥比例及施肥量对玉米吸肥的影响及增产机理[J].山西农业科学,04:33-36.
    76.叶子飘,康华靖.2012.植物光响应修正模型中系数的生物学意义研究[J].扬州大学学报(农业与生命科学版)33(2):51-57.
    77.叶子飘,李进省.2010.光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J].井冈山大学学报(自然科学版),31(3):38-44.
    78.叶子飘,于强.2008.光合作用光响应模型的比较[J].植物生态学报,32(6):1356-1361.
    79.叶子飘,于强.2007.一个光合作用光响应新模型与传统模型的比较[J].沈阳农业大学学报,38(6):771-775.
    80.于强,任保华.1998.C3植物光合作用日变化的模拟[J].大气科学,22(6):867-880.
    81.宇万太,姜子绍,马强,等.2009.不同施肥制度对作物产量及土壤磷素肥力的影响[J].中国生态农业学报,05:885-889.
    82.战秀梅,韩晓日,杨劲峰,等.2007.不同氮、磷、钾肥用量对玉米源、库干物质积累动态变化的影响[J].土壤通报,03:495-499.
    83.战秀梅,韩晓日,杨劲峰,等.2007.不同施肥处理对玉米生育后期叶片保护酶活性及膜脂过氧化作用的影响[J].玉米科学,01:123-127.
    84.张福锁,米国华,刘建安.1997.玉米氮效率遗传改良及其应用[J].农业生物技术学报,5(2):112-117.
    85.张付申,马爱霞,胡定宇.1997.长期施肥对褐土和黄绵土腐殖质结合形态影响及与肥力的关系[J].华北农学报,03:89-90+92-94.
    86.张立新,李生秀.2009.长期水分胁迫下氮、钾对夏玉米叶片光合特性的影响[J].植物营养与肥料学报,01:82-90.
    87.张弥,吴家兵,关德新,等.2006.长白山阔叶红松林主要树种光合作用的光响应曲线[J].应用生态学报,17(9):1575-1578.
    88.张仁和,薛吉全,浦军.2011.干旱胁迫对玉米苗期植株生长和光合特性的影响[J].作物学报,37(3):521-528.
    89.张守仁.1999.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,04:444-448.
    90.张爽.2007.不同光照强度处理对烟草花叶病毒感染烟草叶片光合基因表达的影响[D].四川大学.
    91.张征坤.2012.土壤水分对不同树种光合作用日动态过程的影响[D].山东农业大学.
    92.张志军,刘文国,张建新,等.2004.吉林省耐密型玉米育种现状及选育途径初探[J].玉米科学,02:34-36+41.
    93.张中峰,黄玉清,莫凌,等.2009.岩溶植物光合光响应曲线的两种拟合模型比较[J].武汉植物学研究,27(3):340-344.
    94.张中峰,黄玉清,莫凌,等.2009.岩溶区4种石山植物光合作用的光响应[J].西北农学院学报,24(1):44-48.
    95.赵可夫.1981.玉米抽雄后不同叶位叶对籽粒产量的影响及其光合性能[J].作物学报,04:259-266.
    96.赵立勇,韩晓日,杨劲峰,等.2008.长期定位施肥对作物产量及土壤有效养分的影响[J].杂粮作物,01:45-48.
    97.赵燕.2010.毛白杨杂种无性系苗木施肥效应研究[D].北京林业大学.
    98.郑丕尧.1992.作物生理学导论[M].北京:北京农业大学出版社.
    99.钟楚,朱勇.2013.几种光合作用光响应模型对烟草的适用性分析[J].中国农业气象,34(1):74-80.
    100.周玉梅,韩士杰,张军辉,等.2002.不同CO2浓度下长白山3种树木幼苗的光合特性[J].应用生态学报,(1):41-44.
    101.朱永宁,张玉书,纪瑞鹏,等.2012.干旱胁迫下3种玉米光响应曲线模型的比较[J].沈阳农业大学学报,01:3-7.
    102. Berzsenyi Z, Gyorffy B, LaP D Q.2000. Effeet of crop rotation and fertilization on maize and wheat yields and yield stability in along-term experiment [J]. Journal of A gronomy,13(2-3):225-244.
    103. Boot R G A, Schildwacht P M, Lambers H.1992. Partitioning of nitrogen and biomass at a range of N2 addition rates and their consequences for growth and gas exchange in to perennial grasses from inland dunes [J]. Physiologia Plantarum,86:152-160.
    104. Broadley M R, Escobar-Gutierrez A J, Burns A, et al.2001. Nitrogen limited growth of lettuce is associated with lower stomatal conductance [J]. New Physiologist,152(1):97-106.
    105. Chen H X, Li W J, An S Z, et al.2004. Characterization of PS Ⅱ photochemistry and thermo stability in salt-treated rumex leaves [J]. J. Plant Physiol,161:257-264.
    106. Chen S G, Dai X B, Qiang S, et al.2005. Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum [J]. Plant Phathol.,54:671-677.
    107. Correia O, Diaz Barradas M C.2004. Ecophysiological differencesbetween male and female plants of Pistacia lentiscus L [J]. Plant Ecology,149 (2):131-142.
    108. Dai J, Gao H, Dai Y, et al.2004. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence [J]. Plant Biol.,6(2):171-177.
    109. Damesin C.2003. Respiration and photosynthesis characteristics of current year stems of Fagussy /vatica:from the seasonal pattern to an annual balance [J]. New Phytologist,158:465-475.
    110. Foyer C H, Noctor G.2005. Oxidant and antioxidant signalling in plants:are evaluation of the concept of oxidative stress in a physiological context [J]. Plant Cell Environ,28:1056-1071.
    111. Gardiner E S, Krauss K W.2001. Photosynthetic light response of flooded cherry bark oak (Quercus pagoda) seedlings grown in two light regimes [J]. Tree Physiol,21(15):1103-1111.
    112. Guarini J M.2009. Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during rapid light curve experiments [J]. Photosynthetica,47:206-214.
    113. Hattab S, Dridi B, Chouba L, et al.2009. Photosynthesis and growth responses of pea (Pisum sativum L). under heavy metals stress [J]. Journal of Environmental Sciences,21(11):1552-1556.
    114. Ilik P, Schansker G, Kotabova E et al.2006. A dip in the chlorophyll fluorescence induction at 0.2-2s in trebouxia-possessing lichens reflects a fast reoxidation of photosystem Ⅰ. A comparison with higher plants [J]. Biochim. Biophy. Acta.,1757:12-20.
    115. Jiang C D, Gao H Y, Zou Q.2003. Changes of donor and accepter side in photosystem Ⅱ. complex induced by iron deficiency in attached soybean and maize leaves [J]. Photosynthetica,4 (2)1:267-271.
    116. Kocurek V, Smutny V, Filova J.2009. Chlorophyll fluorescence as an instrument for the assessment of herbicide efficacy[J]. Cereal Res Commun.,37(1):289-292.
    117. Kopsell D A, Armel G R, Abney K R, et al.2011. Leaf tissue pigments and chlorophyll fluorescence parameters vary among sweet corn genotypes of differential herbicide sensitivity [J]. Pest. Biochem. Physiol..99:194-199.
    118. Krause G H, Weis E.1991. Chlorophyll fluorescence and photosynthesis:the basics [J]. Ann. Rev. Plant Physiol. Plant Mol. Biol.,42:313-349.
    119. Kupp M, Schulze E D.1985. An empirical model of net photosynthesis and leaf conductance for the diurnal courses of CO2 and H2O exchange [J]. Aust. Journal of Plant Physiology,12:513-526.
    120. Larocque G R.2002. Coupling a detailed photosynthetic model with foliage distribution and light attenuation functions to compute daily gross photosynthesis in sugar maple (Acer saccharum Marsh) stands [J]. Ecological Modelling,148(3):213-232.
    121. Leigh R A, Johnston A E.1994. Long-term experiments in agriculture and ecological sciences [A]. Proceeding of a conference to celebrate the 150th anniversary of rothamsted experimental station[C]. Cambridge:The UKat University Press,14-17.
    122. Lewis J D, Olszy K D, Tingey D T.1999. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature [J]. Tree Physiology,19(4-5): 243-252.
    123. Long S P, Humphries S, Falkowski P G.1994. Photoinhibition of photosynthesis in nature[J]. Annul Review of Plant Physiology and PlantMolecular Biology,45:633-662.
    124. Mao Zijun, Wang Yanjun, Wang Xiuwei, et al.2005. Effect of doubled CO2 on morphology: inhibition of stomata development in growing birch (B etula platyphy lla Suk.) leaves [J]. Russian Journal of Plant Physiology,52:198-202.
    125. Maxwell K, Johnson G N.2000. Chlorophyll fluorescence a practical guide [J]. J. Exp. Bot.,51: 659-668.
    126. Mihaich E M, Friederich U, Caspers N, et al.2009. Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants [J]. Ecotoxicology and Environmental Safety,72(5):1392-1399.
    127. Muller M, Li X P, Niyogi K K.2001. Non-photochemical quenching:a response to excess light energy [J]. Plant Physiology,125:1558-1566.
    128. Peng S, Garcia F V, Laza R C.1993. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concent ration [J]. Agron J,85:987-990.
    129. Prado Chba M J.1997. Photosynthetic capacity and specific leaf mass [J]. Photosynthetica,33:103-112.
    130. Qiu Z, Wang L, Zhou Q.2012. Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings [J]. Chemosphere,31(8):1274-1280.
    131. Quirino B F, Noh Y S, Himelblau E, et al.2000. Molecular aspects of leaf senescence [J]. Trends Plant Sci., (5):278-282.
    132. Rufty T W, Huber S C, Volk R J.1988. Alterations in leaf carbohydrate metabolism in response to nitrogen stress [J]. Plant Physiology,88:725-730.
    133. Schansker G, Srivastava A G, Strasser R J.2003. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leave. Functional Plant Biology,30:785-796.
    134. Schansker G, Toth S Z, Strasser R J.2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chi a fluorescence rise OJIP [J]. Biochim. Biophy. Acta.,1706:250-261.
    135. Shang-lian Hu, Jian-ying Zhou, Ying Cao, et al.2011. In vitro callus induction and plant regeneration from mature seed embryo and young shoots in a giant sympodial bamboo, Dendrocalamus farinosus (Keng et Keng f.) Chia et H.L. Fung [J]. African Journal of Biotechnology,10(16):3210-3215.
    136. Strasser B J, Strasser R J.1995. Measuring fast fluorescence transients to address environmental questions:The JIP test [M]. Mathis P(ed). Photosynthesis:from Light to Biosphere. Dordrecht:KAP Press: 977-980.
    137. Strasser R J, Govindjee S A.1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria [J]. Photochem. Photobiol.,61:32-42.
    138. Strasser R J, Srivastava A, Tsimilli-Michael M.2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples//Yunus M, Pathre U, Mohanty P. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London:Taylor and Francis Press,25:445-483.
    139. Strasser R J, Tsimill-Michael M, Srivastava A.2004. Analysis of the chlorophyll a fluorescence transientZ/Govindjee P G. Advances in Photosynthesis and Respiration. Netherlands:KAP Press:1-47.
    140. Tang Y L, Wen X G, Lu C M.2005. Differential changes in degra-dation of chlorophyll-protein complexes of photosystem I and photosystem Ⅱ during flag leaf senescence of rice [J]. Plant Phys. Bioch., 43:193-201.
    141. Tanka Y, Tkashi A.1968. Substrate specificity of the granule-bound and chloroplastic starch synthtase [J]. Plant Physical, (9):405-410.
    142. Wang Y P, Leuning R.1998. A two-leaf model for canopy conductance photosynthesis and partitioning of available energy I. Model description and comparison with a multi-layered model [J]. Agricultural and Forest Meteorology,91(1):89-111.
    143. Xu H L.2000. Effects of a microbial inoculant and organic fertilizers on the growth photo synthesis and yield of weet corn [A]. Nature farming and microbial applications[C]. New York. London. Oxford: Food Products Press,3(1):183-214.
    144. Ye Z P.2007. A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa [J]. Photosynthetica,45(4):637-640.
    145. Zhang X Q, Huang G Q, Bian X M, et al.2013, Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize, and the quantity of microorganisms and activity of enzymes in the rhizpsphere [J]. Plant and Soil,368:407-417.
    146. Zobiole LHS, de Oliveira R, Kremer RJ et al.2010. Water use efficiency and photosynthesis of glyphosate-resistant soybean as affected by glyphosate [J]. Pest. Biochem. Physiol.,97(3):182-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700